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Transmitter signalling is the universal chemical language of any nervous
system, but little is known about its early evolution. Here, we summarize
data about the distribution and functions of neurotransmitter systems in
basal metazoans as well as outline hypotheses of their origins. We explore
the scenario that neurons arose from genetically different populations of
secretory cells capable of volume chemical transmission and integration of
behaviours without canonical synapses. The closest representation of this pri-
mordial organization is currently found in Placozoa, disk-like animalswith the
simplest known cell composition but complex behaviours. We propose that
injury-related signallingwas the evolutionary predecessor for integrative func-
tions of early transmitters such as nitric oxide, ATP, protons, glutamate and
small peptides. By contrast, acetylcholine, dopamine, noradrenaline, octopa-
mine, serotonin and histamine were recruited as canonical neurotransmitters
relatively later in animal evolution, only in bilaterians. Ligand-gated ion
channels often preceded the establishment of novel neurotransmitter systems.
Moreover, lineage-specific diversification of neurotransmitter receptors
occurred in parallel within Cnidaria and several bilaterian lineages, including
acoels. In summary, ancestral diversification of secretory signal molecules pro-
vides unique chemical microenvironments for behaviour-driven innovations
that pave the way to complex brain functions and elementary cognition.

This article is part of the theme issue ‘Basal cognition: multicellularity,
neurons and the cognitive lens’.
1. Introduction: behaviour is a pacemaker of evolution
This paper summarizes some older and novel insights about evolutionary
aspects of neurotransmitter functions. The narrative is not designed to provide
a systematic comparative review dealing with the distribution of chemical sig-
nalling in the brain. Rather we would like to ask some simple but difficult
questions, which might help to decipher fundamental principles of neural
organization in historical context following Dobzhansky’s famous motto: ‘Noth-
ing in biology makes sense except in the light of evolution’ [1]. Rephrasing this, we
can also add: ‘Nothing in neuroscience makes sense except in the light of trans-
mitters’. Both statements illuminate the topic of this essay and should be united
to understand our brain genealogy.

Origins of neural systems, brains, eusociality and cognition are the major
transitions in planetary evolution [2]. There is no shortage of hypotheses of
neuronal origins [3–24]. But we still do not know why, how and when it hap-
pened? The vast majority of organisms on the Tree of Life survive without
neurons and brains. Indeed, 85% of biological evolution on the Earth (more
than 3 billion years!) occurred without nervous systems as we know it. So,
the origin(s) of neurons is a rare event. As with any biological adaptation,
neural systems (and neurotransmitters) are passive products of evolution. The
term ‘passive’ is used here to emphasize the lack of goal-oriented evolution
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Figure 1. (a) Hypothetical ancestor of all metazoans (Urmetazoa) with a diversity of secretory cells capable of volume transmission and early radiation of basal metazoan
lineages preserving both non-synaptic transmission and the parallel development of systems for intercellular communications including synapses. (b) Non-specific injury
response and repair signalling as an evolutionary predecessor of neurotransmitters [19]. Shadows show gradients of neurotransmitters from their release sites.
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of nervous systems. There is no a priori goal or trends, which
‘requires’ the origin of neurons in multicellular organisms.
However, certain traits (preadaptations) might set the stage
and ‘facilitate’ development of innovations in pre-existing
integrative systems, which would eventually lead to neural
systems as we know them today in the majority of Metazoa.
This approach also implies that there were alternative
neural/integrative systems in the past; some of them
are extinct and some are still present in extant animals,
including some nerveless basal metazoans. What kind of
‘preadaptations and factors triggered the formation of early
neural systems?

‘Behaviour is the pacemaker of evolution’ [25] and, as indicated
by Ernst Mayr, ‘behavioural shifts have been involved in most
evolutionary innovations’. ‘Any behaviour that turns out to be
of evolutionary significance is likely to be reinforced by the
selection of genetic determinant of such behaviour known as
the “Baldwin effect”’ [25, p. 137].

Our working hypothesis is that ancestral neural systems
evolved from genetically heterogeneous populations of polar-
ized secretory cells without canonical synapses and capable
of volume (non-synaptic [26–35]) transmission (figure 1).
We further propose that integrations of behaviours by trans-
mitters [36,37], originally related to novel feeding ecology,
injury and defense, created the molecular playground for
the parallel development of neuroid-type signalling in early
metazoans (figure 1).

Volume transmission can be long-distance or more loca-
lized [26–35], tuned by different chemical natures (reactivity,
stability, size) of messenger molecules and the presence of
sufficient intercellular space.

The emergence of extracellular digestion and relevant
elaborated secretion in metazoan ancestors was an important
preadaptation to form intercellular regions with unique
chemical microenvironments of signal molecules. Indeed, in
a multicellular organism, such a biologically significant goal
as feeding requires substantial integration of multiple effec-
tors: ciliated, contractile and secretory cells. Feeding also
includes innate immune protection against potential patho-
gens (e.g. using nitric oxide and toxins) and injury-induced
regenerative responses.

Under this scenario, the genetic determinants providing
immediate behavioural output could be mutations affecting
putative signal molecules and their reception and inactivation
systems. The molecular targets for natural selection would be
secreted metabolites, proteins (including proteolytic digestive
enzymes), small peptides and toxins with changeable three-
dimensional structures, their interactions with orphan recep-
tors, modulators, transporters, inactivation and uptake
mechanisms, etc. The resulting sea of potential chemical mes-
sengers would be, in a direct sense, a hotspot for the selection
of molecular modules capable of generating system
innovations.

In contrast with highly stereotyped electrical signalling
and wiring, these chemically and purely combinatorial trans-
mitter innovations are more adaptable and simpler. The
behavioural coordination of effectors can be easily tuned by
dynamic changes of concentrations in amixture of freely diffu-
sible intercellular messengers. Such functional reconstruction
provides a versatile platform for selecting and recruiting mol-
ecular modules at all levels of the biological organization with
traceable mechanisms and measurable benefits for survival.

In summary, we suggest not that the nervous system
evolved transmitters, but rather that transmitters made the
nervous system by integrating ancestral populations
of secretory cells for behavioural coordinations without
synapses. The diversity of ancestral transmitters (signal mol-
ecules) may have been the most profound of pre-neuronal
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metazoan adaptations. This idea was originally discussed by
D. A. Sakharov in 1970 [36–40] when comparative studies of
neurotransmitters were in their infancy. Regrettably, we still
know very little about the diversity of transmitters and their
functional roles among early branching metazoans. Only
five quite derived phyla (out of 35) have been sufficiently
investigated in terms of the transmitter organization of their
neural circuits and behaviours. These are chordates, arthro-
pods, nematodes, annelids and molluscs. In the next
sections, we will take advantage of the burgeoning genomic
data to identify shared signal molecules between metazoan
lineages with and without neural systems. Animal phylogeny
is significantly revised compared to the situation a decade ago.
Thus, it would be important to incorporate the distribution of
transmitters within the novel phylogenomic framework.
 Trans.R.Soc.B

376:20190762
2. Convergent evolution and diversity of neural
systems in Metazoa

It is well accepted that dramatic environmental changes at the
Precambrian–Cambrian boundary [41,42] caused profound
diversification of body plans both in Ediacaran and early
Cambrian biota. Multicellularity and bigger body sizes,
supported by oceanic oxygenation more than 550 Mya, facili-
tated the transition in modes of feeding on pino- and
phagocytosis toward extracellular digestion characteristics
of metazoans. Predation or escape from predation [23] may
have been subsequential behavioural innovations that con-
tributed to multiple origins of neuroid and other integrative
systems in early metazoans.

As a result, three out of five basal Metazoa lineages
(Ctenophora, Cnidaria and Bilateria) evolved neural systems
with remarkably different spatio-temporal organiza-
tions (figure 2). Two lineages derived from the common
ancestor of all Metazoa (Urmetazoan), Porifera and Placozoa,
have remained nerveless. This might be attributable to their
success with distinct ecological niches, alternative life strat-
egies and alternative integrative systems.

Notably, representatives of two groups of obligate andmor-
phologically highly simplified parasites secondarily lost their
neural systems [55]. The first phylum is Dicyemida [57–59],
which belongs to the clade Lophotrochozoa. These parasites
inhabit the renal system of cephalopods, and their body is
reduced to just a few dozen cells with ultra-compact genomes
[57]. The second group is a specialized lineage of parasitic cni-
darians—Myxozoa [60]. Myxozoans also have highly
simplified morphology, a very small number of cells (but
some still preserved muscles [61]) and compact genomes
[62,63]. Also notably, the rest of the known parasitic groups
(more than 30% of extant animal taxa, including microscopic
or sessile animals) did not ‘lose’ their neural systems. Once the
nervous systemwas gained, itwas never lost in all the represen-
tatives of the 32 phyla over a half billion years of evolution. The
nervous system is an expensive but highly ‘valuable’ trait sup-
porting adaptive behaviours and developmental programs.

Porifera and Placozoa (figures 1 and 2) are macroscopic and
complex animals with hundreds of thousands tomanymillions
of cells. Their elaborate behaviours (e.g. predation in some
sponges and rapid locomotion in placozoans) are performed
in the absence of neuro-muscular organization. Both phyla
have a very rich repertoire of genes, many with some synteny
to bilaterians [64–69]. There is no creditable evidence that
sponges and Placozoan ancestors, as free-living and free behav-
ing organisms, secondarily lose neural systems from their
respective common ancestors. These descendants of early ner-
veless metazoans have survived well for 540 million years.

Ctenophores or comb jellies have not one but two distinct
neural systems [50]. Ctenophores are very distantly related to
Cnidaria [43–45,70]. These two phyla of gelatinous predators
are remarkably different in virtually all aspects of their
anatomical, developmental andgenomic composition (figure2).
Based on the uniqueness of the neuro-muscular organization
across these phyla and bilaterians, we suggested that neural
systems, synapses, muscles and mesoderm evolved indepen-
dently in ctenophores [46,56,71,72]. These hypotheses have
initially been met with some caution [73–75]. The primary
scepticism was based on selected evolutionary models, which
recovered sponges’ traditionally most basal in the animal
phylogeny [76,77]. However, both the Sponge-first scenario
[47] and the Ctenophore-first scenario [45] are equally compati-
blewith the independent origins of neural systems, as discussed
elsewhere [24,72,74,76].

As soon as neurons arose, there was immediately parallel
diversification of neuronal cell types and countless examples of
the convergent evolution for similar behaviours. Figure 2 also
shows that events of neuronal centralization and the formation
of complex brains may have occurred more than twenty times
independently across animal lineages [19,55,56], with the great-
est diversity of neural system types in Mollusca [19].

Intriguingly, among about 100 classes of bilaterians,
representatives of only three classes (insects, crustaceans
and mammals) developed eusociality—the most evolutiona-
rily successful form of social organization [78]. According
to Edward Wilson [78], eusociality arose 18 times: once in
the lineages leading to termites, ants, ambrosia beetles,
aphids, thrips and humans, respectively. Eusociality arose
twice in naked mole rats, three times independently in both
wasps and shrimps, and at least four times in bees. Naked
descendants of one group of apes, 1–3 million years ago,
evolved consciousness of our kind and conquered the
planet [78] after 3.5 billion years of experimenting by Nature.

Remarkably, both the formation of social relationships and
complex behavioural integrations were performed by balan-
cing similarly diverse subsets of transmitters [37,79–86] as in
early branching animal lineages. Thus, the broadest spectrum
of nearly all studied behaviours is inherently traced to mul-
tiple transmitter pathways, and the transmitter organization
as well as synaptic and non-synaptic integration of behaviors
are intrinsically embedded in every neural circuit from a comb
jelly to Octopus. What is the actual diversity of transmitters
across metazoans?
3. The diversity of synapses and
(neuro)transmitters

The Neuron Doctrine, established by Santiago Ramón y
Cajal, more than 100 years [87,88], was a serious conceptual
challenge to the ‘pure’ electrical paradigm of neuronal infor-
mation transmission and functions. The Neuron doctrine
postulates no syncytium in the brain; rather, neurons are indi-
vidual entities that are physically separated by synapses and
extracellular space. The challenge of finding mechanisms of
intraneuronal communications has been partially resolved
by the discovery of chemical transmitters in the 1920–1930s
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[89]. The principle was simple and powerful: a chemical
messenger must be released from one presynaptic neuron
and interacts with one or more postsynaptic cells (e.g.
muscle, glands, neurons, etc.). The battle of ‘spikes and
soups’ [90] was settled in 1953–1956 when synapses were
visualized by electron microscopy. It happened at the same
time as the double helix structure of DNA was revealed.

However, following the triumph of the theory of chemical
transmission, the electrical synapses (=gap junctions) were dis-
covered, which are mediated by two independently evolved
groups of proteins with similar transmembrane topologies:
pannexins (=innexins) and connexins. Connexins have been
found only in tunicates and vertebrates, whereas pannexins
[91,92] are broadly distributed across Metazoa (figure 3). This
is a perfect example of the convergent evolution of synapses!
Pannexins were independently lost in placozoans, sponges
and selected lineages of Cnidaria, Hemichordata and Echino-
dermata. The loss of pannexins does not always correlate with
simpler behaviour repertoires. For example, there are no recog-
nized pannexins in the genome of cubomedusa, Morbakka—an
active predator with complex visual systems and elaborated
behaviours. The largest number of genes encoded pannexins
(38) was found in the sessile brachiopod, Lingula, which
shows a highly reduced spectrum of movements (figure 3).
The functional explanation of such molecular diversity of pan-
nexins is unclear, and different pannexins might be responsible
for distinct electrophysiological properties of various electrical
synapses. Nevertheless, pannexinsmight have other ‘secretory’
functions. It was shown that in mammals, pannexins do not
form classical gap junctions. By contrast, they might work as
channels for the non-synaptic release of certain signal mol-
ecules [94–109] and therefore participate in volume
transmission.
The chemical synapses and transmitters are incredibly
diverse. Initially, only two neurotransmitters were identified:
acetylcholine and noradrenaline for the parasympathetic and
sympathetic parts of the nervous system, respectively [89,90].
Over the subsequent decades, many novel messengers have
been discovered both in vertebrates and invertebrates. By the
end of the twentieth century, the 200 year-old electrical brain
paradigm [110] had been gradually transformed into the chemi-
cal brain paradigm with about two dozen low molecular
weight neurotransmitters and thousands of neuropeptides—
all acting within synaptic clefts and beyond.

Extrasynaptic diffusion of neuronal and glial messengers
was also named volume transmission [31,32,35,111–114], where
a complex and dynamic mixture of signal molecules creates
unique microchemical regions within the extracellular space of
the brain. In such cases, the boundary between the transmission
within a confined space of a synapse and long-distance hormo-
nal signalling is now removed. These cases represent two
opposite poles of the same very ancient and fundamental inter-
cellular chemical signalling process in multicellular organisms.

Many neurons, both in vertebrates and invertebrates,
might have one neuronal terminal forming a classical synapse
with a classical neurotransmitter, and the second axon of the
very same neuron might release the identical transmitter in a
circulatory system, where it acts as a hormone. The classic
examples are serotonin-containing interneurons controlling
feeding and associated behavioural arousal in the leech
(Retzius cells [115,116]) and gastropod molluscs (MCC neur-
ons [16,117–121]. Similar functions of serotonin in annelids
and molluscs as the evolutionarily conserved regulator of
behavioural arousal illustrate a given transmitter’s role as
an integrator of multiple effectors leading to a biologically
relevant behaviour or behavioural state(s) [17,117,122].



(a)

(b)

Figure 4. Enzymes and synthetic pathways for low molecular weight transmitters. (a) Synthesis of biogenic amines; (b) synthesis of GABA and acetylcholine. The respect-
ive enzymes and their abbreviations are the same as used in the text. Asterisks (*) indicate synthetic enzymes from non-metazoan species.
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The experimentally confirmed lowmolecular weight trans-
mitters include polar amino acids, their derivatives and gases.
They are (1) L-glutamate, (2) D- and (3) L-aspartate, (4) glycine,
(5) gamma-aminobutyric acid (GABA), (6) D-serine, (7) seroto-
nin, (8) dopamine, (9) noradrenaline, (10) adrenaline, (11)
octopamine, (12) tyramine, (13) histamine, (14) acetylcholine,
(15) taurine, (16) protons, (17) ATP, (18) nitric oxide (NO),
(19) carbon monoxide (CO) and (20) H2S. The list might incor-
porate short lipids (derivatives of arachidonic acid, acting
on cannabinoid receptors), trace amines, purines such as
adenosine, and nicotinamide adenine dinucleotide, etc.

Considering that these intercellular chemical messengers
can also be produced and operate as signal molecules in non-
neuronal cells, the correct term would be transmitter. The term
neurotransmitter refers to signal molecules with a confirmed
neuronal release. In fact, 95% of the serotonin in our body is not
located in neurons; it is produced in the intestine where it has
been increasingly recognized for its hormonal, autocrine and
paracrine actions [123] (e.g. enterochromaffin cells, enterocytes,
platelets). Furthermore, non-neuronal serotonin can signifi-
cantly contribute to such neuronal functions as learning and
memory [124]. This note is very important for comparative
studies. There is widespread usage of the words ‘neurotrans-
mitters’ or ‘neuropeptides’ by describing signal molecules in
organisms without neural systems and synapses (e.g. for pri-
marily nerveless placozoans or sponges). Similarly, the
presence of a given molecule (or a relevant synthetic enzyme)
suchas serotoninorcatecholamines ormanyothers is oftenmis-
interpreted as evidence of neural systems and neuronal
signalling. Such an assumption is incorrect and misleading.

Figure 4 provides an overview of synthetic pathways for
biogenic amines, GABA and acetylcholine, with several
comments. This diagram shows the enzymes identified in ani-
mals. However, there are alternative pathways of synthesis
and catabolism of monoamines and acetylcholine in other
eukaryotes and prokaryotes. The detection of monoamines or
acetylcholine in some tissues might be owing to bacterial
contamination. In fact, some bacteria names are dedicated to
the high synthesis of acetylcholine—Bacillus acetylcholini; these
and related bacteria acetylate choline and present in fermented
sauerkraut and silos [89]. The presence and usage of transmit-
ters in particular animals might reflect enzymatic activities of
symbionts and associated microbiota. Finally, the presence of
a given chemical does not provide direct evidence for its trans-
mitter function, which should be experimentally proved by
careful functional studies.

The entire scope of the comparative diversity of neurotrans-
mitters, especially in minor phyla, is unknown. A prevailing
view is that most, if not all, (neuro)transmitters should be the
same in different animal lineages. This is not the case. Although
there are very limited data dealing with direct microchemical
analyses of the transmitter candidates in representatives of
early branched metazoan lineages, the distribution of low mol-
ecular weight transmitters is not uniform across basal Metazoa
(figure 5). Both neuropeptides and lowmolecular weight trans-
mitters showanoticeable degree of lineage-specific adaptations.
4. Why are there so many transmitters? A case
for parallel evolution?

Regardless of the current limitations of comparative data,
there is a strong consensus that every neural system consists
of many types of transmitter systems. In other words, in any
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serotonin; DA, dopamine; NO, noradrenaline; A, adrenaline; OA, octopamine.
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neural system, a significant fraction of neurons have different
types of transmitter(s)/secretory specificity. Why are there so
many transmitters? This fundamental question was addressed
about 60 years ago [40]. The logic was simple. If a chemical
messenger acts only as a pure transmitter(=messenger) at the
synaptic cleft within a specific wiring diagram, only two
neurotransmitters are needed (e.g. for excitation and inhibition,
respectively). If there are two different receptors for the
same transmitter (to induce excitation and inhibition)—then
even one transmitter might be sufficient. Again, this is not
the case, and two situations might explain the observed
transmitter diversity in extant neural systems.

The first, functional, scenario: different transmitters
have different molecular functions both in pre- and postsyn-
aptic cells as well as different systemic functions beyond the
synaptic cleft (volume and hormonal transmissions). In this
case, a transmitter might also act as an integrator of beha-
viours such as fight versus flight [125], feeding [116,122],
respiration [126–128], aggression [79,80,82] and reproduction
[129–137]. Different transmitters might help to recruit differ-
ent circuits and behaviours and be responsible for the
hierarchy of behavioural outputs or behavioural choices
[122]. Thus, different transmitters evolved within neural
systems or recruited from non-neuronal cells to support
novel functions and innovations. More likely, some transmit-
ter systems performed distinct systemic functions and
acted as integrators of behaviours in early nerveless animals
(e.g. before they were recruited as neurotransmitters’ by
neurons). This corollary is essential to reconstruct the dawn
of neuronal evolution.

The second, evolutionary, scenario proposes that extant
neuronal cell types preserved a primordial diversity of ancestral
types of secretory specificity from early animals [16,36]. The
deep evolutionary conservations of certain transmitter pheno-
types in individually identified homologous neurons have
been reported. One of the most famous examples is the MCCs
(metacerebral cells), a pair of giant serotonin-containing inter-
neurons involved in feeding arousal [119,138,139]. The
homologues of MCC can be recognized across all Euthyneura:
from Lymnaea, Helix, Clione and Aplysia to Pleurobranchaea and
Tritonia [16,119–121,140]—it is the level ofmolluscan subclasses
separated by more than 380 million years of evolution in each
direction! It is probably the most distant homological lineage
of any single neuron identified to date.

The two scenarios explaining the observed diversity of
transmitters are not mutually exclusive. Probably both expla-
nations are valid to a different degree within specific
constraints of various body plans and environments.

Moreover, we propose that the scope of chemical trans-
mitter diversity in the early metazoans was not only
comparable or, perhaps, even greater than can be found
in extant bilaterians. Considering that in Precambrian
metazoans, we might expect fewer morphological and micro-
anatomical constraints (e.g. no neuronal centralization, no
synapses, no muscles), the overall ancestral secretory diver-
sity of early animal cell types might be greater than in
today’s animals. Some transmitters might be lost rather
than gained with the formation of more compartmentalized
and localized brain circuits (e.g. for fast locomotion, life
on land, etc.). Comparative studies will be able to clarify
these questions.

Figure 5 summarizes the large-scale distribution of
known transmitter candidates across all five basal Metazoa
clades, in respect of shared and lineage-specific innovations.
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This diagram represents about a dozen confirmed classical
transmitters and hundreds of neuropeptides. Why did natu-
ral selection recruit these particular transmitters in the first
place? And why were they preserved throughout half a bil-
lion years of biological evolution? To what degree would
the distribution of transmitters in neural systems of early
branching metazoans help to resolve these questions? We
will begin with the parallel and divergent evolution of pepti-
dergic systems. Then we will discuss a stabilizing selection of
classical transmitters in greater detail.

Neuropeptides or short signalling peptides occur in every
studied nervous system. However, few neuropeptides or pro-
hormones have been shared across phyla. There are no pan-
neuronal neuropeptides for the entire animal kingdom
(figure 5). Some prohormones (e.g. neuropeptide Y) are con-
served across bilaterians and a few can also be found in
cnidarians andplacozoans (e.g. insulins), but not in ctenophores
and sponges. This type of cross-phyla distribution suggests that
the majority of neuropeptide prohormones might either evolve
independently or be highly derived beyond the recognition of
their ancestors. Clearly, final peptide products are even more
diverged across species reflecting their rapid evolutionary rate
and high adaptability of peptide-mediated signalling.

As a result, the diversity of secretory peptides is over-
whelming. The number of signal molecules of the peptide
nature might exceed one hundred in any animal species (con-
sidering multiple products of the same prohormone and
posttranslational modifications) regardless of the presence or
absence of neural functions. It looks as though ctenophores
[46,72] and sponges [66] independently evolved separate and
not overlapping sets of small secretory signalling peptides.
There are comparable numbers of secretory peptides in
Cnidaria and Bilateria, with few shared homologous
prohormones such as insulins. The major conclusion is simple.
(a) First neural systems were peptidergic
This situation is preserved in the chemical design of all
extant neural systems. In other words, peptides are the earliest
and most widespread neurotransmitters as well as hormones
that predominantly act beyond the synaptic cleft. This state-
ment does not mean that neurons and neural systems
are homologous. Neurons might evolve many times from
different populations of secretory (including peptidergic)
cells as it was originally proposed more than 60 years ago
[6,7,9,12,16,19,24,38].

Several factors might contribute to selecting peptides as
intercellular messengers in the first place [19]. Short secreted
peptides are easy to synthesize in any cell, both using riboso-
mal and non-ribosomal synthesis. Oligopeptides have a wide
range of conformations and can be employed to activate
many receptor types (e.g. G-protein-coupled and acid-sen-
sing ionotropic (amiloride) receptors) and potential cellular
targets. Because of this, similar peptide motifs can be evolved
independently and convergently many times (as with
RFamide type peptides across the tree of life). Various proto-
neuronal cells might develop similar types of peptidergic
signalling in parallel.

Signalling peptides are widely used in virtually all eukary-
otic organisms for a myriad of functions: pheromones and
repellents, control of life cycle and differentiation, injury—
regeneration responses, immunity, toxins, chaperones, etc.
These first ‘true’ peptide transmitters could also act as growth
factors controlling trans-differentiation and cell divisions.
We proposed that these peptide-based signals/growth
factors were originally ‘preadapted’ to repairing injuries, regen-
eration and re-establishment of integrative systems for
intercellular directional communications [19] (figure 1b).

An enormous diversity of G-protein-coupled receptors
(GPCR) and acid-sensing ionotropic (amiloride) receptors
can also be viewed as important preadaptation, which facili-
tated recruitments of peptide messengers into early neural
systems. These receptors can be directly gated by small
peptides and protons, providing the pathway for fast trans-
mission. Because the precise ligand specificity is not
absolutely critical for activation of GPCRs and acid-sensitive
amiloride type and many other receptors, it might not be
surprising that the evolutionary occurrence of the majority
of receptor families including ligand-gated ion channels
often preceded the establishment of novel neurotransmitter
systems.

By contrast with neuropeptides, the group of low molecu-
lar weight transmitters is relatively small. Even smaller is the
subset of shared transmitters across basal metazoans. There
are only 5–6 of them (figure 5): glutamate, GABA, glycine,
ATP, NO and protons. Why were these molecules preserved
for signalling, and what was the relevant preadaptation to
recruit them in the first place as transmitters? We think it
was the injury/regeneration response.
5. Adaptive injury/regeneration signalling as
generalizing neurogenic factors in evolution

This hypothesis was proposed in 2009 in the search for natu-
ral causes that would lead to the development of neuroid
elements and the first transmitters [19]. We postulated that
induction of massive, well-coordinated gene expression
events could be by itself an integrating factor triggering the
formation of such multifunctional and information proces-
sing cells as neurons. Adaptive genome-wide responses,
especially in secretory cells, naturally evolved as a result of
stress or injury. Thus, a non-specific injury induced by natu-
ral causes or predation or as part of immune responses to
pathogens from the food might be the major neurogenic
factor in evolution.

Indeed, damaging and high threshold nociceptive stimuli
that are not sufficient to kill a cell can induce an integrated
repair process, distant chemical signalling and re-growth of
asymmetric proneuronal processes, thereby acting as induc-
tors of a novel neuronal-like phenotype initially. Neurons
might have evolved in ancestral metazoans as a result of
development in the adaptive cellular regenerative response
(wound healing) to localized injury and stress, leading to a
coordinated (potentially defensive) reaction and behaviour
of the entire organism.

Furthermore, an injury by its nature might lead to the
release of an array of evolutionarily conserved and highly
abundant intermediates that can act as primordial signal mol-
ecules. For example, such widespread cellular metabolites as
ATP, NO, protons and glutamate (Glu) have already been
selected in unicellular eukaryotes or colonies for the same
reasons. The classical example is the role of glutamate in
wound signalling in plants [141]. Besides, protons and ATP
are components of the majority of secretory vesicles during
exocytosis. The widespread distribution of respective



Podocoryne carnea – non-neuronal NOS

Aglantha digitale – neuronal NOS

nitric oxide
synthase (NOS)

(a)

(b)

(c)

Figure 6. Nitric oxide signalling in Cnidaria. (a) Schematic representation of the enzymatic synthesis of NO from arginine and molecular oxygen with NO and
citrulline as co-products of this reaction, which requires multiple cofactors [148,149]. Non-neuronal (Podocoryne -B) and neuronal (Aglantha – C) localization
of NOS in different hydrozoans. (b) The distribution of putative nitrergic cells is revealed by fixative-resistant NADPH-diaphorase histochemistry [150–152] in
both polyp and medusa stages of the hydrozoan, Podocoryne carnea. Despite its widespread distribution and abundance, NOS in Podocoryne is expressed in
non-neuronal cells, predominantly around the mouth and tentacles. (c) By contrast, nitric oxide synthase (NOS) is specifically expressed in neurons (arrows) of
tentacles of the trachymedusa, Aglantha digitale [153].
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receptors supports this idea: P2X for ATP, pH-gated channels,
iGluRs for polar amino acids (glutamate, aspartate and gly-
cine), soluble guanylyl cyclases for NO-in all domains of life.

We think this is a functional reason why these molecules
(and their receptors) acted as the first, initially non-specific,
transmitters in early animals for the fast signalling associated
with the injury. These are metabolically cheap and abundant
chemical intermediates co-opted to induce rapid localized
repair and defensive responses as preserved in most of the
metazoans today, including humans. Extensive pharmacology
has been developed on these four transmitter systems to
control nociceptive pathways and pain in medicine.

In parallel, different cells in early metazoans also used
peptides as signal molecules for slower, more specific, and
coordinated regenerative, morphogenic and behavioural
responses—which therefore act similarly to extant neuropep-
tides andmorphogenic factors in cnidarians or bilaterians [142].

The adaptive injury regeneration signal cascade set the
stage for the evolution of the first ‘true’ transmitters and
growth factors controlling neuroplasticity as in the form of
memory of injury [143]. The signal transduction pathways
of this form of long-term memory of injury are apparently
preserved and operate in both molluscan and vertebrate
neuronal circuits underlying learning and nonassociative
memory [143–146].
We also can anticipate possibly autocatalytic processes
of the modular recruitment of other signalling components
and transmitters in injury circuits. One such evolutionarily
conserved molecular module is related to a massively polar-
ized relocalization of gene products [RNAs or proteins] to
different cell compartments [147]. This is also the universal
process widely used today by different neural circuits as
part of synaptic and plasticity mechanisms. The process
of polarized RNA transport to neuronal processes or cilia
is at the core of directional signalling, regeneration and
interactions with multiple targets, including synaptogenesis.
6. Parallel recruitments of non-neuronal
transmitters to neuronal functions

There are multiple examples of independent recruitment of
ancestral non-neuronal signals (i.e. ATP, glutamate, NO) for
neurotransmitter functions making purinergic, glutaminergic,
nitrergic nerves and pathways.

The free radical, gaseous nitric oxide (NO) is one of the
earliest and the most versatile transmitters: from archaea to
plants, fungi and animals. NO is also the simplest signal
molecule and produced by one of the most evolutionarily
conservative and complex synthetic enzymes (figure 6a).
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Across all domains of life, NO is associated with a response
to injury, innate immunity, repairing and differentiation,
and acts as an intermediate of the nitrogen cycle [154]. NO
is a perfect illustrative example of recruiting metabolites
and paracrine signal molecules to be a neurotransmitter, but
only in some lineages and some cell types.

Nitrergic (NO-releasing) neurons constitute about 2% of
cell populations in our brain, where NO operates as a classical
highly localized neurotransmitter sensu stricto. It is an apparent
paradox sinceNO is free radical gas, can diffuse beyond synap-
tic cleft and can act as a volume transmitter [155]. The paradox
is resolved by modelling and chemical quantification of
presynaptic NO release. J. Garthwaite showed [114] that
when small numbers of nitric oxide synthase (NOS) molecules
localized at spines, its diffusion and action within the synapse
was similar to other canonical neurotransmitters. For example,
at the synapse, if there are 49 postsynaptic nNOS molecules, 1
per NMDA receptor, then each NOS enzyme produces 20 NO
molecules per second. The calculated gradient of NO con-
centration was very steep from a synaptic release source,
reaching 1 nM at a distance of 60 nm away within the presyn-
aptic terminal [114]). This is sufficient to transmit a signal to its
target cell because each NO, by binding to soluble guanylate
cyclase, can result in the synthesis of 5000 molecules of
cGMP per second at steady state [114]. Under a picomolar
concentration range, NO operates within the disc of about
400 nm, which is comparable to a single mammalian synapse.
However, a slight increase in a number of NOS molecules
or greater NO production mediated by high-frequency
stimulation of Ca2+ influx, lipopolysharachides or different
microenvironments can easily convert NO action to a hormo-
nal-type volume transmitter affecting thousands of targets.
Under this mode of operation, NO can now act as a principal
secretory molecule in mechanisms of innate immunity. NO
can be released from macrophages or other phagocytotic cells
in micromolar concentrations sufficient to kill invasive bacteria
or other cells. Similarly, NO controls systemic blood pressure,
reproductive functions and coordinates numerous molecular,
cellular and tissue targets by integrating organism-wide pro-
cesses of development, synaptic growth, differentiation,
learning and memory (reviewed in [154]). In other words, the
action of the very same messenger in the same organism can
differently coordinate behaviours of many cells, irrespective
of their identity, electrical and anatomical connectivity.

Comparative biology and evolution of NO-mediated
signalling flawlessly reflect these versatile functions of NO
in all animal lineages studied so far [154]. NOS/NO is pre-
sent in many neural systems, but it is not everywhere.
Some lineages, such as nematodes, completely lost NOS.
There are many species where nitrergic neurons are absent,
but NOS is widely distributed in non-neuronal tissues.
There are multiple examples when within the same phyletic
lineage, we can see a gradual increase in the representation
of neuronally located NOS, often viewed as a transition func-
tions from peripheral non-neuronal sources to the CNS, as in
some gastropod molluscs [140,150,156–158].

In most Cnidaria, NOS is not located in neurons, but NOS
is widely expressed in non-neuronal cells across species
(figure 6b). In Hydra, non-neuronal NO signalling controls
regeneration, feeding behaviour and chemosensation
[159–161]. To the best of our knowledge, there is only one
documented case in Cnidaria, when non-neuronal functions
of NO, as a transmitter and an integrator of behaviours,
have been ‘delegated’ to neurons. It was discovered in the tra-
chymedusa Aglantha digitale—a highly advanced hydrozoan
with giant axons and annulus type of the central nervous
system [162,163]. At least 14 functional conductive systems
have been physiologically identified in Aglantha including
endodermal and ectodermal epithelial pathways [163–
167]—an amazing example of neuroid complexity within a
‘simple’ jellyfish! We should view Aglantha as an example
of what cnidarian nervous systems are ‘capable of achieving’
with distinct adaptations to a mid-water pelagic lifestyle. In
Aglantha, NOS is uniquely expressed in two subpopulations
of tentacle neurons (figure 6c) and control both cilia beating
and feeding types of locomotion [153].

Similar ‘delegation’ of functions from non-neuronal cells
to neurons can easily be reconstructed for other low molecu-
lar weight neurotransmitters, including amino acids, GABA,
acetylcholine and monoamines. Non-neuronal and neuronal
functions of the same transmitter often coexist in the same
organism (including humans), as we illustrate for serotonin
and NO above. We can postulate such a situation for all
twenty known low molecular weight transmitters.
7. Lineage-specific recruitments of transmitters
A snapshot of comparative transmitter diversity in five
superclades of basal metazoans is a tip of the iceberg of
lineage-specific signalling innovations (figure 5). The majority
of knowledge about (neuro)transmitters is derived frombilater-
ians, which represent textbook cases of transmitter distribution
and functions. Cnidarians are surprisingly different in terms of
their overall transmitter context and only partially share the
overall transmitter complement with bilaterians (figures 5
and 7). Regrettably, endogenous signalling molecules are
mostly unknown for three other superclades of basalmetazoans
(ctenophores, sponges and placozoans—see also §8).

(a) Nitric oxide and ATP
Genomes of ctenophores, placozoans and sponges encode
purinergic P2X receptors and may use ATP as a signal
molecule, but their systemic functional roles are unknown.
There is one described truncated NOS gene in two cteno-
phore species, Mnemiopsis and Cestum, with unknown
function [168]. Other studied ctenophores apparently lost
NOS. NO signalling is confirmed in the control of rhythmic
movements, development and metamorphosis of nerveless
sponges [169,170] as well as in placozoans.

In contrast with other invertebrates studied, placozoans of
genera Trichoplax and Hoilungia have three distinct NOS
genes, including a PDZ domain-containing NOS [168]. Dis-
tinct NOSs are expressed in different subpopulations of
cells, with a noticeable distribution close to the edge regions
of Trichoplax. These data suggest both the compartmentalized
release of NO and a greater diversity of cell types in placozo-
ans than anticipated. The most surprising discovery was in
receptor machinery for NO. It includes both canonical and
novel NIT-domain-containing soluble guanylate cyclases as
putative NO/nitrite/nitrate sensors [168]. Thus, although
Trichoplax and Hoilungia exemplify the morphologically sim-
plest free-living animals, the complexity of NO-cGMP-
mediated signalling in Placozoa is greater than in vertebrates.
This situation further illuminates multiple lineage-specific
diversifications of NOSs and NO/nitrite/nitrate sensors
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from Metazoa’s common ancestor and the preservation of
conservative NOS architecture from prokaryotic ancestors.

(b) D-/L- glutamate and aspartate
D-amino acids are less studied but essential signalling mol-
ecules in neural, hormonal and immune systems. The
comparative survey of L-/D-aspartate and L-/D-glutamate
has been performed in representatives of four phyla of early
branching Metazoa [171]: cnidarians (Aglantha); placozoans
(Trichoplax), sponges (Sycon) and ctenophores (Pleurobrachia,
Mnemiopsis, Bolinopsis and Beroe). It was shown that the
placozoans, cnidarians and sponges had high micromolar con-
centrations of D-aspartate, whereas D-glutamate was not
detectable. By contrast, in ctenophores, D-glutamate was the
dominant enantiomer with no or trace amounts of D-aspartate.

D-glutamate also depolarized muscle cells, elevated inter-
cellular calcium and induced muscle contractions, acting
synergistically to L-glutamate [46].

These data suggest lineage-specific diversifications in the
recruitment of D-amino acids and imply distinct signalling
functions of these molecules early in the animal evolution.
In ctenophores, L-glutamate operates as an excitatory
neuro-muscular transmitter [46,71,72], but glutamate packing
in synaptic vesicles might occur using different sialin-type
transporters (similarly to placozoans and sponges) rather
than vesicular glutamate transporters as in cnidarians and
bilaterians (figure 7). Synthetic enzymes for glutamate are
also different, suggesting that L-/D-glutamate might be
recruited to neuronal functions in ctenophores differently
compared to the cnidarian/bilaterian ancestor [72]. Ionotro-
pic glutamate receptors (iGluRs) are very abundant and
differentially expressed in Pleurobrachia [46]. Glycine might
also activate iGluRs [172,173] and therefore act as (co)trans-
mitter/modulator in ctenophores, but cellular and systemic
functions of glycine are unknown. There is no vesicular
glycine transporter either.

(c) Gamma-aminobutyric acid
GABA was not detected in ctenophore neurons and did not
induce noticeable effects on ctenophore behaviours [46].
GABA was found in ctenophore muscles, which led to the
hypothesis that GABA evolved as a by-product of glutamate’s
metabolic inactivation at the neuro-muscular synapses, with
the potential use of GABA for muscle energetics [71]. Cteno-
phores, sponges and placozoans have neither GABA
vesicular transporters nor ionotropic GABA receptors
(figure 7). We might expect that transmitter molecular func-
tions of GABA in these animals are different from cnidarians
and bilaterians. In sponges, GABA induces coordinated con-
tractions and changes in water flow. These pharmacological
effects are different from actions of glutamate and NO at the
same cell populations and behaviours [169,174,175].

(d) Bilaterian innovations
Serotonin, dopamine, noradrenaline, adrenaline, octopamine,
tyramine, histamine and acetylcholine neurotransmitter
pathways were not convincingly detected in ctenophores,
placozoans, sponges and most of the cnidarians [176].
Respective synthetic enzymes and respective vesicular trans-
porters have not been identified in the sequenced genomes of
ctenophores and sponges, placozoans and cnidarians
(figure 7). The pharmacological data about the presence of
these transmitters are controversial and often generated
using protocols that are difficult to compare.

(e) Cholinergic systems
In discussing the importance of transmitters for functional
evolution, we will consider the lineage-specific diversification
of cnidarian neural systems, starting with the quest for acetyl-
choline within these diverse groups of animals. Acetylcholine
was the first transmitter discovered more than 100 years ago
[89]. It is in humans the most studied neuro-muscular trans-
mitter, with many cognitive and visceral functions. This
simple molecule appears to be everywhere. However, its
presence in neurons, endogenous synthesis and functions of
acetylcholine in Cnidaria has not been confirmed [177–179].

Completion of more cnidarian genomes [180] has allowed
the re-examination of cholinergic signalling. Phylogenetic
analysis of the only biosynthetic enzyme for acetylcholine,
choline-acetyltransferase (ChAT), shows that none of the
studied cnidarian species contains a canonical ChAT
(figure 7a,c). All the predicted bilaterian ChAT sequences clus-
ter together and the related carnitine palmitoyltransferases
(CPT) also cluster together. Interestingly, all cnidarian
sequences, except the Aurelia aurita from the Pacific, form
two separate clades. One appears to be more closely related
to the CPTenzyme, and the other is cnidarian-specific. Further
examination of the predicted cnidarian ChAT/CPT-like
sequences shows that many of the known critical substrate
interacting residues as well as residues shown experimentally
by crystallography to be important for catalytic activity are not
present in studied Cnidaria [181,182].

This analysis does not exclude a possibility for the non-cano-
nical synthesis of acetylcholine (its recruitments from food,
pathogens, or symbionts) or the presence of other related
enzymes in cnidarians. However, it appears that only bilaterians
have an endogenous functional canonical ChAT, classical
neuronal cholinergic signalling and presynaptic acetylcholine
release. Neuronal vesicular acetylcholine transporters have not
been found in the sequencedcnidariangenomesandnot reported
in any cnidarian species (figure 7a). Although hypothetical nic-
otine-like and muscarine-like receptors are present in Cnidaria
genomes and specifically expressed, the behavioural threshold
concentration of acetylcholine is 10 mM [183], which suggests
that this action is less specific and other endogenous ligands
for the nicotinic receptors exist in Cnidaria. Indeed, recent work
onOctopus clearly confirmed thepossibility that at least somenic-
otinic receptors in the suckers are not sensitive to acetylcholine,
but might be activated by chemosensory stimuli [184]. These
findings also elaborate on the scenario that the origin of ligand-
gated nicotine-like receptors channels predate the recruitment
of acetylcholone as (neuro)transmitter in Metazoa.

( f ) Biogenic amines
The diversity of biogenic amines in animals has been produ-
ced by several evolutionarily conserved enzymes (figure 4).
Ctenophores [185], sponges [66,186–191], placozoans and cni-
darians [192–210] might synthesize additional catecholamines
and indolamines, but their locations and potential transmitter
functions should be subject to careful investigations. There are
several, mostly early, reports for the presence of serotonin,
dopamine and noradrenaline in cnidarians [197,200,211–220],
but it was not consistent with genomic data about predicted
synthetic enzymes [176,177,179]. Although some gene



Figure 8. General morphology of the placozoan, Hoilungia [234]. (a) Differential interference contrast (DIC) image of a living animal. Shiny spheres are large
specialized cells on the ‘dorsal’ surface, releasing antipredatory toxins [235]. (b) Scanning electron microscopy of the entire animal (see details in [236]). The
lower (‘ventral’) side faces the substrate. This site is primarily responsible for active ciliated locomotion and feeding. The upper (‘dorsal’) side is significantly different
and contains a few subpopulations of upper epithelium and shiny sphere cells, which might be necessary for the animals’ defense.
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orthologues were found, the complete canonical pathways for
synthesis of dopamine, noradrenaline, octopamine, adrenaline,
serotonin and histamine have not been detected (figures 4 and
7a,b). A few specific details that led to this conclusion are sum-
marized below.

The superfamily of aromatic amino acid hydroxylase
enzymes contains three major categories based on substrate
specificity (see figures 4 and 7 for details): tryptophan
hydroxylase (TPH: EC 1.14.16.4), tyrosine hydroxylase (TH:
EC 1.14.16.2) and phenylalanine hydroxylase (PAH: EC
1.14. 16.1) All contain the biopterin-dependent aromatic
amino acid hydroxylase (AAAH) catalytic domain
(PF00351), which is critical to function [221,222]. In addition
to the catalytic domain, the ACT domain, which is linked to
metabolic enzymes regulated by amino acid concentration,
was also sporadically detected but not necessary for function
[223]. TPH and TH enzymes catalyse the rate-limiting steps
involved in the synthesis of serotonin and catecholamines
(figure 4).

The AAAH family of predicted proteins is highly con-
served and found across eukaryotes and prokaryotes [223].
Phylogenetic analysis shows bacterial AAAH homologues
form a separate clade to eukaryotic AAAH [223]. Some
bacterial AAAH homologues have been expressed in Chromo-
bacterium violaceum, which was shown to be a PAH-like
enzyme and shares 22% identity to the human PAH catalytic
domain [224]. The bacterial AAAH homologues are enzy-
matically different from the eukaryotic AAAHs because
they do not form homotetramers, and some use different
metals for catalysis [225].

At the base of the eukaryotic radiation, putative PAH-like
enzymes are detected in unicellular eukaryotic genomes as
well as choanoflagellate genomes [223]. The protozoan para-
site Leishmania major was shown to have a functional PAH
[226]. Phylogenetically and functionally, all predicted
AAAH enzymes from protists, choanoflagellates, amoebozoa
as well as algae and even mosses cluster with the PAH family
of AAAHs [223].

There are three distinct eukaryotic clusters for the AAAH
family of enzymes detected that represent PAH, TPH and TH
sequences, with the PAH being most basal [223]. It was
shown that the cnidarian Nematostella vectensis and the pla-
cozoan Trichoplax adhaerens H1 genomes both contain only
one gene with the AAAH domain and clusters in the PAH
family [223]. Besides, it was also shown that the predicted
AAAH protein of Nematostella clustered, shared the highest
identity with the PAH family of genes [46,72,176]. Our phy-
logenetic analysis also shows that all of the predicted
cnidarian AAAH enzymes cluster with PAH. Few contain
more than one predicted protein with biopterin-dependent
AAAH catalytic domain (PF00351).

The cnidarian genomes analysed to date do not contain
the specific rate-limiting enzymes TH and TPH involved in
the synthesis of catecholamines (dopamine/noradrenaline/
octopamine) and serotonin. This situation suggests that if
conventional biogenic amines are indeed produced (as
suggested by some immunohistochemical data), some other
non-canonical, possible cnidaria-specific enzymes might
exist. This situation is also consistent with the notion that
TPH and TH are bilaterian innovations (figures 4 and 7).

To further support this assertion, we investigated the site-
directed mutagenesis performed on both TH and TPH to see
if any non-bilaterian metazoans contain critical amino acid
residues to confer any TH or TPH enzymatic activity. Surpris-
ingly, in TH, a single mutation of Asp425 (D425 V) nearly
abolishes the enzymatic activity for the enzyme to produce
L-DOPA [227]. And the relative specificity of TH for phenyl-
alanine versus tyrosine, as measured by the (V/Kphe)/(V/
Ktyr) value, increased by 80 000-fold in the D425 V enzyme
[228]. Only predicted TH enzymes contain this critical amino
acid residue, and none of the non-bilaterian putative PAH con-
tains this residue but contain nonpolar residues. Similarly, with
TPH, Tyr235 is conserved in all known TPH enzymes, whereas
both TH and PAH contain a smaller hydrophobic amino acid
residue [229,230]. The TPH (Y235A) or (Y235 L) mutants
reduce the specific activity of TPH [229,230]. Only predicted
TPH enzymes contain this critical amino acid residue and
none of the non-bilaterian putative PAH contains this residue
(figure 7).

The most sensitive analytical methods of capillary
electrophoresis did not confirm the presence of serotonin
or dopamine in sponges, placozoans and ctenophores
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Figure 9. Internal morphology of Trichoplax adhaerens. (a) Three-dimensional reconstruction of cell boundaries using laser scanning microscopy (approx. 20 µm
stock of images) shows regions with fewer cell densities and even distinct microcavities (mc). Nuclei are labelled by DAPI (red). (b) The same types of microcavities
can also be observed under scanning electron microscopy (SEM). Special preparation by drying through the critical point can preserve fragile cell organization. (c)
Arrows indicate various varicosity type structures, which might be secretory sites or exosomes. It appears that the meshwork of these varicosities surrounds cells and
microcavities. See the section 8 for details. (d ) Fibre cells ( fc) in the middle cell layer of Trichoplax. Fibre cells might be heterogeneous with a few subpopulations.
Fibre cells have many elongated long processes spread in all directions. They might be functional analogues of neurons and muscles [255] with large mitochondrial
clusters [253,255] and endosymbiotic bacteria [261]. Abbreviations: de, ‘dorsal’/upper epithelium; mc, microcavities; fc, fibre cells. Scale bars: (a) 20 µm, (b,c) 5 µm,
(d) 1 µm.
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[46,168,171,231]. Of note, the predicted PAH enzymes in two
ctenophores, Pleurobrachia and Mnemiopsis, both cluster with
the cnidarian PAH enzymes. By contrast, glutamate, GABA,
glycine, taurine and other amino acids were found with
attomolar to nanomolar limits of detection.

In our opinion, the data reported above indicate that the
majority of canonical biogenic amines (serotonin, dopamine,
noradrenaline, adrenaline, octopamine, tyramine and hista-
mine) and acetylcholine as neurotransmitters are bilaterian
(but not cnidarian) innovations.

Remarkably, acoels (known as basal bilaterian lineage) have
an unexpected diversity of synthetic, vesicle packing and
receptive pathways for all known low molecular weight trans-
mitter pathways [232,233]. Amazingly, Hofstenia has a more
complex serotonergic system than humans. Hofstenia also
exceeds humans in the diversity of nicotinic-like/cholinergic,
glycine, GABA and glutamate ionotropic receptors. It might
not be surprising considering the dynamic behaviours of
these acoels, but their nervous system is numerically very
small and simpler than in the majority of bilaterians. Here, we
might have a fundamentally important situation related to
cellular bases of behaviour: the apparent morphological
simplicity reversely correlates to the cryptic molecular com-
plexity of transmitter and signalling pathways. In the next
section, we will explore this scenario using Placozoa as one of
the most promising models for deciphering the origin of a
neuronal organization.
8. Volume transmission in placozoans as the
most ancestral mode of behavioural
integration

In previous sections, we summarized data about the distri-
bution and functions of neurotransmitter systems in basal
metazoans as well as outlined hypotheses of their origins.
We explored the scenario that neurons arose from genetically
different secretory cells capable of volume transmission and
integration of behaviours without canonical synapses.
We think that the closest representation of this primordial
organization is currently found in Placozoa (figures 1 and 3),
disk-like animals (figure 8) with the simplest known cell
composition but complex behaviours [236–246].

There are three formally described genera of Placozoa
(Trichoplax, Hoilungia and Polyplacotoma [234,247,248]), but
likely more than one hundred species live in warm tropical
and subtropical shallow waters of the world’s oceans [249].
These are not the most basally branching metazoan lineage
(figure 2). The current consensus stands that Placozoa is the
sister group to the clade Cnidaria+Bilarteria [43,45,46],
although some authors consider Placozoa as highly derived
and secondarily simplified cnidarians [48]. Regardless of
the proposed phylogenies, Placozoa represents a very attrac-
tive model, not only to better understand the origin and
evolution of animals and the nervous system in particular
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participating in the Claude Bernard’s milieu intérieur. Under this scenario, a complex mixture (a soup) of 20–100 transmitters and modulators coordinate multiple
targets and integrate behavioural outputs. This chemical combinatorial system represents a foundation for generating behavioural and, sub-sequentially, cellular
innovations and setting up conditions for basal cognition.
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[250] but to decipher the logic of volume transmission and
chemical integration of multiple effectors without neurons,
synapses, muscles—all traits, and characteristics for the rest
of basal Metazoa.

Placozoa is an idealized window to the animal past, pre-
sent and future. Placozoans are not living fossils but animals
that might look like Ediacaran organisms, such as Dickinsonia
[251]. The type of external digestion on algal and bacterial
mats looks the same as the conceptual modes for metazoan
feeding in late Proterozoic [23,76,241,251,252]. Placozoans
are the simplest known free-living animals with six morpho-
logically recognized cell types [253] organized in three layers
[253]. There are no tissues, no organs. But there are exception-
ally complex and fast behaviours [231,239,240,242–244],
including social behaviour [238] and ultrafast contractions
[237,242,243,245]. The cellular bases of behaviour in placozo-
ans are unknown, but we expect rapid progress and a
conceptual breakthrough in this direction.

It was recently shown that placozoans exhibited all-
or-none sodium-dependent action potentials, perhaps to
support the rapid propagation and integration of electrical
and chemical signals across the animal and cell layers [254].
A specialized meshwork of fibre cells (figure 9d ), located in
the middle layer of cells, was considered to be an analogue
of the neural and muscular systems [255]. Still, no synapses
and no gap junctions have been described morphologically
[253,255]. The pannexins and connexins—the canonical gap
junction proteins—are not encoded in the sequenced
genome of T. adhaerens and its kin [64,234,248]. Adherent
junctions do facilitate diffusion of potential nutrients into
the animals [256], but it is unknown if they participate in
the propagation of any electrical signals. Both emphaptic
electrical coupling [257–260] and non-synaptic/volume-type
chemical transmission might contribute to the observed be-
havioural integration in Placozoa. Testing and separation of
these, apparently complementary, mechanisms would be
important questions to be addressed experimentally.

In summary, Placozoa’s cellular architecture ideally corre-
sponds to the proposed body plan of early animals at a
‘pre-neuronal’ stage of evolution (figure 1a). Most of the cells
in Placozoa are secretory. There is highly developed external
secretion both for feeding (Trichoplax looks like ‘gliding
pancreatic gland’) and chemical defense (chemical ecology).
There are profound chemoreceptive, targeting and exploratory
behaviours [239]. Trichoplax and its kin apparently have an
interior milieu in complex and highly dynamic mixtures of
internal metabolites, signal molecules, its own and bacterial
toxins, complex symbiotic interactions with bacteria. The
known and many more features of placozoans provide a
powerful paradigm for the future exploration of electro-
chemical/emphaptic or chemical mechanisms of behavioural
integration without synapses. This is a pure chemical compu-
tational integrative machinery without neurons and any
anatomically defined integrative centre or core.
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The most interesting feature of Placozoa’s microanatomy is
the presence of an extensive system of internal microcavities,
which we can observe both in fixed and living preparations
(figure 9a,b). It appears that these regions of extracellular
space are surrounded by multiple secretory-like vesicles
(figure 9b,c), which can be both parts of cellular processes
and exosomes. Exosomes are extracellular vesicles of different
sizes and might present complex molecular packages to
deposit and release all kinds of biomolecules from metabolites
and transmitters to DNA and RNA [262–264].

Therefore, in Placozoa, we can imagine the playground
for the natural selection of transmitters and the development
of alternative integrative systems using complex and highly
dynamic chemical gradients and changeable molecular
maps (figure 10). It is a chemical hub of innovations. Such
an idealized system might explain the origin of complexity
and novel properties from chaos and unrelated components,
as we hypothesized at the beginning of this paper. This
conceptual theoretical model can be tested experimentally.

The emerging experimental data apparently support the
feasibility of a versatile ‘Solaris’-type chemical brain analogue
without a classical hard-wired neuron-rich brain. We already
know that Trichoplax uses a diversity of secretory peptides
[268] to coordinate and achieve peptidergic integration of be-
haviour [240,245]. Importantly, the distribution of secretory/
peptidergic cells is relatively random; it occurs mostly at the
ridge of the animal. Such topographical arrangement allows
efficient coordination of sensor and effector cellular popu-
lations. Behavioural integration might not be limited by
peptides. There is evidence that glycine [231], NO [168], glu-
tamate, GABA [171] and pH might also be involved in
intercellular signalling and behavioural coordination. It
would be important to determine whether these transmitters
integrate natural feeding or mimic the behavioural reactions
to tissue damage (as recapitulations of possible ancestral
functions early transmitters). In Placozoa, we might have a
representative set of first transmitters for non-neuronal inte-
gration of behaviours.

Under this scenario of chemical multi-transmitter inte-
gration, we may predict and experimentally test emerging
novel systemic properties. For example, quantitative obser-
vations of free-moving Trichoplax identified very slow
behavioural oscillations of over 600 s [244]. The observed
dynamic patterns in this animal without synapses might reflect
the action of multiple chemical gradients of signal molecules,
potentially coupled with some electrical/emphaptic and/or
metabolic activityof certain endogenous pacemakers and recep-
tive components. The concept of the electrical syntax recently
developed by G. Buzsaki for mammalian neuronal assemblies
[269] can be expanded to incorporate the chemical grammar of
the transmitter sea.We anticipate that the experimental sociobiol-
ogy of secretory cells may open unprecedented opportunities to
understand the origin of basal cognition in the complex
animal with the simplest cellular and tissue organization.
9. Conclusion and perspectives
This paper explored the hypothesis that neurons primarily
evolved from secretory cells [6,7,9,16,19,24,36,38]. Under
this scenario, we define six complementary systemic
‘proneuronal’ adaptations:
(1) The substantial diversity of secretory cell types in the
nerveless ancestor of all Metazoa as seen in the present-
day placozoans. It could be at least a couple of dozen
such cell types, including cells involved in digestion,
immunity, cell–cell recognition, differentiation, chemical
ecology, defense, etc.

(2) This situation provided conditions to form an enormous
mixture (greater than 100–300) of potential signal mol-
ecules as playgrounds for future evolutionary selection
in the late Precambrian.

(3) Both low molecular weight and peptide transmitters
were present, targeted multiple receptors, effectors and,
consequently, led to modulation and improved coordi-
nation of behaviours in early animals without synapses.

(4) Synapses were not needed for such behavioural inte-
gration. Secretory and receptive components could
function separately at large distances using volume-
type transmission [30,32,37]. Synapses and additional
synaptic cleft components evolved later in evolution
convergently after early neurons [72].

(5) Hundreds of pre-existing G-protein-coupled and ligand-
gated receptors (a key preadaptation) provided a broad
diversity of targets for combinatorial selection of chemo-
sensory complexes and their sub-sequential cell-specific
expression.

(6) Ion channels and gap junction proteins were recruited in
parallel (or sometimes secondarily) as triggers to speed
up intra- and intercellular communications, to localize
and further synchronize cell ensembles involved in the
generation of behaviours. The original functions of these
hemichannels might be associated with non-synaptic
secretion of metabolites and signal molecules.

Thus, any given transmitter not only acts as a pure messen-
ger, but it integrates signalling pathways and behaviours [37].
Transmitters made the nervous system. The sociobiology of
heterogeneous secretory cells was transformed into chemical
sociobiology of heterogeneous neurons. Morphologically ‘sim-
pler’ nerve nets can be examples of secondarily simplifications
evolved to control stereotyped cnidarian behaviours. The elec-
trical wiring diagrams and some reflex circuits might also
represent examples of secondary simplification.

Placozoans represent a powerful model for alternative
integrative systems, where waves of chemical gradients and
oscillations form an internal dynamic microenvironment
with multiple cryptic chemical pacemakers and temporal
integrators of novel functions and behaviours.
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