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Locomotion results from complex interactions between the central nervous
system and the musculoskeletal system with its many degrees of freedom
and muscles. Gaining insight into how the properties of each subsystem
shape human gait is challenging as experimental methods to manipulate
and assess isolated subsystems are limited. Simulations that predict move-
ment patterns based on a mathematical model of the neuro-musculoskeletal
system without relying on experimental data can reveal principles of loco-
motion by elucidating cause–effect relationships. New computational
approaches have enabled the use of such predictive simulations with complex
neuro-musculoskeletal models. Here, we review recent advances in predictive
simulations of human movement and how those simulations have been used
to deepen our knowledge about the neuromechanics of gait. In addition, we
give a perspective on challenges towards using predictive simulations to gain
new fundamental insight into motor control of gait, and to help design per-
sonalized treatments in patients with neurological disorders and assistive
devices that improve gait performance. Such applications will require more
detailed neuro-musculoskeletal models and simulation approaches that take
uncertainty into account, tools to efficiently personalize those models, and
validation studies to demonstrate the ability of simulations to predict gait in
novel circumstances.
1. Introduction
Notwithstanding decades of research, there remain many open questions about
the neuromechanics of human locomotion. Our limited fundamental knowl-
edge hinders the development of novel approaches to improve gait
performance in both patients and athletes. A better understanding of the prin-
ciples underlying human locomotion would benefit the design of exoskeletons
that reduce metabolic cost or orthopedic treatments that improve gait perform-
ance in patients with neuro-muscular disorders. Locomotion results from
complex interactions between the central nervous system, the sensory system
and the musculoskeletal system with its many degrees of freedom (DoFs)
and muscles. Probing the function of each subcomponent is hard, because
the invasiveness of available techniques limits direct measurements in
humans. In addition, it is hard to experimentally investigate the effect of iso-
lated changes in the neuro-musculoskeletal system on gait performance.
Predictive simulations can reveal principles of locomotion by elucidating
cause–effect relationships. Such simulations generate novel movements based
on a mathematical description, i.e. a model, of the neuro-musculoskeletal
system without relying on experimental data (figure 1). They therefore allow
studying the influence of isolated neuro-musculoskeletal features by adjusting
model parameters. Predictive simulation studies have mostly used conceptual
models with few DoFs and without muscles, thereby limiting the questions
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Figure 1. Predictive simulation of human walking. The walking pattern visualized here was generated by trajectory optimization based on a complex OPENSIM-based
three-dimensional muscle-driven model without relying on experimental data [1,2]. Blue spheres represent contact geometries. Muscles turn red when active.
(Online version in colour.)
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they could address. Computational roadblocks have long hin-
dered the use of more complex models. However, recent
developments in computational approaches have provided
powerful tools for simulating movement of complex bodily
systems allowing researchers to address long-standing open
questions.

Conceptual models have advanced our insight into prin-
ciples of locomotion [3]. Simple models of gait have very few
parameters and therefore allow exploring the whole par-
ameter space, which makes them amenable to interpretation
[4]. Such conceptual models demonstrated that energy mini-
mization explains many spatio-temporal gait features, for
example, the relationship between gait speed and step fre-
quency [5] and the selection of walking and running gaits
over other feasible gait patterns [4]. Alternatively, these
models describe the importance of leg compliance to explain
the salient dynamics of human gait [6]. Conceptual models
also revealed principles of gait stability. For example, passive
dynamics can stabilize walking in the sagittal plane, whereas
lateral stability requires active control [7]. When applied to
running, conceptual models revealed that less precise control
of leg stiffness and angle of attack is required as running
speed increases [8] and that local positive muscle force feed-
back can control leg stiffness [9]. However, being simple by
nature, conceptual models cannot capture how multiple
body segments, a redundant set of muscles and the central
nervous system interact to achieve gait economy and stability.

Complex models might elucidate how the neuro-
musculoskeletal system realizes gait principles identified
through conceptual models. Here, we consider a model com-
plex when it represents multiple lower limb segments and
joints driven by a redundant set of muscle–tendon actuators
with dynamics inspired by muscle physiology. First, taking
the complex, three-dimensional, musculoskeletal geometry
into account is important to understand both pathological
gait and athletic performance. For example, patients with
weak hip abductors adopt a Trendelenburg gait pattern with
compensations in both the frontal and sagittal planes and
sprinters have been shown to have smaller Achilles tendon
moment arms and longer toes than non-sprinters [10].
Second, accurately modelling muscle–tendon actuators is
important to understand movement economy. Muscle
dynamics are closely linked to muscle energetics with
muscle force being produced at lower metabolic rates when
a muscle works isometrically close to its optimal length [11].
Interactions between muscles and tendons influence muscle
efficiency by altering the muscles’ operating length and vel-
ocity and by allowing for storage and release of energy in
the tendons. Third, accurately modelling the musculoskeletal
system is crucial to study its interaction with the neural
system. The intrinsic mechanical properties of the musculoske-
letal system, especially muscles, provide stability against
external perturbations, thereby reducing the need for active
control (e.g. [12]). Finally, studying how muscles are coordi-
nated by the neural system requires models driven by a
redundant set of muscles. Many applications also require
such complexity. Using simulations for personalized clinical
decision-making requires models that sufficiently describe
the musculoskeletal structures and motor control processes
that are affected by disease and treatment. For example, chil-
dren with cerebral palsy often receive orthopedic surgery to
correct bony and soft tissue deformities. Integrating predictive
simulations in the clinical decision-making process seems
promising given the low success rate of such interventions
[13] but requires detailed and personalized models. Similarly,
using simulations to design exoskeletons that reduce metabolic
cost requires models that capture human metabolics, as simply
reducing the biological joint torques does not necessarily
reduce metabolic cost [14].

Recently, efficient numerical methods and open-source
software for predictive simulations based on complex
models have become available [2,15–17]. This availability
will enable researchers to address questions about the neuro-
mechanics of gait that require complex models and are hard
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Figure 2. Schematic of predictive simulation approaches using trajectory optimization and control policy optimization. Both approaches are based on a model of the
musculoskeletal system. Muscle dynamics describe how muscles transform excitations into forces. Commonly, Hill-type muscle models are used (PE, passive element;
CE, contractile element). Musculoskeletal geometry determines how these forces are applied to the skeleton system. Skeleton dynamics describe how the skeleton
moves under the influence of joint torques and contact forces with the environment. It is commonly assumed that motor control is optimal in some sense, for
example, by minimizing muscle effort, within the constraints imposed by the musculoskeletal system. Trajectory optimization computes open-loop muscle exci-
tations, whereas in control policy optimization the control policy is modelled and control parameters are computed. (Online version in colour.)
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to study solely based on experiments. Here, we review recent
advances in predictive simulations of human movement and
how those simulations have been used to advance our insight
into the neuromechanics of gait. Our review focuses on pre-
dictive simulation studies based on complex muscle-driven
models. We distinguish predictive simulations, which do
not require experimental movement data as input, from
tracking simulations, where errors between simulated and
experimental kinematics are minimized or constrained.
Although we acknowledge that useful insights have been
gained from tracking simulations, we believe that the ability
to predict de novomovements opens new avenues for research
and applications that could not be realized using tracking
simulations. We end this perspective with a discussion of
open questions and challenges.

2. Simulation approaches
Simulations of movement are typically based on the assump-
tion that the central nervous system optimizes performance,
e.g. minimizes the metabolic cost of transport. Under this
assumption, predictive simulations can be formulated as
optimal control problems. We distinguish approaches that
solve for (open-loop) muscle controls, often referred to as tra-
jectory optimization, from approaches that solve for control
policies (figure 2). Such control policies describe the depen-
dence of muscle controls on the state of the musculoskeletal
system, i.e. feedback control.

Researchers have used trajectory optimization methods
with increasing levels of computational efficiency over the
last two decades. In 2001, Anderson & Pandy required
10 000 central processing unit (CPU) hours to predict a walk-
ing cycle that minimized metabolic energy per distance
travelled based on a three-dimensional model with 23 DoFs
and 54 muscles [18]. They used a direct shooting approach
combined with a simulated annealing algorithm to solve
the underlying optimal control problem. The adoption of
direct collocation methods, instead of shooting methods,
has helped reduce computational time. In shooting methods,
the dynamics are integrated over the time horizon of the
simulation based on the current guess of the controls to
obtain the states required to evaluate the cost function and
constraints. In collocation methods, the discretized states
and controls are optimization variables and the integration
scheme is expressed by a set of constraints that is solved sim-
ultaneously with minimizing the cost function. The resulting
large-scale nonlinear programming problems (NLP) are
sparse and can be efficiently solved using gradient descent
algorithms, e.g. IPOPT [19]. Compared to direct shooting,
direct collocation reduces the sensitivity of the objective func-
tion to the optimization variables by reducing the time
horizon of the integration. Hence, collocation methods are
especially beneficial to solve problems with unstable dynamics,
such as open-loop musculoskeletal dynamics of bipedal loco-
motion. In 2010, Ackermann & van den Bogert required 35
CPU minutes to predict a walking cycle based on a two-
dimensional model with nine DoFs and 16 muscles [20] and
in 2018, Lin et al. required between 13 and 17 CPU hours to pre-
dict a walking cycle based on a three-dimensional model with
25 DoFs and 80 muscles [21]. Further improvements in compu-
tational speed were achieved by combining direct collocation
with implicit formulation of the dynamics, which improves
the numerical conditioning of the NLP, and algorithmic differ-
entiation [15,22,23]. In 2019, we required on average 35 CPU
minutes to simulate a walking cycle based on a three-
dimensional model with 29 DoFs and 92 muscles and shared
the computational tools we used on open-source platforms [2].
Similar tools have been implemented in OPENSIM MOCO [16].
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MOCO frees researchers from implementing direct collocation
themselves, which makes it easier to use by non-experts.
However, it does not use algorithmic differentiation, and
might therefore be less computationally efficient. Overall,
predictive simulations of walking using trajectory optimiz-
ation approaches can now be considered rapid and
accessible. However, such approaches do not describe gait
control policies and are therefore unsuited to describe how
the neuro-musculoskeletal system deals with uncertainty,
e.g. sensorimotor noise and external perturbations.

Approaches that solve for gait control policies can cap-
ture the robustness of the neuro-musculoskeletal system
against noise, yet are often computationally less efficient
than trajectory optimization methods. In 2010, Geyer &
Herr proposed a reflex-driven control model of gait [24].
They were able to produce stable two-dimensional gait simu-
lations by hand-tuning the control parameters of the model.
Since then, their control model has served as a basis for optim-
ization approaches that solve for control parameters by
optimizing performance. In their three-dimensional model,
Wang et al. combined these reflex-based control laws for the
16 muscles driving the sagittal plane lower limb joints with
proportional derivative controllers for the torque actuators
driving the remaining 24 DoFs [25]. They used covariance
matrix adaptation (CMA) to solve for control parameters
[26]. In 2019, Geijtenbeek et al. published SCONE, an open-
source software package to generate predictive simulations
by computing control policies using CMA [17]. Alternatively,
reinforcement learning has been used to solve for control pol-
icies. Since 2017, the NeurIPS ‘Learn to move’ competition
series has accelerated the adoption of reinforcement learning
techniques to simulate human locomotion based on neuro-
musculoskeletal models (for detailed reviews, see [27,28]).
Overall, approaches that solve for gait control policies
were based on simpler neuro-musculoskeletal models
than trajectory optimization methods, probably because of
computational efficiency. In addition, computational
approaches for control policy optimization are typically less
suitable for dealing with task constraints, such as periodicity
or locomotion speed, than computational approaches for
trajectory optimization.

Both trajectory optimization and approaches that solve for
gait control policies generated simulations that capture key fea-
tures of human gait. The realism of simulated movements is
typically assessed by comparing simulated and measured
joint kinematics, kinetics, ground reaction forces and muscle
activities. However, such validation efforts are often qualitative
and limited to a single gait pattern. Only few studies went
beyond such validation. Song & Geyer solved for gait control
policies and validated their simulations against perturbation
experiments [29,30]. Their simulations capture the change in
muscle activity owing to epidural stimulation of the spinal
cord, tendon taps, ankle stretch, slip of the stance leg and trip
of the swing leg during walking. Dorn et al. validated whether
their optimal reflex-based control policies captured key features
of level walking as well as inclined and loaded walking [31].
We validated that our three-dimensional trajectory optimiz-
ation simulations captured the relationship between gait
speed, and, respectively, gait frequency and metabolic cost of
transport [2]. Ong et al. performed a similar validation for
their reflex-driven two-dimensional simulations [32]. However,
we feel that further efforts are needed to validate the under-
lying motor control assumptions. It is clear that control of
gait is neither fully open-loop nor fully reflexive. Yet both
models have resulted in realistic mechanics and muscle activi-
ties, suggesting an important role of musculoskeletal
dynamics in shaping human gait.

Relatively few predictive simulation studies have used
three-dimensional models with a redundant set of muscles.
However, given that control of movement is realized through
a redundant set of muscles and is coupled between planes,
such complexity is required to unveil gait control strategies
as well as compensation strategies owing to neuro-musculos-
keletal deficits. For instance, we observed that we needed to
minimize metabolic energy rate squared in addition to
muscle activities squared when simulating walking based
on a three-dimensional model with a redundant set of
muscles to prevent excessive trunk sway in the frontal
plane [2], whereas others have obtained realistic sagittal
plane gait patterns by minimizing only activations squared
based on a two-dimensional model in which agonistic
mono- and bi-articular actuators were represented by single
muscles [20]. In addition, we showed that weakening the
hip muscles of our three-dimensional model produced walk-
ing simulations with excessive hip circumduction, a
compensation strategy in the frontal plane [2].
3. Key insights from predictive simulation studies
(a) Optimality principles underlying gait control
Predictive simulation studies, mostly based on trajectory
optimization, have explored optimality principles underlying
human gait. Anderson & Pandy showed that minimizing
metabolic energy per unit distance travelled of a three-
dimensional muscle-driven model produced a walking
pattern that closely matched experimental data [18]. How-
ever, they forced their model to walk with a flexed knee
during stance by imposing the joint kinematics at the initial
state to match experimental data. Ackermann & van den
Bogert compared energy-like cost functions, sum of muscle-
volume-scaled activations to the power 1–4, and fatigue-like
cost functions, sum of activations to the power 2–10 [20].
Fatigue-like cost functions predicted larger and more realistic
knee flexion during early stance than energy-like cost
functions for a two-dimensional muscle-driven model.
Based on these results, they suggest that fatigue minimization
may be one of the primary optimality principles driving
human gait selection. Miller compared the walking patterns
predicted by five different metabolic energy models using a
three-dimensional muscle-driven model with trapezoidal
excitation controls [33]. Joint kinematics and ground
reaction forces varied with the model used, with some
models predicting hip circumduction. It is hard to judge
how much the simplified control patterns contributed to
differences with respect to human walking. We evaluated
the influence of various performance criteria on walking
patterns predicted using a three-dimensional muscle-
driven model [2]. We found that a multi-objective cost
function combining metabolic energy, muscle activations
and joint accelerations, all terms squared, produced a
human-like walking pattern. However, none of the cost func-
tions we tested predicted realistic knee flexion angles and
knee extension torques during stance. Our cost function
nevertheless captured the walk-to-run transition and clinical
gait deficiencies caused by muscle weakness and prosthesis
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use, suggesting that diverse gaits can emerge from the same
optimal control strategy.

Nguyen et al. applied inverse optimal control to identify
the cost function underlying a measured walking pattern
based on a two-dimensional muscle-driven model [34].
They proposed a cost function with terms related to effort,
modelled as activations cubed, stability, modelled as the
squared horizontal distance between the middle of the base
of support and respectively the head and centre of mass,
and smoothness, modelled as the centre of mass jerk squared,
and solved for weights that best reproduced experimental
data using a bilevel optimization method. Their optimal
cost function captures experimental data except for the
ankle angle. Note that similar approaches have been applied
to two-dimensional torque-driven models (e.g. [35]).

Optimality principles underlying running have also been
studied. For example, Miller et al. compared minimizing the
metabolic cost of transport, activations squared and total
muscle stress based on a two-dimensional muscle-driven
model [36]. They found that minimizing activations squared
predicted the most realistic joint angles, timing of muscle
activity and metabolic cost of transport.
2

(b) Feasibility of gait control architectures
Simulations have helped elicit the role of control structures,
such as reflexes and central pattern generators, in generating
stable and versatile walking patterns. By simulating control
architectures, often inspired by experimental observations,
researchers have tested their ability to generate human-
like walking. Taga proposed a control strategy based on a
rhythm generator consisting of seven pairs of neural oscillators
with sensory inputs supplemented with joint level impedance
controllers to drive a two-dimensional model with ideal muscle
actuators, i.e. muscle force proportional to input [37]. He
fine-tuned the controller parameters through trial and
error to generate stable walking. The proposed control archi-
tecture was able to generate walking movements at different
speeds that were robust against mechanical perturbations.
As introduced above, Geyer & Herr proposed a reflex-
based control strategy to drive a two-dimensional model
with Hill-type muscles [24] and demonstrated that such
strategy can generate walking simulations robust against
ground disturbances and changes in slope.

Such physiology-inspired control architectures have been
combined with performance optimization to test the role of
control structures in generating versatile gait. Dzeladini
et al. used an optimization approach to demonstrate that a
central pattern generator on top of a reflex controller can
modulate gait speed based on a two-dimensional muscle-
driven model [38]. Song & Geyer extended the reflex-based
controller of Geyer & Herr to a three-dimensional version
that drives 22 muscles actuating eight DoFs and added a
supraspinal layer controlling for foot placement, swing leg
length and swing leg selection [29]. They showed that this
control architecture is able to produce diverse steady and tran-
sitional locomotion behaviours and therefore suggest that
spinal reflexes might be functionally more important than cen-
tral pattern generators in human locomotion. Song & Geyer
evaluated whether the reflex-based control policy that mini-
mized metabolic energy of a two-dimensional model during
walking captured observed responses to perturbations [30].
The responses of the model were in agreement with
experimental observations for local disturbances but were
smaller than observed for whole-body perturbations,
suggesting that the model should be extended with suprasp-
inal control modulating the reflex gains. Wang et al.
modelled the supraspinal control layer with a deep neural net-
work that provides input to the reflex-based controller and that
was successfully trained to cope with changing terrains [39].

(c) Effect of musculoskeletal properties and neural
impairments on gait mechanics and energetics

Predictive simulations allow assessing of how altered neuro-
musculoskeletal properties affect gait performance. Such
assessment is hard to perform experimentally because—
especially with ageing or neurological pathologies—multiple
physiological changes occur simultaneously. Miller et al.
found that maximal sprinting speed predicted by trajectory
optimization based on a two-dimensional model driven by
Hill-type muscles is more sensitive to the force–velocity
relationship than to the force–length relationship or tendon
elasticity [40,41]. Based on a three-dimensional muscle-
driven model, Song & Geyer showed that muscular changes,
i.e. loss of muscle strength and mass, contribute more to
reduced walking economy and speed in older adults than
neural changes, i.e. slower neural conduction speed and sen-
sorimotor noise [42]. We showed that decreasing the strength
of the hip muscles in a three-dimensional muscle-driven
model produced gaits with excessive hip circumduction,
resembling compensated Trendelenburg gait patterns
observed in patients with hip muscle weakness, whereas
decreasing the strength of the ankle plantarflexors produced
calcaneal gaits, which may be observed in children with spas-
tic diplegia who have weak plantarflexors [2]. Ong et al.
investigated the differential effect of plantarflexor weakness
and contraction, often occurring simultaneously in neurologi-
cal disorders such as cerebral palsy or stroke, on the gait
pattern of a two-dimensional muscle-driven model [32]. Plan-
tarflexor weakness resulted in slower calcaneal gaits with
increased per cent time spent in stance, whereas plantarflexor
contracture resulted in crouch gait characterized by toe land-
ing and excessive knee and hip flexion. The analyses
presented thus far were based on generic models. We also
evaluated the differential effects of musculoskeletal and
neural impairments on the gait pattern of a child with cer-
ebral palsy using a three-dimensional muscle-driven model
with personalized musculoskeletal geometries based on mag-
netic resonance imaging [43]. We found that altered muscle
properties, modelled through personalized Hill-type
muscle–tendon parameters, rather than spasticity and
reduced neuro-muscular complexity were the primary contri-
butors to the crouch gait pattern of the child, suggesting that
they should be the main treatment targets to restore an
upright posture.

(d) Gait patterns and joint loading
Predictive simulations have been used to study how altera-
tions in the gait pattern might reduce joint loading. Gait
retraining is an attractive rehabilitation strategy in joint dis-
orders such as osteoarthritis. Fregly et al. used simulations
based on a three-dimensional torque-driven model to
design gait modifications that reduced the knee adduction
moment while minimizing deviations from the patient’s
self-selected kinematics [44]. They found that slightly



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20202432

6
increasing leg flexion, decreasing pelvic obliquity and
increasing pelvic axial rotation decreased the knee adduction
moment. Note that knee adduction moment is a proxy for
knee joint loading and that a torque-driven model with
simple knee geometry, a pin joint in this case, does not
capture the effect of muscle coordination and joint geometry.
Miller et al. explored gait modifications that reduced axial
knee joint loading based on a two-dimensional muscle-
driven model [45]. They found that reduced gastrocnemius
activity, avoidance of knee flexion during stance and smaller
strides reduced knee joint loading. Koelewijn & van den Bogert
found that improvingmoment symmetry in a two-dimensional
muscle-driven simulation of transtibial amputee gait resulted
in lower hip and knee contact forces in the intact leg at the
cost of increased effort and abnormal kinematics [46].

(e) Design of assistive devices
The reflex-based model proposed by Geyer & Herr [24] served
as inspiration for the design of assistive device controllers. For
example, Markowitz et al. used it for controlling an ankle pros-
thesis and showed that it resulted in a physiological
adaptation of ankle work in response to ground slope vari-
ation [47]. Further, Wu et al. used it for controlling hip and
knee torques delivered by an assistive lower-limb exoskeleton,
and demonstrated its ability to produce near-physiological
walking kinematics at near-normative speeds for subjects
with spinal cord injury [48].

Alternatively, simulations have been used to explore the
effect of prosthesis design on the gait pattern. Handford &
Srinivasan used trajectory optimization based on a two-
dimensional muscle-driven model to explore the effect of the
control strategy on the kinematics and energetics of walking
with a transtibial prosthesis [49]. They found that both too
little and too much prosthesis work increased the metabolic
energy rate, and that metabolic energy rate could be reduced
when allowing asymmetric walking patterns. Our simulations
using trajectory optimization based on a three-dimensional
muscle-driven model captured the ankle plantarflexion
torque patterns owing to passive transtibial prosthetic use [2].

( f ) Computer graphics applications
Muscle-driven models have been adopted in computer
graphics owing to the increased realism of gait patterns pre-
dicted with muscle- versus torque-driven models. Mordatch
et al. used trajectory optimization to simulate human gaits
and other movements based on a three-dimensional
muscle-driven model [50]. They minimized dynamic incon-
sistencies rather than imposing dynamics, reflecting their
focus on generating visually plausible movement patterns
in a computationally efficient way rather than studying the
neuromechanics of human gait. Their simulation produced
realistic simulations of steady-state gaits in Earth’s and
reduced gravity, gait initiation and incline walking.
4. Challenges and future perspectives
Predictive simulations have begun to provide valuable insights
into the neuromechanics of gait. Recent computational
advances will allow us to further increase the realism of the
associated neuro-musculoskeletal models, thereby bridging
the gap between how we currently conceptualize principles
underlying human locomotion and how they are
physiologically realized in the neuro-musculoskeletal system.
In addition, the use of models that better reflect an individual’s
neuro-musculoskeletal properties will advance our under-
standing of inter-subject differences in gait patterns. Here,
we discuss challenges and future perspectives to increase the
accuracy of predictive simulations.

(a) Motor control models
Translating available knowledge on motor control into
models will be important to improve the realism of simu-
lations. By solving for muscle controls that optimize
performance, trajectory optimization makes abstraction of
underlying control structures contained in the brain and
spinal cord and therefore does not give any insight into
how the neural system generates muscle controls. This is an
important barrier to study how neurological disorders that
affect specific regions in the brain or spinal cord impede
gait performance. Approaches that predict human walking
by computing optimal control policies have mainly relied
on reflex-based controllers. Reflex pathways implemented in
popular models are simplifications of the reflex system and
only part of the muscle input can probably be attributed to
reflexes [51]. Reflex models have been extended by central
pattern generators [38] and supraspinal inputs [29], yet
none of these simple control models captures the complexity
of human motor control. Important sources of sensory infor-
mation, such as cutaneous receptors and vision, are often not
considered and the process of sensory integration is not expli-
citly modelled. Developing more accurate motor control
models is not straightforward as we lack a comprehensive
framework and quantitative data, e.g. on the relative contri-
bution of supraspinal and reflex pathways. We might take
inspiration from motor control models that have been used
to simulate animal locomotion (e.g. [52]).

Translating clinical definitions of neurological symptoms
into mathematical models is important to study how these
symptoms affect locomotion. For example, spasticity is a
common symptom in neurological disorders that is defined
as a velocity-dependent increase in tonic stretch reflexes
resulting from hyperexcitability of the stretch reflex [53].
This definition has inspired modellers to describe muscle
activity owing to hyperactive stretch reflexes as feedback
from fibre velocity but such models failed to capture key fea-
tures of the response to passive stretch in individuals with
spasticity. Instead, we took inspiration from in vivo muscle
stretch experiments in healthy animals [54] to develop more
accurate models of spasticity by describing muscle activity
owing to hyperactive stretch reflexes by feedback from his-
tory-dependent muscle force [55,56]. Our simulations
inspired new experimental studies that confirmed the move-
ment history-dependence of the response to passive stretch in
individuals with spastic cerebral palsy [57]. However, study-
ing how spasticity affects whole-body movements will
require embedding those reflex models into more complete
motor control models that capture task-dependent suprasp-
inal modulation of reflexes.

(b) Optimality principles
There is a need for experiments designed to test potential
trade-offs between multiple criteria to advance our under-
standing of the optimality criteria underlying human
movement. Both experiments and simulations suggest that
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energy minimization shapes human gait [4,58]. While it is
likely that other criteria also contribute, it remains challenging
to identify them. The search space is vast, i.e. infinite combi-
nations of potential criteria could be tested, and redundant,
i.e. different criteria might result in very similar simulated
walking patterns. An additional problem is that it is hard to
distinguish the effect of optimal control assumptions and mus-
culoskeletal modelling errors on the predicted movement
patterns.

While trade-offs between criteria might be subtle for
steady-state level-ground walking, they might be more pro-
nounced in other conditions [59]. Predictive simulations
could help identify experimental conditions that would
allow distinguishing between optimality criteria. For example,
simulations could be used to explore the mechanical con-
straints (e.g. limited joint range of motion or foot-ground
contact locations, slopes or stairs, added segment mass or
volume) that lead to the largest predicted difference in kin-
ematics when prioritizing minimizing metabolic cost versus
muscle activity squared, which might be a measure of fatigue.

Alternatively, inverse optimal control is a useful tool to
identify optimality criteria underlying measured movements.
Application of inverse optimal control has, nevertheless, been
limited to simple two-dimensional models [34,35] probably
owing to the high computational cost of performing bilevel
optimization. In addition, inverse optimal control can only
be expected to be successful when the experimental input
data contains sufficient information to distinguish different
criteria.
(c) Robust optimal control
Todorov & Jordan demonstrated that it was important to
account for uncertainty when optimizing task performance
to realistically reproduce upper limb movements [60] but
uncertainty, e.g. owing to sensorimotor noise, is often neg-
lected when simulating gait. When using shooting methods
to compute control policies, accounting for uncertainty is
computationally straightforward because sensorimotor and
external noise can be added when evaluating the dynamics.
Yet the high computational cost of current computational
approaches for control policy optimization might be a barrier
to applying stochastic optimal control to complex models.
Because robustness against uncertainty requires feedback
control, trajectory optimization is by design unsuited for
studying stochastic optimal control. Future methodological
developments should therefore aim at using the recent com-
putational advances that improved the efficiency of
trajectory optimization to stochastic optimal control. For
example, Koelewijn & van den Bogert accounted for control
noise when simulating walking based on a torque-driven
sagittal plane model [61]. They computed open loop controls
and gains of reflexive joint controllers by optimizing perform-
ance over a set of predefined noise trajectories using direct
collocation and gradient-based optimization. Increased con-
trol noise resulted in larger foot clearance. We are currently
exploring whether the approach suggested by Houska et al.
for mechatronic control [62] is applicable to simulate
human gait. The main idea is to approximate the stochastic
state by its mean and covariance, and to approximate the
dynamics of the state covariance using the continuous Lyapo-
nuv equation. The resulting approximate deterministic
optimal control problem can then be solved with direct
collocation. However, it remains to be seen whether compu-
tational efficiency can be improved using such approaches
given the large size of the resulting optimal control problems.

(d) Musculoskeletal model complexity
Recent computational advances enable the integration of
increasingly complex models of the musculoskeletal system
in predictive simulations. Common assumptions in gait simu-
lation studies are to model the feet and the upper body as
single rigid segments. Inverse approaches that aim to study
joint torques or muscle coordination underlying a measured
movement might be less sensitive to such assumptions than
predictive simulations. For example, modelling the foot as a
two-segment versus single segment system has little influ-
ence on the knee torque estimated from motion capture
data, i.e. marker trajectories and ground reaction forces,
whereas in recent work we found that it has a large effect
on the knee torque in predictive simulations (A. Falisse, M.
Afschrift, F. De Groote 2021, unpublished data). Model com-
plexity might have important implications for testing
optimality principles underlying human gait as well. For
example, Song & Geyer found that adaptive feet increased
the energetic cost in simulations of walking [63].

Predictive simulations of whole-body movements typically
rely on phenomenological Hill-type muscle models that
might not accurately capture muscle mechanics and ener-
getics. We think that computational speed is an important
limitation to the adoption of more complex and realistic
models of muscle dynamics. For example, van Soest &
Lemaire needed 10 000 times more CPU time to simulate ver-
tical jumping based on a two-dimensional model driven by six
muscles when using a Huxley-type cross bridge model instead
of a Hill-type muscle model [64]. In addition, the unavailabil-
ity of model parameters for the lower limb muscles as well as
approaches to scale them to individual subjects might hinder
the adoption of alternative models of muscle dynamics.

Insight into how foot-ground contact models influence
predicted walking patterns is limited. Elastic foundation and
Hunt–Crossley models are popular to describe contacts. Yet
they might not accurately capture contact geometries, poten-
tially affecting the predicted movements. Avoidance of inter-
limb collisions has also been shown to shape human gaits
[65], but inter-limb contacts are typically not modelled. In
recent work, we prevented inter-limb collisions by imposing
minimum distances between segment origins [2]. Contacts
are inherently discontinuous and therefore unsuited for gradi-
ent-based optimization. To overcome this issue, researchers
have either prescribed the sequence of foot-ground contacts,
which is undesirable when the contact sequence is unknown
a priori, or used smooth approximations of discontinuous
models. Alternative contact descriptions have also been pro-
posed. For example, Mordatch et al. used a contact model
that does not impose the dependence of contact forces on
deformation [50].

(e) Between subject variation/personalization
Neuro-musculoskeletal models typically represent an average
human rather than a specific individual. Methods for image-
based modelling of musculoskeletal geometry, i.e. joint defi-
nitions and muscle paths, are available (e.g. [66]) but the
long time required to build image-based models has limited
their use. Similarly, medical imaging can provide information
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about muscle–tendon properties. However, relating image-
based measures and Hill-type model parameters is not
always straightforward given the simplified representation
of the muscle as a single fibre in series with the tendon
in such models. Alternatively, model parameters can be
identified based on experimental electromyography (EMG)-
torque relationships (e.g. [67,68]). This approach has been
successfully applied to estimate properties of the ankle and
knee actuators but the inability to collect surface EMG from
deep muscles limits its use for the hip actuators. Similarly,
dynamic ultrasound-based measures of fibre lengths can be
used for parameter identification but such measures are
typically limited to very few muscles [69].

Methods for personalized modelling of motor control are
scarce. Little is known about how optimality principles
underlying gait differ between subjects or within subjects
depending on experience and mood. Liu et al. used inverse
optimal control to find the optimality criterion underlying
three-dimensional torque-driven simulations that best rep-
resented an observed movement style [70]. Alternatively,
muscle synergies derived from EMG signals measured
during walking have been used for personalized modelling
of muscle coordination in stroke [71]. The disadvantage of
this approach is that experimental data from the movement
being studied is needed as input and hence the simulations
can no longer be considered predictive.

Available methods for model personalization have in
common that they require extensive data collection. Esti-
mation of model parameters based on limited input data is
susceptible to overfitting. Predictive simulations could be
used to explore the sensitivity of predicted walking patterns
to model parameters, thereby enabling targeted selection of
model parameters to be personalized and experimental data
to be collected.

( f ) Personalized treatment selection
Predictive simulations are an attractive tool for personalized
treatment selection. Predictive simulations would allow us
to test different treatment options in advance of the interven-
tion and to select the treatment option that has the highest
potential to improve gait performance. We currently focus
on using predictive simulations to predict the effect of
single event multi-level surgery in children with cerebral
palsy, where treatment outcome is currently unpredictable
and variable [72]. However, it is unclear what level of
model complexity and personalization is needed to dis-
tinguish successful from unsuccessful interventions.
Similarly, predictive simulations could accelerate the design
of devices aiming to improve gait performance such as run-
ning shoes, insoles, prostheses and exoskeletons but it has
yet to be convincingly demonstrated that they can predict
the effect of such devices on the gait pattern.

(g) Adaptation, learning and experience
The ability to simulate how experience shapes gait mechanics
and energetics will be important if we want to predict the
effect of gait training or adaptation to devices such as exoske-
letons. For example, Sellinger et al. showed that humans
change their gait pattern when wearing an exoskeleton
such that the energetic cost is minimized and that this process
requires exploration away from their non-assisted gait pattern
[58]. But even non-gait-specific training might have an influ-
ence on gait. Sawers et al. demonstrated that muscle
coordination during walking was different in professionally
trained ballet dancers as compared to healthy controls [73].
Reinforcement learning might offer a framework to translate
experimental observations on adaptation, learning and
experience into simulations.
5. Conclusion
We expect the use of predictive simulations for investigating
the neuromechanics of human gait to grow in the coming
years thanks to recent developments in computational
approaches and the availability of open-source software
packages. However, challenges remain to further improve
the realism of predictive simulations and to validate the
simulated outcomes. Addressing these challenges will be
important to answer both fundamental questions about the
neuromechanics of gait and to use predictive simulations
for the design of interventions that improve gait performance.
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