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Abstract

Testing and case identification are key strategies in controlling the COVID-19 pandemic.

Contact tracing and isolation are only possible if cases have been identified. The effective-

ness of testing should be assessed, but a single comprehensive metric is not available to

assess testing effectiveness, and no timely estimates of case detection rate are available

globally, making inter-country comparisons difficult. The purpose of this paper was to pro-

pose a single, comprehensive metric, called the COVID-19 Testing Index (CovTI) scaled

from 0 to 100, derived from epidemiological indicators of testing, and to identify factors asso-

ciated with this outcome. The index was based on case-fatality rate, test positivity rate,

active cases, and an estimate of the detection rate. It used parsimonious modeling to esti-

mate the true total number of COVID-19 cases based on deaths, testing, health system

capacity, and government transparency. Publicly reported data from 165 countries and terri-

tories that had reported at least 100 confirmed cases by June 3, 2020 were included in the

index. Estimates of detection rates aligned satisfactorily with previous estimates in literature

(R2 = 0.44). As of June 3, 2020, the states with the highest CovTI included Hong Kong

(93.7), Australia (93.5), Iceland (91.8), Cambodia (91.3), New Zealand (90.6), Vietnam

(90.2), and Taiwan (89.9). Bivariate analyses showed the mean CovTI in countries with

open public testing policies (66.9, 95% CI 61.0–72.8) was significantly higher than in coun-

tries with no testing policy (29.7, 95% CI 17.6–41.9) (p<0.0001). A multiple linear regression

model assessed the association of independent grouping variables with CovTI. Open public

testing and extensive contact tracing were shown to significantly increase CovTI, after

adjusting for extrinsic factors, including geographic isolation and centralized forms of gov-

ernment. The correlation of testing and contact tracing policies with improved outcomes

demonstrates the validity of this model to assess testing effectiveness and also suggests

these policies were effective at improving health outcomes. This tool can be combined with

other databases to identify other factors or may be useful as a standalone tool to help inform

policymakers.
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Introduction

Coronavirus disease-2019 (COVID-19) is caused by infection of the Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has forced many coun-

tries, states, and territories to enact public health measures to reduce its spread, including

social distancing, contact tracing, stay-at-home orders, shuttering of schools, closure of public

spaces, and border closures [1, 2].

Testing, case identification, and isolation are critical activities to breaking the transmission

chain [3, 4]. Other measures, including social distancing and use of face masks, are also needed

[5]. In order to assess testing and inform decisions about resuming economic activities, many

countries and institutions have tracked testing-related metrics.

Thus far, the approach of many countries has generally been to specify several separate met-

rics related to testing, such as incidence, test positivity rate, number of hospitalizations, and

mortality rate, with benchmarks for each criteria that are used to justify removing or reinstat-

ing measures in phases [6, 7]. However, many of these metrics rely on cases that have been

identified through active diagnostic testing. One challenge, though, is the substantial propor-

tion of the infected population that is asymptomatic [4, 8, 9]. Consequently, diagnostic testing

has been inadequate to reveal what proportion of the population is infected, with real infec-

tions in most countries estimated to be 10 to 15 times, and sometimes even>100 times, higher

than the reported number of cases [10–12]. Furthermore, predicating reopening dates on inci-

dence may disincentivize testing, since increased diagnostic testing will inherently uncover

more cases and, thus, delay reopening. Another criticism is that some criteria, such as the

“downward trajectory,” specified by the US Centers for Disease Control [6], are vague. Thus,

metrics used by policymakers and politicians to inform decisions should not only be quantita-

tive but also encourage widespread proactive testing, such as the proportion of the total num-

ber of infections that have been detected [13]. However, estimating the detection rate/

underreporting is challenging.

The level of undetected cases has been estimated with models using transmission simula-

tions and flight data [14, 15]. Generally, these approaches require location-specific inputs, lim-

iting scalability and transferability. Alternatively, deaths seem to be a good indicator of true

number of COVID-19 infections in the population [16, 17]. Deaths have been used in past

pandemics to estimate the true size of the pandemic given limited case identification [18, 19].

The infection-fatality rate (IFR) of COVID-19 based on serological testing and comprehensive

diagnostic testing has been shown to be between 0.7% and 1% in the early stages of the pan-

demic [20–23], indicating that approximately 100 infections have occurred to each death.

However, factors such as health system capacity, demography, and political regime impact the

IFR [24]. Furthermore, heterogeneity in definitions of COVID-19-related deaths and testing

strategies cause differences in completeness of the death count [25]. Thus, if deaths are used as

an indicator of the true number of infections, adjustments may be necessary for testing, health

system capacity, and government transparency.

A single, comprehensive metric that is scalable across all countries and territories would

allow comparisons across states and identify ones most successful in more completely detecting

the presence of infections in the population. It would also allow for statistical techniques, such

as multiple linear regression, so researchers could comprehensively assess policy decisions in

combination with other databases. Comprehensive metrics for COVID-19 and inter-country

comparisons have been developed [26–29], but none that focus exclusively on testing or explic-

itly incorporate the true number of infections or detection rate, to the best of the authors’

knowledge. Thus, there is still a need for a single comprehensive metric that can overcome

shortcomings in reported data to assess testing effectiveness during the COVID-19 pandemic.

PLOS ONE A novel comprehensive metric to assess COVID-19 testing levels

PLOS ONE | https://doi.org/10.1371/journal.pone.0248176 March 5, 2021 2 / 21

(April 20, 2020 and June 3, 2020) (https://www.

worldometers.info/coronavirus/) provided data on

Total Cases, Total Deaths, Total Recovered cases,

Active Cases, Total Tests and population. The

Economist Intelligence Unit Democracy Index

(2019) (https://www.eiu.com/topic/democracy-

index) provided data for the Democracy Index.

Global Health Security Index (October 2019)

(https://www.ghsindex.org/report-model/)

provided data for the Detection and Reporting

Country Score. Oxford Coronavirus Government

Response Tracker (May 13, 2020) (https://

ourworldindata.org/grapher/covid-19-testing-

policy, https://ourworldindata.org/grapher/covid-

contact-tracing) provided data on COVID-19

Testing Policies, which countries do COVID-19

contact tracing?

Funding: The authors received no specific funding

for this work, apart from publication costs covered

by the Norwegian University of Life Sciences.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0248176
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://www.eiu.com/topic/democracy-index
https://www.eiu.com/topic/democracy-index
https://www.ghsindex.org/report-model/
https://ourworldindata.org/grapher/covid-19-testing-policy
https://ourworldindata.org/grapher/covid-19-testing-policy
https://ourworldindata.org/grapher/covid-19-testing-policy
https://ourworldindata.org/grapher/covid-contact-tracing
https://ourworldindata.org/grapher/covid-contact-tracing


Therefore, a single comprehensive metric that assesses testing effectiveness by incorporat-

ing an estimate of the true total number of COVID-19 infections in the population was devel-

oped using publicly reported data universally accessible across nearly all countries and

territories. Model estimates of true period prevalence and detection rate were validated against

comparable estimates in the literature. The metric was then used to assess factors associated

with COVID-19 testing outcomes. We aimed to create a new tool for policymakers and

researchers to comprehensively assess COVID-19 testing outcomes and identify effective

policies.

Methods and materials

Data input

Data on COVID-19 were collected from the Worldometer website, which collects data directly

from government communication channels and is managed by an international team of devel-

opers, researchers, and volunteers [30]. The data collected from Worldometer included total

cases (C), total deaths (D), total recovered (R), active cases (A), population (P) (in millions),

and total tests (T). These data have been reported explicitly or implicitly by the website since at

least April 6, 2020. Prior to this date, subsets of these data were available.

Two other input data included the Global Health Security Index Detection and Reporting

sub-index (Isys) [31] and the Economist Intelligence Unit Democracy Index (Idem) [32]. The

Isys assesses a health system’s capacity for early detection and reporting during epidemics of

potential international concern. This index is available for 195 countries and has a scale from 0

to 100, where 100 indicates perfect detection and reporting. Isys values were not available for

Hong Kong and Taiwan. The value for Hong Kong, Isys = 78, was imputed as the average

between South Korea (Isys = 92.1) and Singapore (Isys = 64.5), which were assumed to have

comparable health systems. Similarly, the value for Taiwan, Isys = 81, was imputed as average

between South Korea (Isys = 92.1) and Japan (Isys = 70.1). All other states without a value

(n = 10) were imputed as 42, which was the global average. Idem is a projected measure of the

degree of democracy; it is calculated for 167 countries and states and has a scale from 0 to 10,

where 10 indicates the highest degree of democracy. This value was assumed to act as a proxy

for transparency in data reporting. All states without a value (n = 14) were imputed to be 5.4,

the global average.

The inclusion criteria for incorporating countries and territories in the index calculations

were if at least 100 cases had been reported and the population was greater than or equal to

100,000. The threshold of 100 confirmed cases was arbitrarily chosen to exclude locations

where an outbreak had not yet occurred, in which case an analysis of testing policy was not rel-

evant. Data were accessed daily; however, this report presents the results for data accessed as of

00:00 GMT on June 3, 2020 (n = 165).

Definition of key indicators

Several key indicators were computed from the input data, representing important epidemio-

logical indicators used in the analysis.

Case Fatality Rate (CFR)

The CFR is the proportion of total deaths, D, among closed cases (sum of D and R). However,

some countries, including the Netherlands and United Kingdom, have not reported the num-

ber of recoveries, and others have not tracked recoveries in real-time. Additionally, the closed-

case definition of CFR can overestimate the CFR in the early stages of an epidemic because of
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the relatively small number of closed cases [33]. In these situations, the CFR is either incom-

putable or artificially high. Therefore, an alternative estimate of CFR was necessary. The ratio

of deaths, D, to cases, C, which can be computed for any country, was used. Logically, the ratio

of D:C is lower than the closed-case definition of CFR, D:(D+R), because C includes unre-

solved cases with unknown outcomes. These two ratios are related though. A scatterplot of

these ratios revealed a positive relationship (R2 = 0.76, n = 157), in which the closed-cased defi-

nition of CFR was between one and two times the ratio of D:C in 68.5% of countries. However,

in some countries, the closed-case definition of CFR was substantially inflated relative to D:C

and deviated from the linear relationship. Two possible scenarios would likely explain this—

either case resolution (count of R) was not tracked in real-time, or a recent outbreak occurred,

in which a large proportion of cases were recently identified and had not yet resolved. Thus,

the CFR, as computed using the reported closed-case definition, was used in our further analy-

sis but was capped to be no greater than 2 times the ratio of D:C (Eq 1), in order to exclude

artificially inflated CFRs.

CFR ¼ min
D

Dþ R
;

2D
C

� �

ð1Þ

Test Positivity Rate (TPR). TPR was computed as the ratio of cases, C, to tests, T (Eq 2).

TPR ¼
C
T

ð2Þ

While the reported number of tests from specific countries or territories may represent

multiple tests conducted on a single individual or even number of specimens, no adjustment

was attempted to account for such heterogeneity in the various definitions of the TPR. In some

countries, T was not available and thus TPR was not calculated.

Active Cases (AC). AC was computed as the ratio of active cases, A, to cases, C (Eq 3).

AC ¼
A
C

ð3Þ

In some countries, A was not available and thus AC was not calculated.

Estimating true number of infections and detection rate

It can be assumed that the reported number of cases, C, in a country represents a subset of the

true number of infections. Some infections will go undetected, but as detection of cases

increases, C will approach the true number of infections. Thus, the true number of infections

(Inf) is some factor, f, higher than the cases that have been identified (Eq 4).

Inf ¼ fC ð4Þ

We conceptualized this factor, f, to be a function of the level of testing, the approach to test-

ing (e.g., whether testing focused on symptomatic, hospitalized, or general populations), and

the quality and completeness of the data. Two variations of f (f1 and f2) were constructed to for-

mulate a numerical value for f, where f1 was derived from CFR, Isys, Idem and f2 used TPR as

described below.

Factor 1 (f1). Deaths have been used as an indicator of the true prevalence of an infectious

disease and a means to track underreporting in real-time [19, 34]. The proportion of Inf that

resolve to death is the infection fatality rate (IFR). In the first four months of the pandemic,

the IFR for COVID-19 was around 1% or less [20]. That is, for every recorded death, at least
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100 infections likely occurred. Thus, if less than 100 cases were recorded per death attributed

to COVID-19 (i.e., the ratio of 100D:C exceeded 1), it was an indication of under-detection of

infections. The primary factor, f1, was computed in such a way to create a multiple that scales

Inf to represent at least 100 infections occurring per attributed death (Eq 5).

f1 ¼ mdemsys max
100D
C

; 1

� �

ð5Þ

However, it was also assumed that health system capacity and government transparency

affect the completeness of data, including reported deaths, as represented by the factor mdemsys

in Eq 5. The multiplier intended to adjust for the health system capacity using Isys—an indica-

tor of a health system’s ability to detect and report deaths and/or cases; and Idem—a proxy for

government transparency in reporting data. The relationship between Idem, Isys, and mdemsys

(Eq 6) was determined by fitting the data to estimates of the true number of infections in 35

countries across a wide range of populations and regions where the estimate was available

from an existing model that used machine learning to estimate the number of infections [35].

In short, an existing model was used to determine what the mdemsys multiplier would have

needed to be to reach that existing model’s estimates and then fit the data using multiple linear

regression. A linear model was chosen since it matched the relationship better than power and

non-linear models.

mdemsys ¼ 4:5 � 0:25Idem � 0:012Isys ð6Þ

The mathematical relationship between the two indices and the multiplier in this equation

followed a declining relationship, whereby increased health system capacity (Isys) or increased

government transparency (Idem) reduced the multiplier, representing less underreporting.

Factor 2 (f2). The primary factor f relied on deaths attributed to COVID-19, but in loca-

tions with inadequate or low testing levels, death data may also be underreported, making

deaths a less representative indicator. Therefore, an alternative factor incorporated data on

testing (Eq 7). This factor was based on TPR—an indicator of adequate testing relative to dis-

ease prevalence.

The World Health Organization (WHO) has suggested testing capacity is adequate when

TPR is less than 5% [36]. If TPR was greater than 5%, it was inferred that increasingly more

cases were undetected and that the factor f2 would be equal to the ratio of the TPR to that 5%

benchmark (Eq 7).

f2 ¼
1 if TPR < 5%

TRR
0:05

if � 5%
ð7Þ

8
<

:

True number of infections. The two factors f1 and f2 provided two different ways to assess

what the factor f might be for a given country. Generally, a high TPR is indicative of limited

testing to symptomatic or severely ill patients, which will result in underestimation of infec-

tions within reported cases [17]. In such a testing strategy where only severe infections that are

more likely to result in death were counted as cases, the ratio of D:C or CFR were also likely to

be higher, as reflected in f1. However, if D:C ratio was low but TPR was high, these two indica-

tors were providing conflicting information. Such a case could occur early in an outbreak

when only limited deaths have occurred or where deaths were not being fairly attributed as

caused by COVID-19. In either case, the high TPR suggests many infections were not being

detected, despite the low number of deaths relative to cases. In most cases the two factors
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correlated. The factor f1, based on the reliable indicator deaths, was approximately equal to or

greater than the TPR factor, f2. However, in cases where f2, gave conflicting information to f1,
(i.e., f2> f1), f2 was used. Finally, the true number of infections, Inf, was estimated as the prod-

uct of C and the maximum of the two factors, whichever was highest (Eq 8).

Inf ¼ fC ¼ maxðf1; f2ÞC ð8Þ

When possible, Inf was compared against other empirical country-level estimates in the lit-

erature in order to validate the model.

Detection Rate (DR). With an estimate of the true number of infections, it was possible

to estimate what percentage of the infections (including asymptomatic) have been detected.

The total number of cases, C, was divided by Inf to estimate the DR in each country or terri-

tory. Estimates of the DR were compared to DRs published in the literature.

Calculation of the COVID-19 Testing Index

The COVID-19 Testing Index (CovTI) consists of four sub-indices, each based on a single

key indicator. The key indicators used were the DR, TPR, CFR, and AC (Fig 1). These indi-

cators were chosen since they are commonly used as metrics and are computable with the

methods described above. The relationship between each sub-index and its indicator was

built on two principles. First, each sub-index was scaled from 0 to 100 with 0 representing

the worst indicator value and 100 the best indicator value. Second, each sub-index was

Fig 1. Schematic diagram illustrating method to compute the COVID-19 Testing Index (CovTI). The CovTI was computed from a weighted sum of the four sub-

indices (orange), each of which is derived from one key indicator (green). The input data for each indicator (white) and intermediate steps (grey) are shown.

https://doi.org/10.1371/journal.pone.0248176.g001
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computed from a mathematical relationship that parsimoniously approximated the

ranked percentile of the country according to the underlying indicator. Previous indices

used for ecologic studies have computed the ranked percentile for the ecological units

(here, countries) for use as the index value [37, 38]. We modified this approach, however,

since ranking provides only relative information (e.g. how well one country is doing rela-

tive to another). We also wanted the index to have the property that an ideal value exists

(e.g. 100% for DR or 0% for TPR or CFR). Thus, the countries were ranked and a function

for computing the sub-index was chosen that mimicked the distribution of the countries

but still retained the ability to have 100 represent the ideal value and 0 represent the worst

value. These sub-indices were combined in a weighted average to compute CovTI. In the

absence of a rationale to assign weighting to the sub-indices, equal weighting was used

with details below [37].

Detection Rate sub-index (DRsi). If infections are undiagnosed, those individuals can

actively spread the disease unknowingly. Without timely diagnosis, effective contact tracing

cannot occur. Therefore, undiagnosed infections critically contribute to unchecked spread of

COVID-19 and subsequently represent inadequate response [39]. DR is also most directly rep-

resentative of testing effectiveness. Thus, DRsi was given 40% weighting (double weighting

compared to other metrics) in computing the CovTI (Eq 13). Ranking (Fig 2A) showed a rela-

tionship, in which as the detection rate increased, percentile increased asymptotically towards

Fig 2. Percentile rankings and sub-index functions for four key indicators. Percentile rankings, in which 100 represented to most desirable value of the indicator and 0

the least desirable, were computed for each of the four key indicators (a) DR, (b) TPR, (c) CFR, and (d) AC. Functions were fitted to the percentile ranks, which were used

to compute the sub-indices (a) DRsi, (b) TPRsi, (c) CFRsi, (d) ACsi (Eqs 9–12).

https://doi.org/10.1371/journal.pone.0248176.g002
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100. This relationship was approximated with (Eq 9).

DRsi ¼ 100ð1 � e� 5DRÞ ð9Þ

Test Positivity sub-index (TPsi). The TPR is a commonly used testing metric for

COVID-19 [40] and has been recommended to guide decisions regarding introducing or

relaxing public health measures [41]. A high TPR represents a reactive, rather than proactive,

approach to testing. Ranking showed an exponential decay relationship (Fig 2B), which was

incorporated into the TPsi function (Eq 10). If TPR was not available, a dummy value of 20

was used. TPsi was given 20% weighting in computing the CovTI.

TPsi ¼ 100e� 10TPR ð10Þ

Case-Fatality sub-index (CFsi). The CFR should approach the IFR of 1 percent (or less) if

testing is adequate to detect the majority of infections. If CFR is higher, it is likely only severely

infected patients are being diagnosed. Ranking showed an exponential decay relationship (Fig

2C), which was used to define the CFsi function (Eq 11). CFsi was given 20% weighting. If the

CFR was 0% (i.e., no deaths had yet been recorded as attributable to COVID-19), a dummy

value of 50 was used.

CFsi ¼ 100e� 10CFR ð11Þ

Active Case sub-index (ACsi). Finally, a fourth sub-index accounted for the activeness of

the epidemic in a country. If an outbreak is active in a country, it is less likely the testing is ade-

quate, with the increase possibly reflecting inadequate case identification. This sub-index also

provides a metric to reflect progress as cases resolve. A lower AC is indicative that the epidemic

is not increasing exponentially. Ranking showed a linear relationship (Fig 2D), which was used

to develop the ACsi (Eq 12). It was given a weight of 20%. In locations where AC was not com-

putable, a dummy value of 50 was used.

ACsi ¼ 100 � 100AC ð12Þ

COVID-19 Testing Index (CovTI). The CovTI was calculated as the weighted average of

the four sub-indices (Eq 13) described above with a heavier weighting given to the DRsi due to

the importance of undetected cases in driving infections and because it most directly repre-

sents testing effectiveness (the primary objective of the index), whereas the other sub-indices

are secondary indicators of testing effectiveness. CovTI was computed for the countries and

territories meeting the inclusion criteria (n = 165).

CovTI ¼ 0:4 DRsi þ 0:2 TPsi þ 0:2 CFsi þ 0:2 ACsi ð13Þ

Statistical analyses

Five independent grouping variables were assessed for their relationship with COVID-19 test-

ing effectiveness by analyzing their association with CovTI (Table 1). Testing and contact trac-

ing policy status were accessed from the Oxford COVID-19 Government Response Tracker

[42] for May 13, 2020, which is three weeks prior to June 3, 2020, approximately the average

time from symptom onset to death [22]. Islands were defined as any country that is an island,

is part of an island (co-island), has limited land connections (limited land), or is an archipelago

(see details in S1 Table). Any location for which at least one independent variable was not
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defined was excluded from analysis, creating an analysis data subset (n = 147). Crude bivariate

analyses using two-tailed two-sample t-tests and one-way analysis of variance (ANOVA) were

used to test whether the means between groups were different. A multiple linear regression

(MLR) model was developed by using forced entry of all factors. Factors were removed by

backwards stepwise method (p>0.05) with Bayesian Information Criterion (BIC) used to

assess model fit and overparameterization. Analyses were performed in Stata 14 [43].

Sensitivity analysis

We conducted a sensitivity analysis to assess how robust the model was in response to uncer-

tainty in chosen model parameters. Eight scenarios were evaluated in the sensitivity analysis.

Two scenarios (A1 and A2) assessed the cap on computed CFR (Eq 1); two scenarios (B1 and

B2) assessed the assumed IFR (Eq 5); two scenarios (C1 and C2) assessed the mdemsys multi-

plier (Eq 6); one scenario (D1) assessed the TPR threshold (Eq 7); and one scenario (E1)

assessed the weighting of the sub-indices (Eq 13). The robustness of the model’s conclusions

was assessed in two different ways. The F-statistic and adjusted R2 values from the MLR model

using data computed for each scenario was compared to the final model’s values. The model

was considered robust and insensitive to the inherent assumptions if the F-statistic and

adjusted R2 were within 10% of the final model’s values and if the interpretation of the results

were unchanged.

Table 1. Definitions of grouping variables for multiple linear regression of COVID-19 Testing Index (n = 147).

Factor (Grouping

Variables)

Operational Definition n (%)

Testing Policy

No testing policy OxCGRT Testing = 0a 6 (4.1)

Limited Testing OxCGRT Testing = 1a 60 (40.8)

Symptomatic Testing OxCGRT Testing = 2 a 53 (36.1)

Open Public Testing OxCGRT Testing = 3 a 28 (19.1)

Contact Tracing Policy

No contact tracing OxCGRT Contact Tracing = 0 a 18 (12.2)

Limited contact tracing OxCGRT Contact Tracing = 1a 58 (39.5)

Comprehensive contact

tracing

OxCGRT Contact Tracing = 2 a 71 (48.3)

Geographical setting

Island or island-like

nation

Entirely on island(s) (including Australia) or parts of islands (e.g.,

Dominican Republic) or have very limited land connections (e.g., Hong

Kong)

23 (15.7)

Non-island nation Not meeting the definition of island nation 124

(84.3)

Form of government

Federation Constitutionally a federation 24 (16.3)

Unitary state Constitutionally not a federation 123

(83.7)

Development status

OECDb member Member 36 (24.5)

Non-OECD member Not a member 111

(75.5)

aOxCGRT = Oxford COVID-19 Government Response Tracker [42] for May 13, 2020.
bOECD = Organization for Economic Development.

https://doi.org/10.1371/journal.pone.0248176.t001
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Results

True number of infections and detection rate

Globally, the model estimated that approximately 65.7 million people have been infected with

SARS-CoV-2 in the period prior to June 3, 2020, compared to the reported 6.47 million cases

(mean multiplier factor, f, = 10.2, range = 1.5–85). In other words, for every reported case it

was estimated that 9.5 infections had gone unreported in that period.

The global DR was estimated to be 9.8% (range = 1.2–66.8%) in the period prior to June 3,

2020. The countries estimated to have had the highest DRs over that time period were Austra-

lia (66.8%) and Iceland (60.3%) (See S1 Table for full results).

Comparison to previous estimates

This model’s estimates were compared against historical estimates in the literature (Table 2).

The results showed that this model’s estimates were similar to previous estimates at compara-

ble time periods (R2 = 0.44). In many cases the estimates of true number of infections and DR

closely matched previous estimates, and in most cases the estimates were within the 95% confi-

dence interval of previous estimates.

COVID-19 Testing Index

Comparison between countries. Countries in the top quartile of CovTI had lower TPR,

lower CFR, lower proportion of active cases, and higher DR compared to other quartiles (Fig

3). The top 15 countries according to the index included many island nations and states that

are effectively islands (e.g., Hong Kong, Iceland, Australia) (Table 3). Southeast Asian coun-

tries including Cambodia, Vietnam, Malaysia, Brunei and Thailand also had high CovTI. Full

results are reported in Supporting Information (S1 and S2 Tables).

Table 2. Comparison of period prevalence and detection rate estimates with other similar estimates in literature [44, 45].

Other Estimates [44, 45] This Study’s Estimates

Date Country Estimated Period Prevalence [95%

CI]

Estimated Detection Rate [95%

CI]

Estimated Period

Prevalence

Estimated Detection

Rate

% of total population % of infections % of total population % of infections

14 April 2020

[44]

Australia 0.04 [0.03–0.09] 59 [28–90] 0.03 88

Canada 1.0 [0.67–2.2] 6.7 [3.1–10] 0.44 21

South

Korea

0.06 [0.04–0.13] 35 [16–53] 0.06 33

USA 2.6 [1.7–5.6] 6.8 [3.2–10] 1.6 14

4 May 2020 [45] Austria 0.76 [0.59–0.98] 23.4 [18–30] 1.0 17

Belgium 8.0 [6.1–11] 5.4 [3.9–7.1] 12.3 3.5

Denmark 1.0 [0.81–1.4] 17 [12–21] 0.95 17

France 3.4 [2.7–4.3] 7.6 [6.0–9.6] 5.9 4.3

Germany 0.85 [0.66–1.1] 23 [18–30] 1.1 18

Italy 4.6 [3.6–5.8] 7.5 [6.0–9.6] 8.0 4.3

Norway 0.46 [0.34–0.61] 32 [24–44] 0.52 28

Spain 5.5 [4.4–7.0] 9.6 [7.5–12] 7.7 6.8

Sweden 3.7 [2.8–5.1] 6.0 [4.4–8.0] 3.0 7.4

Switzerland 1.9 [1.5–2.4] 18 [14–23] 3.1 11

UK 5.1 [4.0–6.5] 5.3 [4.2–6.8] 5.4 4.9

https://doi.org/10.1371/journal.pone.0248176.t002
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Variable analysis. Bivariate analyses showed that testing policy and contact tracing policy

were significantly associated (p<0.0001) with CovTI (Table 4), with increasing levels of testing

and contact tracing associated with higher CovTI. Islands had significantly higher CovTI than

non-islands (p = 0.004). Unitary states had higher CovTI compared to federations, but the dif-

ferences were not significant (p = 0.26). The CovTI values among OECD members and non-

members were nearly equal.

All factors were entered into the initial MLR model. The final model included all factors

except economic development (OECD member or non-member). The MLR showed that test-

ing policy had the largest effect on testing outcomes, whereby widespread open testing was

associated with a 31.1-point increase in CovTI compared to no testing policy (Table 5). Con-

tact tracing, centralized governments, and islands were also associated with improved CovTI

values. However, the difference in CovTI associated with type of government was not statisti-

cally significant (p = 0.20).

Fig 3. Comparison of the medians of Test Positivity Rate (TPR), Case Fatality Rate (CFR), proportion of Active Cases (AC), and Detection Rate (DR) among the

quartiles of COVID-19 Testing Index (CovTI). Bottom quartile included the lowest 25% of CovTI values (n = 42), 2nd quartile included CovTI values between 25th and

50th percentiles (n = 41), 3rd quartile included CovTI values between 50th and 75th percentiles (n = 41), and the top quartile included highest CovTI values above 75th

percentile (n = 41). Values in brackets indicate the range of CovTI values in each quartile. Error bars represent interquartile range. Data per 00:00 GMT June 3, 2020.

https://doi.org/10.1371/journal.pone.0248176.g003
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Model robustness

The results of the sensitivity analysis showed that possible uncertainty in the model’s assump-

tions did not affect the outcomes of the study. The scenarios that caused the largest change in

the F-statistic were scenarios B1 (IFR of 0.5%) and E1 (equal weighting to each of the four

Table 3. COVID-19 Testing Index (CovTI) and sub-indices a) among top 15 countries and territories assessed (n = 165).

Global Rank Country or Territory CovTI DRsi (40%) TPsi (20%) CFsi (20%) ACsi (20%)

1 Hong Kong 93.7 91.2 94.8 96.2 95.2

2 Australia 93.5 96.5 95.3 85.9 93.2

3 Iceland 91.8 95.1 74.4 94.6 99.9

4 Cambodia 91.3 81.9 94.2 100.0 98.4

5 New Zealand 90.6 85.9 94.8 86.4 99.9

6 Vietnam 90.2 80.7 98.8 100.0 90.9

7 Taiwan 89.9 86.2 94.1 85.1 98.0

8 Réunion 85.9 84.9 75.8 97.6 86.4

9 Malta 85.7 80.3 91.6 85.2 90.8

10 Palestine 85.5 80.9 90.4 92.3 83.1

11 Malaysia 84.7 84.6 86.9 84.0 83.6

12 Brunei 84.5 71.8 93.1 86.7 99.3

13 Thailand 84.5 74.4 92.9 82.5 98.1

14 South Korea 83.0 78.2 88.4 77.6 92.9

15 Rwanda 82.9 78.2 94.7 92.9 70.6

DRsi, TPsi, CFsi, ACsi, as described in text with percentages indicating degree of weighting. Data per 00:00 GMT June 3, 2020. Complete dataset in S1 Table.

https://doi.org/10.1371/journal.pone.0248176.t003

Table 4. Comparison of differences in COVID-19 Testing Index between countries and states with different testing and tracing policies, geographical settings,

forms of government and economic development status (n = 147).

Variable n (%) CovTI x (95% CI) Test statistica p-value

Testing policy 8.4 <0.0001

No testing policy 6 (4.1) 29.7 (17.6–41.9)

Limited testing 60 (40.8) 54.0 (49.0–59.0)

Symptomatic testing 53 (36.1) 59.6 (54.7–64.5)

Open public testing 28 (19.1) 66.9 (61.0–72.8)

Contact tracing policy 9.8 0.0001

No contact tracing 18 (12.2) 43.9 (35.4–52.5)

Limited contact tracing 58 (39.5) 54.4 (49.4–59.3)

Extensive contact tracing 71 (48.3) 63.5 (59.3–67.7)

Geographical setting 2.94 0.004

Island or island-like 23 (15.7) 68.0 (59.7–76.3)

Non-island 124 (84.4) 55.5 (52.5–58.8)

Form of government 1.12 0.26

Unitary state 123 (83.7) 58.3 (54.8–61.7)

Federation 24 (16.3) 53.5 (45.4–61.5)

Economic development status 0.08 0.94

OECD Member 36 (24.5) 57.3 (50.6–63.9)

Non-OECD Member 111 (75.5) 57.6 (54.0–61.2)

a t-statistic from two-way two-sample t-test with equal variance or F-statistic from one-way ANOVA.

https://doi.org/10.1371/journal.pone.0248176.t004
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CovTI sub-indices). In all scenarios, however, the F-statistic and adjusted R2 from the MLR

were within 10% of the respective values for the final model. Additionally, the interpretation of

the results (e.g., which factors were statistically significant) did not differ from the final model.

Full results are reported in Supporting Information S1 Appendix.

Discussion

We developed a novel comprehensive metric, entitled CovTI, that attempted to measure effec-

tiveness of testing during the first four months of the COVID-19 pandemic at the country level

and was derived from key epidemiological indicators computable from data available across

nearly all countries, as reported on the Worldometer website [30]. Previous research has

assessed government response [26] and suggested specific indicators to facilitate inter-country

comparisons [27]. However, this is the first published metric to comprehensively assess testing

outcomes with a focus on detection/underreporting.

Key strengths and limitations

Mitigation efforts to contain the spread of SARS-CoV-2 should include testing, contact trac-

ing, and isolation of cases, alongside social distancing and face masks [4, 5]. National policy

decisions and individual choices must be informed by an assessment of risk that is supported

by data [46]. CovTI aimed to provide an additional data point that holistically combined four

important epidemiological indicators into a single metric. As such, it facilitated inter-country

comparisons that elucidated extrinsic factors associated with improved testing outcomes.

Another advantage to using CovTI is that it incorporated a parsimonious empirical model to

estimate the period prevalence and detection rate. Despite the parsimoniousness, the results were

comparable to more complex modeling approaches [44, 45]. The findings suggested that nearly

90% of global infections were unreported in the first four months of the pandemic, which was

consistent with previous estimates showing that true number of infections are many times higher

than reported cases [10–12, 17]. In addition, the true number of infections as a percentage of the

population has been modeled in various European countries. For example, period prevalence in

Table 5. Multiple linear regression analysis F(7, 139) = 7.07 (p<0.0001), adjusted R2 = 0.23 of factors associated with COVID-19 Testing Index from final model

(n = 147) (data from 00:00 GMT June 3, 2020).

Independent variables Mean CovTI (95% CI) β coefficient (change in CovTI associated with factor) 95% CI p value

Constant 20.6 4.6–36.6

Testing policy

No testing policy 29.7 (17.6–41.9) Ref. <0.0001

Limited testing 54.0 (49.0–59.0) 19.4 4.5–34.2

Symptomatic testing 59.6 (54.7–64.5) 24.3 9.4–39.2

Open public testing 66.9 (61.0–72.8) 31.1 15.2–47.0

Contact tracing policy 0.001

No contact tracing 43.9 (35.4–52.5) Ref.

Limited contact tracing 54.4 (49.4–59.3) 6.1 -3.3–15.4

Extensive contact tracing 63.5 (59.3–67.7) 12.4 3.1–21.7

Geographical setting 0.007

Non-island 55.5 (52.5–58.8) Ref.

Island or island-like 68.0 (59.7–76.3) 10.6 2.9–18.3

Form of government 0.20

Federation 53.5 (45.4–61.5) Ref.

Unitary state 58.3 (54.8–61.7) 5.1 -2.6–12.8

https://doi.org/10.1371/journal.pone.0248176.t005
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Italy was estimated at 4 percent in April [47] and 4.4 percent in France in May [48]. Several of the

hardest affected countries early in the pandemic had an estimated period prevalence between 3

and 7.5 percent [49]. These estimates were generally consistent with our estimates.

Seroprevalence is another way to assess the period prevalence of COVID-19. Nationwide

seroprevalence studies, such as one in Spain, provided period prevalence estimates (5.0%

through May 11, 2020) consistent with this and other models [50]. However, several factors

can substantially affect the accuracy of seroprevalence studies, including low specificity, cross-

reactivity with other viruses, high false positive false positive rates in low prevalence environ-

ments, and study biases [51–54]. Therefore, models and parsimonious estimates may continue

to play an important role in estimating the true number of infections.

CovTI has several limitations due to its inherent assumptions. In order to calculate DR, the

model assumed specific and universal relationships between deaths and total number of infec-

tions, implying an inherent IFR. Advances in therapeutics and differences in health system

capacity will influence this rate though [55]. In addition, several factors including age, sex,

hypertension, diabetes, and blood groups are known to affect mortality and hospitalization

rates [56–63]. These factors were not accounted for in this model.

Furthermore, death data, which contributed substantially to the computation of CovTI, is

not equitably comparable across all countries. Excess all-cause mortality (i.e., total mortality in

excess of seasonal averages) are substantially higher than the reported COVID-19 deaths in

many locations, including Brazil, Jakarta, New York City, and Ecuador [64]. These excess

deaths suggest such locations may not have accurately captured deaths caused by COVID-19

in official figures or are experiencing increased mortality related to the pandemic but not nec-

essarily due to infections [65, 66]. Different definitions of attributable deaths substantially

affect death data. For example, Russia had previously used a very limited definition for inclu-

sion determined via autopsy that does not count many deaths even if the patient previously

tested positive for SARS-CoV-2 [67]. On the other hand, some countries have opted to exhaus-

tively include any presumptive death to COVID-19 in official data. Belgium has included

unconfirmed deaths within their COVID-19 death total [68]. In Belgium, COVID-19 deaths

were greater than excess deaths [64]. These examples of limited or conservative death defini-

tions impact this model’s estimates. Adjusting death data based on excess mortality data could

improve the the model; however, such data limited [69].

The model also assumed specific relationships between proxy indicators, such as the Global

Health Security Index and Democracy Index, and data outcomes. While regression showed

they were associated with the level of underreporting, these factors are indirect proxies for a

more complex set of variables that determine underreporting. Furthermore, this model aimed

to be parsimonious (i.e., not introducing excessive parameters or uncertainty) and is, by

nature, deterministic. The decision to include a minimum number of variables and data was

strategic and aimed to avoid overparameterization, but a stochastic approach could better

illustrate the uncertainty and sensitivity to the above assumptions. The model also reported

estimates of total number of cases and detection rates. These values should be used cautiously

as a comparative tool, rather than exact values, alongside other indicators.

Policy implications

High CovTI values were found in countries that have been recognized for their success in

responding to the COVID-19 pandemic, including New Zealand, Taiwan, Australia, Iceland,

and South Korea. These countries have had high testing rates, comprehensive contact tracing

programs, and relative success in mitigating the health impacts of the virus [70–73]. Thus, this

analysis provided quantitative evidence supporting policy recommendations to facilitate
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strong national leadership, expand diagnostic capacity, rapidly enact comprehensive contact

tracing, and proactively test for SARS-CoV-2 [70, 71].

Further supporting this notion, aggressive contact tracing and inclusive testing policies

were found to be independently associated with increased testing effectiveness, as indicated by

CovTI. This result both validates the model’s ability to track COVID-19 testing outcomes and

provides further confirmation that countries that prioritize policies and dedicate resources

specifically to testing and contact tracing have effectively reduced underreporting and

improved testing-related health outcome metrics. Previous studies have found an association

between expansive testing early in the pandemic and improved mortality data in Germany,

South Korea, and Iceland [74]. On the other hand, socioeconomic status had no significant

association to the outcome in this study. Previous research has shown that policy decisions are

more important than socioeconomic status [75].

Increased testing capacity is not a panacea, though. More testing is not necessarily better,

especially if accuracy is overestimated or the testing is poorly targeted [76]. In the first four

months of the pandemic, COVID-19 diagnoses were routinely confirmed through testing that

employed the reverse transcriptase polymerase chain reaction (RT-PCR) technique [77]. The

heavy reliance on this method has been questioned [78]. Alternative molecular detection tech-

niques may be needed, especially if they can return results more quickly [79].

Interestingly, this research found a significant relationship between island nations and higher

CovTI. Geographical isolation is an obvious advantage to controlling infectious disease [80].

Many island nations have chosen a strategy of eradication [81]. Geographic isolation and easier

enactment of border closures have benefited island nations in responding to the pandemic [82].

Finally, it should be noted that while the estimates from this model showed substantial

underreporting of infections, the overall period prevalence remained less than 10 percent in

nearly all countries. Such a low proportion of the population presumably with antibodies is far

from conferring herd immunity that may inhibit future disease transmission. It is important

to note that, while these proportions are much higher than the officially reported cases, they

do not represent herd immunity—a concept considered important to fully reopening society.

Although herd immunity depends on the effective reproductive number (Re) [83], which var-

ies with effectiveness of interventions, some estimates specify a threshold of 50 to 60 percent

seroprevalence to achieve herd immunity [84], while others, accounting for differential suscep-

tibility, estimate the threshold may be as low as 20 percent [85]. Nevertheless, these estimates

suggest that herd immunity has not yet occurred in the first four months of the pandemic at

the national level of the countries analyzed. Therefore, achieving herd immunity through natu-

ral infection may be costly or unachievable [86].

Future research

We encourage other researchers to build on this analysis by combining this metric with other

databases that can account for other possible factors, such as trust in government institutions,

demographics, or urban/rural distribution. Such analyses could further elucidate other extrin-

sic factors related to COVID-19 testing outcomes. Research could also be done to understand

how association with other factors changes over time, as the pandemic progresses through dif-

ferent stages. Sub-national analyses may also be possible using the mathematical relationships

defined in this index.

Conclusion

This report described a novel comprehensive metric (COVID-19 Testing Index, CovTI) that

evaluates the overall effectiveness of COVID-19 testing in the current pandemic using real-
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time publicly reported data among 165 countries and territories. The metric incorporated

case-fatality rate, test positivity rate, proportion of active cases, and an estimate of detection

rate based upon reported death data by adjusting for heterogeneity in testing levels, health sys-

tem capacity, and government transparency. The estimated detection rate of COVID-19

aligned satisfactorily with previous empirical and epidemiological models. National policies

that facilitated open public testing and extensive contact tracing were significantly associated

with higher values of CovTI, which reflected improvements in the estimated detection rate.

Extrinsic factors, including geographic isolation and centralized forms of government, were

also shown to be associated with improved COVID-19 testing outcomes. Countries should

commit to expanding policies on testing and contact tracing in order to reduce levels of unde-

tected infections and reduce disease transmission. Applications of this metric include combin-

ing it with different databases to identify other factors that affect testing outcomes or using it

to temporally track a holistic measure of testing outcomes at the national or sub-national level.
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