
Kogan et al., Sci. Adv. 2021; 7 : eabd6989     5 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 15

C O R O N A V I R U S

An early warning approach to monitor COVID-19 
activity with multiple digital traces in near real time
Nicole E. Kogan1,2*†, Leonardo Clemente1*†, Parker Liautaud3*†, Justin Kaashoek1,4,  
Nicholas B. Link1,5, Andre T. Nguyen1,6,7, Fred S. Lu1,8, Peter Huybers3,4, Bernd Resch9,10, 
Clemens Havas9, Andreas Petutschnig9, Jessica Davis11, Matteo Chinazzi11, Backtosch Mustafa1,12, 
William P. Hanage2, Alessandro Vespignani11, Mauricio Santillana1,2,4,13†

Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-
containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are 
widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutical interventions (NPIs). A COVID-19 
early warning system is vital for this. Here, we evaluate digital data streams as early indicators of state-level 
COVID-19 activity from 1 March to 30 September 2020. We observe that increases in digital data stream activity 
anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and deaths also decrease 2 
to 4 weeks after NPI implementation, as measured by anonymized, phone-derived human mobility data. We propose 
a means of harmonizing these data streams to identify future COVID-19 outbreaks. Our results suggest that com-
bining disparate health and behavioral data may help identify disease activity changes weeks before observation 
using traditional epidemiological monitoring.

INTRODUCTION
In just over 12 months, coronavirus disease 2019 (COVID-19)—the 
disease caused by the betacoronavirus SARS-CoV-2—has caused 
more than 2,200,000 deaths worldwide, 455,000 of which are in the 
United States (1). In the absence of a widely available vaccine or an 
effective treatment, authorities have sought to slow epidemic growth 
by implementing nonpharmaceutical interventions (NPIs), includ-
ing school and business closures, work-from-home policies, and 
travel bans. Many U.S. states have progressively reopened their 
economies, despite estimates of cumulative US COVID-19 inci-
dence, suggesting that most of the U.S. population remains suscep-
tible to SARS-CoV-2 (2). Serological studies also indicate low levels 
of seroprevalence even in parts of the United States heavily affected 
by the virus (e.g., 23% in New York City by 29 May 2020) (3, 4). 
The long development timeline for a vaccine (5) coupled with the 
possibility that individual immunity to SARS-CoV-2 may decline 
over time (as is the case with other coronaviruses) portends the 
emergence of additional epidemic waves (6). The availability of a 
reliable, robust, real-time indicator of emerging COVID-19 outbreaks 
would aid in appropriately timing public health interventions.

Despite efforts by the clinical and research community to aggre-
gate and make available data streams that are representative of 

COVID-19 activity, it is not immediately clear which of these data 
streams is most dependable for tracking outbreaks in real time. 
Many metrics for tracking COVID-19, such as confirmed cases, 
hospitalizations, and deaths, suffer from reporting delays, as well 
as uncertainties stemming from inefficiencies in data collection, 
collation, and dissemination processes (7). For example, confirmed 
cases may be more reflective of testing availability than of disease 
incidence, and confirmed cases often lag infections by days or weeks 
(8). Previous work has suggested that clinician-provided reports of 
the proportion of hospital visits presenting influenza-like illness 
(ILI), aggregated by the Centers for Disease Control and Preven-
tion (CDC), may be less sensitive to testing availability than con-
firmed cases, but these reports suffer from reporting lags of 5 to 
12 days, are not typically collected during summer months, depend 
on the thoroughness of clinician reporting, and do not distinguish 
COVID-19 from other illnesses that may cause similar symp-
toms (2).

Alternatively, forecasting models can assist in long-term planning, 
but the accuracy of their predictions is limited by the timeliness of 
data or parameter updates. Specifically, some models demonstrate 
predictive skill with respect to hospitalizations and deaths (6, 9), 
but these predictions are often too late to enable timely NPI imple-
mentation. Other models suffer from limited generalizability, with 
NPI implementation proposed only for a specific city (10). The 
CDC has launched a state-level forecasting initiative aimed at con-
solidating predictions from multiple models to estimate future 
COVID-19–attributable deaths, but the use of these predictions 
in state-level decision-making is still pending (11).

Over the last decade, innovative methodologies have emerged to 
track population-level disease spread using data sources not originally 
conceived for that purpose (12). These approaches have exploited 
information from internet and clinicians’ search engines (13–19), 
news reports (20–22), crowd-sourced participatory disease surveillance 
systems (23, 24), Twitter microblogs (25, 26), electronic health records 
(27, 28), Wikipedia traffic (29), wearable devices (30), smartphone-
connected thermometers (31), and travel websites (32) to estimate 
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disease prevalence in near real time. Several have already been used 
to track COVID-19 (33, 34). These data sources are liable to bias, 
however; for example, Google Search activity is sensitive to the in-
tensity of news coverage (15, 35–37). Methodologies to mitigate biases 
in digital data sources commonly involve combining disease history, 
mechanistic models, and surveys to produce detrended estimates 
of disease activity (38, 39).

Our contribution
We propose that several digital data sources may provide earlier 
indication of epidemic spread than traditional COVID-19 metrics 
such as confirmed cases or deaths. Six such sources are examined 
here: (i) Google Trends patterns for a suite of COVID-19–related 
terms; (ii) COVID-19–related Twitter activity; (iii) COVID-19–
related clinician searches from UpToDate; (iv) predictions by the 
global epidemic and mobility model (GLEAM), a state-of-the-art 
metapopulation mechanistic model; (v) anonymized and aggregat-
ed human mobility data from smartphones; and (vi) Kinsa smart 
thermometer measurements. We first evaluate each of these “proxies” 
of COVID-19 activity for their lead or lag relative to traditional 
measures of COVID-19 activity: confirmed cases, deaths attributed, 
and ILI. We then propose the use of a metric combining these data 
sources into a multiproxy estimate of the probability of an 
impending COVID-19 outbreak. Last, we develop probabilistic 
estimates of when such a COVID-19 outbreak will occur on the 
basis of multiproxy variability. These outbreak-timing predictions 
are made for two separate time periods: the first, a “training” period, 
from 1 March to 31 May 2020, and the second, a “validation” period, 
from 1 June to 30 September 2020. Consistent predictive behavior 
among proxies in both of these subsequent and nonoverlapping 
time periods would increase the confidence that they may capture 
future changes in the trajectory of COVID-19 activity.

RESULTS
Visualizing the behavior of COVID-19–tracking data 
sources: Motivation for designing an early warning system
Figure 1 displays the temporal evolution of all available signals 
considered in this study for three U.S. states—Massachusetts (MA), 
New York (NY), and California (CA)—over five time intervals. 
These states illustrate different early epidemic trajectories within 
the United States, with NY among the worst affected states initially 
and CA experiencing a more gradual increase in cases than both 
MA and NY.

The top row of Fig. 1 for each state displays normalized COVID-19 
activity as captured by daily reported confirmed cases, deaths, and 
“excess ILI” (raw hospitalizations were discounted owing to data 
sparseness). Excess ILI refers to hospital visits due to ILI in excess 
of what is expected from a normal flu season (2), which we attri-
bute to COVID-19  in 2020. ILI data were taken from the CDC’s 
U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). 
The middle row for each state displays time series for five proxies 
of COVID-19 activity. The bottom row for each state displays 
state-level anonymized and aggregated human mobility data as 
collected by mobile phones; mobility data are viewed as a proxy for 
adherence to social distancing recommendations. Similar visual-
izations for all states are shown in figs. S1 to S17.

Figure 1 demonstrates that for the earliest time period in the 
pandemic (“time period 1,” 1 March to 31 May 2020) in MA, NY, and 

CA, COVID-19–related clinicians’ and general population’s internet 
activity, smart thermometers, and GLEAM model predictions exhibit 
early increases that led increases of confirmed cases and deaths due 
to COVID-19. Analogously, decreases in other proxies—especially 
in mobility—mirror later decreases in COVID-19–attributable con-
firmed cases and deaths for the three states represented. This is not 
seen in all states as some, such as Arizona, Florida, and Texas, had not 
experienced a complete “first wave” of COVID-19 by the end of the 
first time period. Furthermore, such states did not increase their test-
ing capacity until later into the summer months, making it difficult to 
observe early changes in COVID-19 activity. Analysis conducted on a 
subsequent time period (“time period 2,” 1 June to 30 September 2020) 
allows for a more detailed characterization of these nuances.

Quantifying the timing of growth in proxies 
of COVID-19 activity
To quantify the relative leads and lags in our collection of disease 
proxies, we formulated a change of behavior “event” for each proxy 
and compared it to three “gold standards” of COVID-19 activity: 
confirmed cases, deaths attributed, and excess ILI. In keeping with 
classical disease dynamics, we defined an event as any initiation of 
exponential growth (“uptrend”). Using a Bayesian approach, we 
obtained a posterior probability distribution for parameter values 
in a function y(t) ∼  e(t − t0)+ ϵ(t) approximating the behavior of 
each time series over a time window of 14 days, evaluating , , and 
the variance of ϵ, denoted 2, where t0 indicates the first day in the 
time window. A P value was then calculated for each proxy on each 
day that represents the posterior probability that  is less than or 
equal to zero in the past 14 days. As the P values decrease, we grow 
more confident that a given time series is exhibiting sustained growth. 
When the P value decreases below 0.05, we define this as an indi-
vidual proxy’s “uptrend event.” An additional indicator (discussed 
further in subsequent paragraphs), built from the combination of 
the P values of each proxy using the harmonic mean method (see 
Eq. 5), was calculated for every day of the observed data. We con-
ducted this analysis over both time periods 1 and 2 to assess proxy 
behavior at different stages of the pandemic.

The sequences of proxy-specific uptrends for an example state, 
CA, are depicted in Fig. 2. Our choice of this state was motivated 
by the presence of multiple distinguishable and nonoverlapping 
growth events over time periods 1 and 2. Upward-pointing tri-
angles denote the date on which a growth event is identifiable by 
our method for each individual data stream. For CA, Fig. 2 shows 
that COVID-19–related Twitter posts gave the earliest indication of 
increasing COVID-19 activity, exhibiting its first uptrend around 
2 March. This was closely followed by uptrends in Google searches 
for “fever,” GLEAM-modeled infections, COVID-19–related searches 
by clinicians, and fever incidence. Subsequent exponential growth 
events occurred in most of these proxies.

The activation order of COVID-19 early warning indicators in 
CA is characterized by earlier growth in proxies reflecting public 
sentiment than in more clinically specific proxies. This ordering is 
broadly observed across states over time period 1 (Fig. 3A) 
and, generally, over time period 2 (Fig.  3C). For time period 1, 
COVID-19–related Twitter posts and Google searches for “fever” 
were among the earliest proxies to activate, with Twitter activating 
first for 35 states and Google activating first for 7 states. UpToDate 
showed the latest activation among proxies, activating last in 37 states 
albeit still predating an uptrend in confirmed cases (fig. S66). This 
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analysis was conducted for all states with the exception of those 
where data were unavailable because of reporting delays and/or 
event information was missing (as was the case for deaths in two 
states, Kinsa in one state, and excess ILI in five states).

Later in the pandemic, during time period 2, Twitter posts and 
Google searches for “covid” showed the earliest median activation 
relative to deaths, with the latter also showing the earliest median 
activation relative to ILI, while UpToDate showed the earliest median 

Fig. 1. Visualization of the evolution of each COVID-19 proxy in Massachusetts, New York, and California. Columns depict progressively increasing time periods 
over which proxies become available (vertical dashed line indicates the latest date in the time period) to illustrate how the availability of different proxies informs upon 
the evolution of COVID-19. Time series were normalized between 0 and 1 and smoothed using a simple moving average for purposes of visualization. The legend at the 
top shows each data stream alongside typical delays between measurement and reporting.
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activation relative to cases (Fig. 3C). For both time periods, we ex-
cluded mobility time series data from the uptrend lead-lag analysis 
as their influence on subsequent disease transmission depends heavily 
on the underlying disease incidence in a given location at a given 

point in time. Specifically, if shelter-in-place interventions (cap-
tured as reductions in human mobility) were effectively implemented 
(as in NY earlier in the pandemic), then subsequent increases in 
human mobility (due to a relaxation of lockdowns) may not lead 

Fig. 2. Visualization of the event detection procedure applied to COVID-19 proxies. An event is detected by setting a threshold of 0.05 over the P value of the expo-
nential coefficient . Under each curve, the P values are shown as colored gradients. Darker red shade signifies increased confidence in the occurrence of an uptrend 
event, while darker blue shade signifies increased confidence in the occurrence of a downtrend event. Triangular markers are used to signal the date when an uptrend 
or a downtrend is detected based on the set threshold. The time series are adjusted to account for expected reporting delays in the source of information.
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Fig. 3. Event detection results for pairwise comparisons between COVID-19 proxies and gold standards for U.S. states with available data across two time peri-
ods. (A) and (B) illustrate the timing of proxy-specific uptrends and downtrends, respectively, relative to deaths, confirmed cases, and excess ILI from 1 March 1 to 31 May 2020. 
(C) and (D) similarly use box plots to illustrate the lag of COVID-19 gold standards relative to COVID-19 proxies from 1 June to 30 September 2020. Multiple events can be 
detected per state per time period. Proxy data were unavailable for certain states, which reflects their absence in the plots. Box plots show the median (central vertical 
lines), interquartile range (vertical lines flanking the median), extrema (whiskers), and outliers (dots); differences between input variable (y axis) and response variable 
(title) exceeding 30 days are omitted. Negative differences indicate that the input variable event activation preceded the response variable event activation. Deaths, 
confirmed cases, and excess ILI, as well as a combined measure, are included to intercompare gold standards. Box plots are sorted according to median value and shifted 
to offset delays in real-time availability.
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to increases in disease transmission. In contrast, in regions where 
shelter-in-place interventions were not observed closely or for long 
enough, increases in human mobility (due to premature reopenings) 
may lead to noticeable increased disease transmission. As such, 
human mobility reductions were only consistently found to influ-
ence downtrend events in the epidemiological gold standards.

Although data streams that directly measure public sentiment 
(i.e., Google and Twitter) are sensitive to the intensity of news re-
porting, we note that median growth in Google searches for “fever” 
occurs within 3 days of median growth in fever incidence (as mea-
sured by Kinsa) for time period 1, suggesting that many searches 
may be driven by newly ill people (Fig. 3A). We see a similar close-
ness in median uptrend activation (i.e., approximately 3 days dif-
ference) for Kinsa and Google searches for “fever” during time 
period 2, specifically with respect to cases. We additionally ob-
served that the median lag between deaths and Google Searches for 
“fever” was approximately 21 days during both time periods 1 and 
2, broadly consistent with previous estimates that the average delay 
between the onset of symptoms and death is 20 days (40). Detailed 
time series and event activation dates for the first time period are 
displayed in figs. S18 to S65.

Consensus among proxies was recorded through a “combined” 
growth event that acts as a consolidated metric for all proxies’ up-
trend events (Figs. 2 and 3). We found that this metric was able to 
capture changes in behavior across proxies, reflecting a median 
activation 2 to 3 weeks before uptrend events among deaths, cases, 
and excess ILI across both time periods. As described in more de-
tail after the next section, this combined event was created via a 
harmonic mean taken across the P values associated with each of 
the indicators. The harmonic mean was used because it does not 
require P values across different proxies to be independent (41). 
Similar to the case for individual proxies, we defined detection of a 
growth event to occur when the harmonic mean P value (HMP) 
decreases below 0.05.

Quantifying the timing of decay in proxies
An examination analogous to that made for the uptrend events was 
made to identify the timing of exponential decay (“downtrend”) in 
proxies—now including mobility data—and gold standard time 
series, for time periods 1 and 2. On each day of the time series and 
for each proxy, a P value is calculated to represent the posterior 
probability that  is greater than or equal to zero. An individual 
proxy’s downtrend was defined to occur on days when the associat-
ed P value crossed a 0.05 threshold, representing the opposite null 
hypothesis as that adopted for detecting uptrend events. A sample 
sequence of downtrends is depicted in Fig. 2, where downward-
pointing triangles denote the date on which a downtrend event is 
identifiable. For the example state, Cuebiq and Apple mobility data 
are the first time series to exhibit downtrends, each activating events 
around 15 March.

The utility of extending our analysis to include decay events is 
in possibly characterizing downstream effects of NPIs. Specifically, 
opportunities to rapidly assess NPI effectiveness may arise if NPI 
influence on transmission rates is recorded in proxy time series be-
fore it is recorded in confirmed case or death time series. We 
used two smartphone-based metrics of human mobility that are 
indicators of population-wide propensity to travel within a given 
U.S. county, as provided by the location analytics company Cuebiq 
and by Apple. These mobility indicators are used as proxies for 

adherence to social distancing policies and are described in detail 
in Materials and Methods. Apple mobility and the Cuebiq mobility 
index (CMI) are imperfect insofar as they do not account for sev-
eral important transmission factors, including importing of cases 
from other states. Although local travel distances are incomplete 
proxies for the scale at which NPIs are performed, reductions in mo-
bility have been shown to lead to subsequent reduction in fever in-
cidence by an average of 6.5 days during the first time period, an 
interval approximately equal to the incubation period of COVID-19, 
across hundreds of U.S. counties (42). Figure 3B supports this obser-
vation, with median fever incidence lagging median CMI and Apple 
mobility activation by 8.5 and 5.5 days, respectively. With the ex-
ception of excess ILI, for which median fever incidence lags median 
Apple mobility activation by roughly 4 days, this relationship is less 
apparent in time period 2 (Fig. 3D). Our use of two distinct mobility 
metrics is intended to reduce the influence of systematic biases arising 
from the methodology of either metric.

During the first time period, the timing of downtrends is con-
sistent between Apple mobility and CMI (maximum difference of 
4 days in median activation across all states with available data), 
with median downtrend activation for CMI preceding median 
activation of all other proxies and gold standard time series (Fig. 3B). 
Median decay in these indices predated median decay in deaths 
and confirmed cases by a median of 3 to 4 weeks; CMI was first to 
activate in 60% of states (refer to fig. S67). GLEAM, Google searches 
for “covid,” and UpToDate were among the latest proxies to acti-
vate across states. Median downtrend activation for Google searches 
for “quarantine,” included as a surrogate measure of mobility, lagged 
Apple mobility and CMI median downtrend activation by an average 
of 12 and 10.5 days, respectively. Statistically significant decaying 
events were not detected, or data were not available, for GLEAM in 
22 states, excess ILI in 5 states, CMI in 1 state, deaths in 2 states, 
and confirmed cases in 7 states. For time period 2, we observed that 
the signals for mobility were less pronounced, only activating earliest 
relative to excess ILI, with Kinsa thermometer data and GLEAM 
data instead corresponding to the earliest median activation for 
deaths and cases, respectively.

Analysis of the event detection approach
As an initial effort to estimate the capacity of the event detection 
method to identify an impending outbreak, we evaluated whether 
uptrend or downtrend events detected in proxies were followed 
within 30 days by the same type of events in confirmed cases, deaths, 
or excess ILI. This analysis is permissive for estimation of the sen-
sitivity or “true-positive rate” (TPR), defined as the ratio between 
“successful events” (true positives: when a proxy served as an early 
warning indicator to an actual gold standard activation) and the 
total number of observed activation events for the gold standard 
(the sum of true positives and false negatives). In addition, analysis 
of “precision,” defined as the ratio between total number of suc-
cessfully detected events and the total number of times our proxy 
activated with or without a subsequent gold standard event activating 
(the sum of true positives and false positives), was carried out. Our 
results for the test are summarized in Table 1. With the exception 
of UpToDate, individual proxies do not cross a TPR of 0.6. When 
combined into a multiproxy estimate, however, a TPR of ∼0.75 was 
achieved in efforts to predict events in all three gold standard metrics. 
This result is evidence that a multiproxy approach may permit for 
more accurate forecasting than using individual data sources (each 
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featuring their own sources of bias and uncertainty). As shown in 
the high precision scores for each proxy across the task of tracking 
each gold standard, incorrect events do not originate from a proxy 
incorrectly activating without any subsequent gold standard events 
happening but from the fact that the proxy may not activate before 
an observed gold standard event (low false positives but high false 
negatives).

To complement the event-based identification of anomalous 
growth in proxies, we also conducted a lagged correlation analysis. 
We correlated gold standard time series with proxy time series in 
each of the two time periods, allowing the proxies to lead the gold 
standards by up to 30 days; this procedure was designed (figs. S68 
to S75) to account for the possibility of multiple growth and decay 
events per time period. The results from this analysis are shown in 
fig. S76. We found that Twitter and Google searches gave the highest 
correlations when preceding the gold standards by 2 to 3 weeks during 
time period 1 and that UpToDate, Google searches, and mobility 
gave the highest correlation during time period 2. These findings 
generally correspond to the order and intervals associated with 
proxy activation in our main analysis.

Using proxy signals to provide early warning of outbreaks
We hypothesize that an early warning system for COVID-19 could 
be derived from uptrend event dates across a network of proxies. 
For each state, xi, t is defined as the number of days since an uptrend 
event for proxy i, where t is the current date. A posterior probability 
distribution of an uptrend in confirmed COVID-19 cases is then 
estimated for each state conditional on the collection of proxies, 
p(y ∣ x1, t, …, xn, t), where each proxy is treated as an indepen-
dent expert predicting the probability of a COVID-19 event. In this 

case, n is the number of proxies. See Materials and Methods for a 
more detailed explanation. A similar analysis is also feasible for 
downtrends. This method is introduced to better formalize predictions 
of growth in gold standard indicators using a network of proxies, 
but further evaluation is required, including relative to subsequent 
“waves” of COVID-19 cases.

Figure 4A shows uptrend events from proxies (vertical solid 
lines) and the predicted uptrend probability distribution for con-
firmed COVID-19 cases (in red) overlaid on confirmed COVID-19 
cases (gray). As more proxy-derived uptrend events are observed, 
the probability mass of the predicted uptrend event becomes in-
creasingly concentrated in the vicinity of identified exponential 
growth in confirmed COVID-19 cases (long vertical solid line). 
In the case of NY, exponential growth is identified in confirmed 
COVID-19 cases in the earlier part of the prediction distribution, 
although for most states, it occurs near the center as follows from 
how the prediction is estimated. Figure 4B similarly shows down-
trend events in proxies and the estimated downtrend posterior 
probability distribution for decay in daily reports of confirmed 
COVID-19 cases. A visualization of the probability distribution for 
all the states is included in the Supplementary Materials (figs. S66 
and S67).

We tested our time-to-event estimation approach by training it 
on data from time period 1 and applying it to data from time period 2. 
Figure 5 shows the prospective (“out-of-sample”) predictive 
performance of our approach by time horizon. Further details can 
be found in Materials and Methods. Performance increases mono-
tonically approaching an event, with 50% of uptrends predicted 
2 weeks in advance and 75% predicted 1 week in advance. Skill in 
predicting downtrends is greater than uptrends by approximately 

Table 1. Sensitivity ​​​(​​ ​  TP _ TP + FN​​)​​​​ and precision ​​​(​​ ​  TP _ TP + FP​​)​​​​ rates for each proxy as an early indicator for an uptrend in the three different COVID-19 gold 
standards (confirmed cases, deaths, and excess ILI). Overall, the combination of the P values achieved the greatest robustness as an early indicator. 

Proxy names Metric Excess ILI (n = 86) Cases (n = 128) Deaths (n = 127)

Combined P value
Sensitivity 0.78 0.75 0.76

Precision 0.9 0.96 0.98

UpToDate
Sensitivity 0.58 0.75 0.79

Precision 0.98 0.99 0.99

Twitter
Sensitivity 0.45 0.41 0.34

Precision 1 0.91 0.98

Kinsa
Sensitivity 0.37 0.38 0.35

Precision 1 1 1

Google (quarantine)
Sensitivity 0.39 0.46 0.48

Precision 0.97 0.97 0.98

Google (fever)
Sensitivity 0.51 0.55 0.54

Precision 1 1 0.99

Google (covid)
Sensitivity 0.44 0.52 0.55

Precision 1 0.94 0.99

Google (cough)
Sensitivity 0.58 0.5 0.54

Precision 0.98 1 0.97

GLEAM Sensitivity 0.3 0.38 0.34

Precision 1 1 0.95
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10%, possibly reflecting that public health interventions are generally 
implemented over consistent time scales to control emerging outbreaks.

DISCUSSION
Here, we have assessed the utility of various digital data streams, 
individually and collectively, as components of a near–real-time 
COVID-19 early warning system. Specifically, we focused on iden-
tifying early signals of impending outbreak characterized by marked 
exponential growth and subsiding outbreak characterized by expo-
nential decay. We explored two time periods given that the first 
submission of this methodology occurred in early June (once out-
breaks in the northeastern United States had partially subsided) and 
our revised version after peer review was prepared 4 months later, giv-
ing us the opportunity to evaluate our methods on newly available 
data. For the first time period, we found that COVID-19–related ac-
tivity on Twitter and Google Trends showed significant growth 2 
to 3 weeks before such growth occurred in confirmed cases and 3 to 
4 weeks before such growth occurred in reported deaths; Google 
Trends displayed a similar pattern for time period 2. We also ob-
served that for exponential decay, as represented by downtrend 
activation, NPIs—here treated as reductions in human mobility—
predated decreases in confirmed cases and deaths by 3 to 4 weeks; 
for time period 2, mobility data are found to lead excess ILI by 
roughly 2 weeks (Fig. 3D). Clinicians’ search activity, fever data, esti-
mates from the GLEAM metapopulation mechanistic epidemiolog-
ical model, and Google searches for COVID-19–related terms were 
similarly found to anticipate changes in COVID-19 activity. We also 
developed a consensus indicator of COVID-19 activity using the 
harmonic mean of all proxies. This combined indicator predated an 
increase in COVID-19 cases by a median of 19.5 days and an increase 
in COVID-19 deaths by a median of 29 days, and was synchronous 

with excess ILI. Such a combined indicator may provide timely in-
formation, like a “thermostat” in a heating or cooling system, to guide 
intermittent activation, intensification, or relaxation of public health 
interventions as the COVID-19 pandemic evolves.

A challenge that comes with managing multiple data streams 
with the aim of anticipating emerging infectious diseases is the un-
certainty about confounding factors. For example, a recent study 
has shown that confirmed U.S. cases of COVID-19 may not neces-
sarily track the evolution of the disease considering limited testing 
frequency at early stages of the pandemic (8). Similarly, some of the 
signal corresponding to social network data and Google Trends may 
be driven by media activity about COVID-19. These confounders 
can lead to increased proxy activity and, therefore, the capturing of 
false events by our methodology. Nonetheless, the power of our 
methodology lies in synthesizing digital data streams to reduce the 
impact of confounding. This aligns with the results of our TPR 
analysis (Table 1), which shows that the combined P value yielded 
the highest TPR in predicting changes among the three gold stan-
dards. We attribute this to the capacity of the combined P value to 
remain agnostic to the activation of a single proxy. As the pandemic 
progressed, we were able to better quantify potential biases in each 
proxy, suggesting that additional analyses could be done to pre-
process the proxies and further improve our methodology.

In extending our approach to two subsequent and nonoverlapping 
time periods, we observed variability in the behavior of the alternative 
proxies across states. This may follow from the inherent state-level 
differences in COVID-19 restrictions and regulations, where states 
that have been slower to implement COVID-19–countering mea-
sures may show more sustained case counts or increased volatility 
in uptrends and downtrends.

The most reliable metric for tracking the spread of COVID-19 
remains unclear, and all metrics discussed in this study feature 

A B

Fig. 4. Illustration of the evolving probability distribution (in red) for the time-to-event estimation as applied to New York. The probability distributions are cal-
culated from information up to a specified time horizon (vertical dashed lines). Events that signaled an exponential increase or decrease more than 7 days before the true 
event (long vertical solid lines) are contained within a green background. (A) The estimated uptrend posterior probability distribution and uptrend events. (B) The esti-
mated downtrend posterior probability distribution and downtrend events.
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important limitations. While deaths may seem a more accurate tracker 
of disease evolution, they are limited in their real-time availability, 
as they tend to lag cases by nearly 20 days (40). ILI anomalous activity, 
which may capture COVID-19 (2) activity, similarly suffers from a lag 
in availability because reports are released with a 5- to 12-day lag; 
for simplicity, we approximated this lag as 10 days in our analysis. 
Furthermore, a decrease in ILI reporting is frequently observed in 
between flu seasons (from early April 2020 and October 2020), render-
ing ILI-based analyses useful only when surveillance systems are fully 
operational. Lu et al. (2) support this conjecture, reporting a rapid de-
crease in the number of patients with ILI reported in late March 2020 
despite the number of reporting providers remaining largely unchanged. 
This decrease may also be attributed to patients forgoing treatment 
for milder, non–COVID-19–attributed ILI. Hospitalizations, although 
possibly less biased than confirmed case numbers, were ultimately 
omitted because of sparseness and poor quality of data.

In contrast to the aforementioned digital data streams, GLEAM 
assimilates many epidemiological parameters [e.g., literature-derived 
incubation period and generation time (6, 43, 44)] essential for de-
scribing COVID-19. Coupled with internet sources, GLEAM can 
provide a more robust outbreak detection method because of its 
different framework and, consequently, at least partially uncor-
related errors with the internet-derived sources. Estimates pro-
duced by this model suggest a median increase in cases and deaths 
of 15 and 5 days later, respectively, for the first time period 
(Fig. 3A) and 1 and 9 days later, respectively, for the second time 
period (Fig. 3C). However, some parameters are excluded from the 
model owing to lack of availability (e.g., age-related COVID-19 
susceptibility). These excluded parameters, coupled with the need 
to regularly update existing parameters, may lead to suboptimal 
downstream performance by the model.

The analysis we presented focuses largely on temporally analyz-
ing different data streams that are aggregated to the state level. 
This level of aggregation is able to provide a coarse overview of 
regional differences within the United States. Smart thermometer, 
Twitter, and mobility data may help us replicate our analysis at 
finer spatial resolutions, making them suitable for capturing both 

regional and local effects. A promising future research avenue is 
the detection of local COVID-19 clusters (“hotspots”) through more 
spatially resolved approaches (45). Such an approach would better 
inform regarding at-risk populations and, therefore, permit for more 
targeted NPIs. Whereas the data streams that we analyze do not 
capture important population dynamics, integrated spatial, temporal, 
and semantic analysis of web data (46) could give a more nuanced 
understanding of public reaction, such as estimating changes in the 
public emotional response to epidemics (47).

Using an exponential model to characterize the increase (and 
decrease) in activity of a COVID-19 proxy offers various advantages 
in event detection. Our current procedure is capable of estimating 
the value of  with a measure on the confidence that  > 0 or  < 0. 
In this work, we provide event dates based on a confidence of 95% 
(P value <0.05). The degree of confidence can be adjusted to pro-
vide earlier event dates (at the cost of less confidence and, con-
sequently, more frequent false positives). P values are combined 
into a single metric using a harmonic mean, but a more sensitive 
design may be realized by assuming independence between the 
proxies and using Fisher’s method. Although this would generally 
lead to a lower combined P value given decreases in any individual 
proxy P value (i.e., higher sensitivity), assuming independence would 
make such an approach prone to false positives (i.e., lower specificity) 
than the HMP, which does not depend on the assumption of inde-
pendence. The choice of method for combining proxy indicators 
requires a trade-off between specificity and sensitivity.

Our assumption that epidemic events exhibit exponential be-
havior within data stream time series has shown to be especially 
appropriate at early pandemic stages, particularly when locations 
have yet to experience their first outbreak or when post-outbreak 
disease activity has slowed and a pool of susceptible individuals 
remains. Other models may capture additional data nuances. For 
example, more linear increases or decreases or inflection points in 
proxies that, overall, are decreasing in activity are not captured in 
our current approach but could be included to potentially improve 
event detection. For example, multimodel event estimates could be 
produced and combined in an ensemble scheme.

Fig. 5. Predictive performance of our time-to-event estimation approach by time horizon on withheld data. We consider a success to be a high probability 
corresponding to the date when a confirmed event occurs. Predictive performance is defined as the fraction of confirmed case events our method predicts at a 
specific time horizon.



Kogan et al., Sci. Adv. 2021; 7 : eabd6989     5 March 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 15

The ability to detect future epidemic changes depends on the 
stability of historical patterns observed in multiple measures of 
COVID-19 activity. We posit that using multiple measures in our 
COVID-19 early warning system leads to improved performance 
and robustness to measure-specific flaws. The probabilistic frame-
work we developed (Fig. 4) also gives decision-makers the freedom 
to decide how conservative they want to be in interpreting and 
consolidating different measures of COVID-19 activity (e.g., by 
revising the P value required for event detection). Although we can 
expect COVID-19 activity to increase in the future, given continued 
opportunities for transmission, the human population in which 
said transmission occurs may not remain identical in terms of be-
havior, immune status, or risk. For example, death statistics in the 
early pandemic have been driven by disease activity in nursing 
homes and long-term care facilities (48), but the effect of future 
COVID-19 waves in these settings may be attenuated by better 
safeguards (e.g., vaccination) implemented after the first wave. 
Ultimately, to improve the performance of our event detection 
algorithm in forecasting future waves, our methodology requires the 
input of additional observed events over a longer time interval. This 
would also increase the performance and robustness of our analysis 
at an individual state level, for which there are currently relatively 
few observations. In the analysis we have presented, we make the 
assumption that states contribute equally to an ensemble multiproxy 
forecasting, but we also recognize that each state presents different 
behavior. It follows that as more state-specific data become available, 
future research should fine-tune how the changes of COVID-19 
activity are preceded by changes in the multiple proxies to improve 
location-specific predictive performance in methods like ours.

MATERIALS AND METHODS
For our study, we collected the following daily reported data 
streams: (i) official COVID-19 reports from three different organi-
zations; (ii) ILI cases, as reported weekly by the ILINet; (iii) 
COVID-19–related search term activity from UpToDate and Google 
Trends; (iv) Twitter microblogs; (v) fever incidence as recorded by 
a network of digital thermometers distributed by Kinsa; and (vi) human 
mobility data, as reported by Cuebiq and Apple.

COVID-19 case reports
Every state in the United States provides daily updates about its 
COVID-19 situation as a function of testing. Subject to state-to-
state and organizational variability in data collection, these reports 
include information about the daily number of positive, negative, 
pending, and total COVID-19 tests, hospitalizations, intensive care 
unit visits, and deaths. Daily efforts in collecting data by research 
and news organizations have resulted in several data networks, 
from which official health reports have been made available to the 
public. Three predominant data networks are the John Hopkins 
Resource Center, the COVID Tracking Project, and the New York 
Times Repository (1, 49, 50). We obtained daily COVID-19 testing 
summaries from all three repositories with the purpose of analyz-
ing the variability and quality in the data networks.

ILINet
ILIs are characterized by fever and either cough or sore throat. An 
overlap in symptoms of COVID-19 and ILI has been observed, 
and it has further been shown that ILI signals can be useful in the 

estimation of COVID-19 incidence when testing data are unavail-
able or unreliable (2).

ILINet is a sentinel system created and maintained by the 
U.S. CDC (51, 52) that aggregates information from clinicians’ 
reports on patients seeking medical attention for ILI symptoms. 
ILINet provides weekly estimates of ILI activity with a lag of 5 to 
12 days; because detailed delay information is unavailable, we arbi-
trarily apply a lag of 10 days throughout this work. At the national 
level, ILI activity is estimated via a population-weighted average of 
state-level ILI data. ILINet data are unavailable for Florida.

The CDC also releases data on laboratory test results for influ-
enza types A and B, shared by laboratories collaborating with the 
World Health Organization (WHO) and the National Respiratory 
and Enteric Virus Surveillance System (NREVSS). Both ILI activity 
and virology data are available from the CDC FluView dash-
board (51).

We followed the methodology of Lu et al. (2) to estimate unusual 
ILI activity, a potential signal of an emerging outbreak such as 
COVID-19. In particular, we used the divergence-based methods, 
which treat COVID-19 as an intervention and try to measure the 
impact of COVID-19 on ILI activity by constructing two control 
time series representing the counterfactual 2019–2020 influenza 
season had the COVID-19 outbreak not occurred.

The first control time series is based on an epidemiological 
model, specifically the Incidence Decay and Exponential Adjust-
ment (IDEA) model (53). IDEA models disease prevalence over 
time while accounting for factors such as control activities that may 
dampen the spread of a disease. The model is written as follows

	​ I(t ) = ​​(​​ ​  ​R​ 0​​ ─ 
​(1 + d)​​ t​

 ​​)​​​​ 
t

​​	 (1)

where I(t) represents the incident case count at serial interval time 
step t. R0 represents the basic reproduction number, and d is a dis-
count factor modeling reductions in the effective reproduction 
number over time.

In line with the approach of Lu et al. (2), we fit the IDEA model 
to ILI case counts from the start of the 2019–2020 flu season to the 
last week of February 2020, where the start of flu season is defined 
as the first occurrence of two consecutive weeks with an ILI activity 
above 2%. The serial interval used was half a week, consistent with 
the influenza serial interval estimates from (54).

The second control time series used the CDC’s virological influ-
enza surveillance data. For any week t, the following was computed

	​​ F​ t​​  = ​  
​F​t​ 

+​ · ​I​ t​​ ─ ​N​ t​​
  ​​	 (2)

where ​​F​t​ 
+​​, Nt, It, and Ft denote positive flu tests, total specimens, ILI 

visit counts, and the true underlying flu counts, respectively. 
This can be interpreted as the extrapolation of the positive test 
percentage to all patients with ILI. Least squares regression (fit on 
pre–COVID-19 data) is then used to map Ft to an estimate of 
ILI activity.

The differences between the observed ILI activity time series 
and these counterfactual control time series can then be used as 
signals of COVID-19 activity. In particular, we used the difference 
between observed ILI activity and the virology-based counterfac-
tual control time series to produce excess ILI. The Supplementary 
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Materials show excess ILI computed using both the virology time 
series and IDEA model–based counterfactuals for all states.

UpToDate trends
UpToDate is a private-access search database, part of Wolters Kluwer, 
Health, with clinical knowledge about diseases and their treatments. 
It is used by physicians around the world and most academic med-
ical centers in the United States as a clinical decision support re-
source given the stringent standards on information within the 
database (in comparison to Google Trends, information provided 
within the database is heavily edited and authored by experienced 
clinicians) (19).

Recently, UpToDate has made available a visualization tool 
on their website in which they compare their search volumes of 
COVID-19–related terms to John Hopkins University official health 
reports (55). The visualization shows that UpToDate trends may 
have the potential to track confirmed cases of COVID-19. From 
this tool, we obtained UpToDate’s COVID-19–related search fre-
quencies for every U.S. state. These search frequencies consist only 
of one time series described as “normalized search intensity” for 
selected COVID-19–related terms, where normalization is calculated 
as the total number of COVID-19–related search terms divided by 
the total number of searches within a location. At the time of analysis, 
the website visualization appeared to update with a 3-day delay; 
however, UpToDate is since operationally capable of producing 
time series with delays of 1 day. More details are available at https://
covid19map.uptodate.com/.

Google Trends
Google Search volumes have been shown to track successfully with 
various diseases such as influenza (18, 56), dengue (57), and Zika 
(17, 58), among others (59). In recent months, Google has even 
created a “Coronavirus Search Trends” (60) page that tracks trending 
pandemic-related searches. We obtained such daily COVID-19–
related search trends through the Google Trends Application Pro-
gramming Interface (API). The original search terms queried using 
the Google Trends API were composed of the following: (i) official 
symptoms of COVID-19, as reported by the WHO; (ii) a list of 
COVID-19–related terms shown to have the potential to track 
confirmed cases (33); and (iii) a list of search terms previously used 
to successfully track ILI activity (18). The list of terms can be seen 
in Box 1. For purposes of the analysis, we narrowed down the list 
of Google Search terms to those we felt to be most representative of 
the pandemic to date: “fever,” “covid,” and “quarantine.” Given that 
lexicon is naturally subject to change as the pandemic progresses, 
however, other terms, especially more obscure terms that may be 
less liable to media bias, may become more suitable downstream.

Twitter API
We developed a geocrawler software to collect as much georeferenced 
social media data as possible in a reasonable time. This software 
requests data from Twitter’s APIs. Twitter provides two types of APIs 
to collect tweets: REST (representational state transfer) and stream-
ing (61). The REST API offers various end points to use Twitter 
functionalities, including the “search/tweets” end point that en-
ables, with limitations, the collection of tweets from the last 7 days. 
These limitations complicate the collection process, necessitating a 
complementary strategy to manage the fast-moving time window 
of the API to harvest all offered tweets with a minimal number of 

requests. In contrast, the streaming API provides a real-time data 
stream that can be filtered using multiple parameters. Our software 
focuses on requesting tweets featuring location information either 
as a point coordinate from the positioning device of the mobile de-
vice used for tweeting or a rectangular outline based on a geocoded 
place name, using APIs. The combination of APIs makes crawling 
robust against interruptions or backend issues that would lead to 
missing data. For example, if data from the streaming API cannot 
be stored in time, the missing data can be retrieved via the redun-
dant REST API.

All collected tweets are located within the United States. To limit 
the dataset to COVID-19–relevant tweets, we performed simple 
keyword-based filtering using the keywords listed in Box 2. This 
method was chosen for reasons of performance, delivery of results 
in near real time, and its simplicity. While a machine learning-
based semantic clustering method such as guided latent Dirichlet 
allocation may deliver more comprehensive results [e.g., through 
identifying co-occurring and unknown terms (62)], controlling the 
ratio between false positives and false negatives requires extensive 
experimental work and expert knowledge.

Kinsa smart thermometer data
County-level estimates of U.S. fever incidence are provided by 
Kinsa Insights using data from a network of volunteers who have 
agreed to regularly record and share their temperatures (https://
healthweather.us/). Estimates from past years have been shown to 
correlate closely with reported ILI incidence from the U.S. CDC 
across regions and age groups (31). Such historical data, coupled 
with county-specific characteristics (e.g., climate and population 
size), are used to establish the “expected,” or forecast, number of 
fevers as a function of time (31, 63). An “excess fevers” time series 
presumed to represent COVID-19 cases is approximated as the 

Box 1. Search term list for Google Trends.
anosmia, chest pain, chest tightness, cold, cold symptoms, cold with 
fever, contagious flu, cough, cough and fever, cough fever, covid, covid 
nhs, covid symptoms, covid-19, covid-19 who, dry cough, feeling 
exhausted, feeling tired, fever, fever cough, flu and bronchitis, flu 
complications, how long are you contagious, how long does covid last, 
how to get over the flu, how to get rid of flu, how to get rid of the flu, 
how to reduce fever, influenza, influenza b symptoms, isolation, joints 
aching, loss of smell, loss smell, loss taste, nose bleed, oseltamivir, 
painful cough, pneumonia, pneumonia, pregnant and have the flu, 
quarantine, remedies for the flu, respiratory flu, robitussin, robitussin cf., 
robitussin cough, rsv, runny nose, sars-cov 2, sars-cov-2, sore throat, stay 
home, strep, strep throat, symptoms of bronchitis, symptoms of flu, 
symptoms of influenza, symptoms of influenza b, symptoms of 
pneumonia, symptoms of rsv, tamiflu dosage, tamiflu dose, tamiflu drug, 
tamiflu generic, tamiflu side effects, tamiflu suspension, tamiflu while 
pregnant, tamiflu wiki, and tessalon.

Box 2. Search term list for Twitter.
covid, corona, epidemic, flu, influenza, face mask, spread, virus, infection, 
fever, panic buying, state of emergency, masks, quarantine, sars, and 
2019-ncov.

https://covid19map.uptodate.com/
https://covid19map.uptodate.com/
https://healthweather.us/
https://healthweather.us/
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difference between the observed fever incidence and the forecast, 
with values truncated at zero so that negative excess fevers are not 
possible. County-level data are aggregated up to the state level by a 
population-weighted average. A limitation of tracking febrility as 
a proxy for COVID-19 is that it is not a symptom exclusive to 
COVID-19, nor is it present in all patients with COVID-19. In a 
study with more than 5000 patients from NY who were hospitalized 
with COVID-19, only 30% presented with fever (>100.4°F/38°C) 
at triage (64).

Cuebiq mobility index
Data are provided by the location analytics company Cuebiq, which 
collects first-party location information from smartphone users who 
opted to anonymously provide their data through a General Data 
Protection Regulation–compliant framework. Cuebiq further ano-
nymizes and then aggregates location data into an index, M, defined 
as the base-10 logarithm of median distance traveled per user per 
day; “distance” is measured as the diagonal distance across a bound-
ing box that contains all GPS (Global Positioning System) points 
recorded for a particular user on a particular day. A county index of 
3.0, for example, indicates that a median county user has traveled 
1000 m. We were provided with county-level data, derived from 
these privacy-preserving steps, which we then aggregated up to the 
state level by a population-weighted average.

Apple mobility
Apple mobility data are generated by counting the number of re-
quests made to Apple Maps for directions in select countries, re-
gions, subregions, and cities. Data that are sent from users’ devices 
to the Maps service is associated with random, rotating identifiers 
so Apple does not have a profile of users’ movements and searches. 
The availability of data in a particular country, region, subregion, 
or city is based on a number of factors, including minimum thresholds 
for direction requests per day. Note that some data from late April 
to early May are unavailable and are represented as a white gap in 
plots of this data stream. More details are available at www.apple.
com/covid19/mobility.

Global epidemic and mobility model
GLEAM is a spatially structured epidemic model that integrates 
population and mobility data with an individual-based stochastic 
infectious disease dynamic to track the global spread of a disease 
(65–68). The model divides the world into more than 3200 subpopulations, 
with mobility data between subpopulations including air travel and 
commuting behavior. Air travel data are obtained from origin-
destination traffic flows from the Official Aviation Guide and 
International Air Transport Association databases (69, 70), while 
short-range mobility flows such as commuting behavior are derived 
from the analysis and modeling of data collected from the statistics 
offices for 30 countries on five continents (66). Infectious disease dy-
namics are modeled within each subpopulation using a compartmental 
representation of the disease where each individual can occupy a single 
disease state: susceptible (S), latent (L), infectious (I), and removed 
(R). The infection process is modeled by using age-stratified contact 
patterns at the state level (71). These contact patterns incorporate 
interactions that occur in four settings: school, household, work-
place, and the general community. Latent individuals progress to 
the infectious stage with a rate inversely proportional to the latent 
period. Infectious individuals progress into the removed stage with 

a rate inversely proportional to the infectious period. The sum of the 
average latent and infectious periods defines the generation time. 
Removed individuals represent those who can no longer infect others, 
as they were isolated, were hospitalized, have died, or have recov-
ered. To take into account mitigation policies adopted widely across 
the United States, we incorporated a reduction in contacts in the 
school, workplace, and community settings (which is reflected in the 
contact matrices used for each state). Details on the timeline of spe-
cific mitigation policies implemented are described in (72). A full 
discussion of the model for COVID-19 is reported in (65).

Growth and decay event detection
We estimate the probability of exponential growth in a time series 
that features uncertain error variance using a simple Bayesian method. 
We model a proxy time series as following an exponential curve

	​ y(t ) =  exp ((t − ​t​ o​​ ) ) + ϵ(t)​	 (3)

over successive 14-day intervals. Before inference, proxies are nor-
malized, then adjusted to have a common minimum value of 1. The 
error, ϵ, is assumed Gaussian with zero mean and having an SD of . 
We assess the probability that  is greater than zero over each suc-
cessive window. The joint distribution of  and , conditional on , 
is proportional to p(y, ∣, ) × p() × p(). Prior distributions, p() 
and p(), are specified as uniform and uninformative, and samples 
are obtained using the Metropolis-Hastings algorithm (73) with 5 × 
103 posterior draws. The first 500 samples are discarded to remove 
the influence of initial parameter values, and to reduce autocorrelation 
between draws, only every fifth sample is retained. The conditional 
posterior distribution for  is inverse-Gamma and is obtained using 
Gibbs sampling (74, 75)

	​​ p(∣y, ,  ) ∼ ​ ​​ −1​​(​​ ​ N ─ 2 ​ + ​​ 1​​, ​​ 2​​ + ​ 
​∑ i=1​ N  ​​ ​ϵ​​ 2​

 ─ 2 ​​ )​​​​	 (4)

where −1 is the inverse-Gamma distribution, y is the vector of 
observations, and N is the number of observations. Terms 1 and 
2 are, respectively, specified to equal 4 and 1. On any given day, a 
P value for rejecting the null hypothesis of no exponential growth 
is obtained as one minus the fraction of posterior draws with  > 0. 
The procedure is repeated on successive days to obtain a time 
series of P values.

Our current approach has some important limitations. The mean 
value in a time series is not inferred, and a highly simplified treatment 
of errors neglects the possibility of autocorrelation and hetero-
scedasticity. A more complete treatment might use a more sophisti-
cated sampling strategy and jointly infer (rather than impose) a mean 
proxy value, nonzero error mean, error autoregressive parameter(s), 
and heteroscedasticity across each 14-day window.

Multiproxy P value
P values estimated across multiple proxies are combined into a single 
metric representing the family-wise probability that  ≤ 0. Because 
proxies cannot be assumed independent, we use the HMP (41)

	​​ p​​ ∘ ​  = ​ 
​∑ i=0​ k  ​​ ​w​ i​​ ─ 

​∑ i=0​ k  ​​ ​w​ i​​ ​p​i​ 
−1​

 ​​	 (5)

http://www.apple.com/covid19/mobility
http://www.apple.com/covid19/mobility
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where wi are weights that sum to 1 and, for the purposes of our anal-
yses, are treated as equal. Excess ILI, confirmed cases, and deaths 
were excluded from the harmonic mean because those time series 
contain the events that the algorithm is attempting to predict. Cuebiq 
and Apple mobility time series were also excluded because they are 
not proxies for COVID-19 activity but rather causal effects with 
long lead times.

As P values of zero may be recorded because of a finite number 
of samples being drawn in our Monte Carlo approach, we have im-
posed a lower limit of 0.02 on the possible values that individual 
proxy P values may take during calculation of the harmonic mean to 
avoid the harmonic P value event to be triggered by a single proxy.

Predicting false-positive and false-negative rates 
for uptrend and downtrend events
As a way to quantify the performance of digital data streams as early 
indicators of COVID-19 activity, we performed a TPR and false-
positive rate analysis for each over the following events: (i) If the 
event detection activates an alarm for a proxy and a subsequent acti-
vation of a gold standard is observed within a 30-day time window 
(given that a proxy may present several dates in which its P value 
crosses the threshold for an event within a period of time before an 
opposite event happening, only the first activations were counted 
for the test), we classified the event as a true positive; (ii) if the event 
detection mechanism classified an event for a gold standard and no 
proxy was observed within a 30-day time window in the past, then 
we considered that event as a false negative for the proxy; and (iii) 
a false positive is considered as an event when a proxy activates but 
no subsequent gold standard event is observed within the 30-day 
time window. TPR and false-positive rate analyses were calculated 
using the standard formulas for sensitivity (TP/[TP + FN]) and 
precision (TP/[TP + FP]). We included data from 1 February to 
30 September 2020 for this procedure to account for early activations 
before the first observed outbreak of the pandemic.

Time-to-event estimation
A time–to–outbreak event estimation strategy can be formulated 
to provide probability estimates for when the next outbreak will 
occur given early indicators. We propose a strategy based on the 
timing of detected events among input data sources with respect to 
the eventual COVID-19 outbreak event in each state, as defined in 
the preceding section. We first modeled the behavior of the data 
sources in each state as a function of the state’s underlying COVID-19 
case trajectory over the time period studied. Specifically, we modeled 
the detected events in each data source as conditionally indepen-
dent given the state-level latent COVID-19 dynamics. This follows 
from the assumption that exponential behavior in each data source 
is a causal effect of a COVID-19 outbreak and that other correla-
tions unrelated to COVID-19 are mostly minor in comparison.

The time intervals between each event and the eventual outbreak 
event were then pooled across states to form an empirical conditional 
distribution for each dataset. Since observations were sparse rela-
tive to the time window, we used kernel density estimation with 
Gaussian kernels to smooth the empirical distributions, where 
bandwidth selection for the kernel density estimation was per-
formed using Scott’s rule (76).

Thus, for any given dataset, a detected event implies a distribu-
tion of likely timings for the COVID-19 outbreak event. We define 
xit as the number of days since an uptrend event for signal i where 

t is the current date. Within a state, the relative intervals of the events 
for each data source xit specify a posterior distribution over the 
probability of a COVID-19 event in y days from current date t

	​ p(y∣ ​x​ 1t​​, … ,  ​x​ nt​​ ) ∝ p(y ) ​∏ 
i=1

​ 
n
  ​​p( ​x​ it​​∣y)​	 (6)

where we decomposed the joint likelihood

	​ p( ​x​ 1t​​, … ,  ​x​ nt​​∣y ) = ​∏ 
i=1

​ 
n
  ​​p( ​x​ it​​∣y)​	 (7)

using conditional independence.
A uniform prior p(y) over the entire range of possible delays (a 

period of 180 days) was assumed, and additive smoothing was used 
when combining the probabilities. Because we modeled y at the 
daily level, the distributions are discrete, allowing evaluation of the 
posterior likelihood explicitly using marginalization. This process 
was repeated for each state. Such an approach can be viewed as 
pooling predictions from a set of “experts” when they have condi-
tionally independent likelihoods given the truth (77), with each 
expert corresponding to a data source. We note as a limitation that 
the assumption of conditionally independent expert likelihoods given 
the truth is unlikely to hold perfectly as, for example, an increase in 
measured fevers could be correlated with an increase in fever-
related Google searches even when the underlying COVID-19 
infection dynamics are similar. Such dependencies may manifest 
heterogeneously as correlations among locations with similar 
COVID-19 outbreak timings but are likely to be small since most 
of our inputs represent disparate data sources. When no event is 
detected for a data source, that data source’s expert’s prediction is 
zero across all possible timings, which translates with smoothing 
to a uniform distribution.

Time-to-event prediction and validation
As the pandemic progressed, the emergence of uptrends and down-
trends in COVID-19 gold standards, specifically confirmed cases, 
meant that we were able to validate our time-to-event estimation 
approach as well. We trained our approach on data during time 
period 1 (1 March to 31 May 2020) and tested our approach on 
data from time period 2 (1 June to 30 September 2020). Figure 5 
shows the predictive performance of our approach by time horizon. 
We consider a success to be a high probability corresponding to 
the date when a confirmed case event occurred. High probability is 
defined as a probability exceeding that associated with a uniform 
distribution over the date range of interest. The threshold set by 
the uniform distribution is exceeded once probability becomes 
concentrated over a subset of the dates in the considered interval, 
and, by extension, probabilities for other dates will grow smaller 
than the threshold. We note that other choices of thresholds are 
possible depending on the deployment context. Predictive perform
ance here is defined as the fraction of confirmed cases events our 
method was able to predict at a specific time horizon. As expected, 
predictive performance improves as we get closer to the date of an 
event of interest.

SUPPLEMENTARY MATERIALS
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