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Abstract

The brain is composed of many functionally distinct areas. This organization supports distributed 

processing, and requires the coordination of signals across areas. Our understanding of how 

populations of neurons in different areas interact with each other is still in its infancy. As the 

availability of recordings from large populations of neurons across multiple brain areas increases, 

so does the need for statistical methods that are well suited for dissecting and interrogating these 

recordings. Here we review multivariate statistical methods that have been, or could be, applied to 

this class of recordings. By leveraging population responses, these methods can provide a rich 

description of interareal interactions. At the same time, these methods can introduce 

interpretational challenges. We thus conclude by discussing how to interpret the outputs of these 

methods to further our understanding of inter-areal interactions.

For more than a century, we have known that different parts of the brain carry out different 

functions. Functional networks process information in stages, exchanging signals and 

influencing one another, depending on the desired behavior. The flexibility with which 

different areas can be recruited is likely intimately related to our ability to respond flexibly 

to the world around us. However, most of our progress in understanding brain function has 
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focused on how each area behaves in isolation, with little regard for how the outputs of each 

area are related to the computations performed by neighboring areas.

Understanding how different brain areas work together requires simultaneously observing 

activity across multiple interacting populations of neurons. Developments in neural 

recording technologies are making it increasingly common to monitor the activity of many 

neurons in two or more brain areas simultaneously, and the number of research groups 

performing multi-area recordings is likely to grow rapidly in the coming years [1,2]. This is 

an exciting time for the field, but a key challenge lies in how best to leverage these 

recordings to understand how the interaction between brain areas enables sensory, cognitive, 

and motor function [3].

Early efforts to understand how brain areas interact with one another focused on the 

anatomy of inter-areal projections [4–6]. While anatomy provides the scaffolding by which 

different areas coordinate their activity, the flexibility with which the brain can respond to 

identical stimuli depending on context suggests it is only part of the story. Anatomy is the 

wiring, but it does not tell us what information is conveyed on those wires or when that 

information is being conveyed.

To date, most functional studies of inter-areal interactions have considered a single variable 

(e.g., activity of one neuron, or LFP power in a particular frequency band) in each area at a 

time. These variables can be related across areas using pairwise metrics such as coherence 

[7–11], pairwise correlation [12–20], and directed information [21–23], or multi-area 

approaches, such as dynamic causal modeling for fMRI [24,25•]. These approaches 

(typically one variable per area) have provided important insights into which areas are 

interacting at any given time, and how these interactions depend on task demands. Pairwise 

metrics have also been used to propose mechanisms by which inter-areal communication can 

be gated [26]. However, since they usually consider a single global statistic in each area, 

they cannot, by definition, reveal which aspects of the population activity in one area are 

relayed to another. Since sensory encoding and neuronal computation are believed to be 

mediated by neuronal populations, it is then difficult for univariate methods to elucidate 

what aspects of a stimulus, or outputs of a computation, are relayed across interacting 

populations.

More recently, as a result of the increasing availability of multi-area neuronal population 

recordings, studies have begun to investigate the relationship between multiple 

variables(e.g., spike trains recorded from multiple neurons) in each area [18,27–

29,30••,31••,32••,33••]. This endeavour involves multivariate statistical methods — such as 

multivariate linear regression, canonical correlation analysis (CCA), and their variants. 

These multivariate methods not only provide insight into which areas are communicating at 

any given moment (when used in the same way as the univariate methods above), they can 

also elucidate what aspects of activity are related across areas. We will begin by introducing 

multivariate statistical methods that can be used to analyze multi-area population recordings. 

We then describe how they can be leveraged to provide a rich description of inter-areal 

interactions. Finally, we discuss several considerations one should take into account when 

interpreting the outputs of these methods.
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Studying population interactions between brain areas

For simplicity, we focus on a scenario with two interacting populations. Furthermore, 

although we speak in terms of spiking activity in multiple areas, these methods can also be 

used to study interactions between any distinct populations (e.g., neurons in different layers 

or different neuron types) and with other recording modalities (e.g., calcium imaging).

Static methods

Suppose that we wish to study the interaction between two areas, which we term the ‘source 

area’ and ‘target area’. The activity in the source population can be represented in a high-

dimensional space, where each axis corresponds to the activity of one neuron (Figure 1 a). 

To gain intuition, we start by considering the activity of a single target neuron, recorded 

simultaneously with the neurons in the source population. In particular, we want to 

understand how the activity in the source population relates to the activity of this target 

neuron. One of the simplest approaches to relate the activity in the two areas is to use a 

linear combination of the activity of the source neurons to predict the activity of the target 

neuron, that is, to perform linear regression (LR; Figure 2 a):

y = w1x1 + w2x2 + w3x3

where y is the activity of the target neuron, x1, x2 and x3 the activity of each source neuron, 

and w1, w2 and w3 the regression weights. The regression weights define a dimension 

(termed a regression dimension; black line in Figure 1a) in the source population activity 

space. This dimension represents a population activity pattern: activity along this dimension 

(i.e., activity that matches this pattern of covariation) is most predictive of the target 

neuron’s activity (color of dots is ordered along black line in Figure 1a).

For a population of target neurons, using LR requires repeating the same process multiple 

times, independently for each target neuron. The output of this approach is thus a collection 

of the source activity patterns that are most predictive of the target population activity 

(Figure 1b). Understanding how these activity patterns are oriented relative to the multi-

dimensional structure of the source population activity can yield important insights into what 

components of the source activity are reflected in the target area. For example, multiple 

stimulus features might be encoded in the source population. Inspecting how the stimulus 

encoding is related to the regression dimensions can provide insight into what stimulus 

features are being relayed to the target area.

When applied to large source and target populations, LR requires the estimation of a large 

number of weights (e.g., hundreds of regression dimensions, each comprising weights 

corresponding to hundreds of source neurons.) This affects both our ability to reliably 

identify these weights (due to overfitting), as well as our ability to interpret them.

One way to simultaneously reduce overfitting, and extract a more parsimonious description 

of interareal interactions, is to use dimensionality reduction methods to summarize high-

dimensional population activity with a smaller number of latent variables. Dimensionality 
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reduction methods have been used in many single-area studies (see [34] for a review), and 

are now being used to study inter-areal interactions [30••,31••,32••,33••,35,36,37•,38••].

Latent variables in the source area can be identified via commonly-used dimensionality 

reduction methods, such as principal component analysis (PCA) or factor analysis (FA). 

Each latent variable represents a dimension, or activity pattern, in the source population 

activity space (blue plane in Figure 1c). These latent variables can then be regressed with the 

activity of each neuron in the target area, leading to principal component regression (PCR) 

and factor regression (FR), respectively (Figure 2b). Box 1 highlights three recent studies 

that leveraged PCR and FR to study inter-areal interactions.

The benefits of PCR and FR relative to standard LR are twofold. First, since the number of 

latent variables is typically far smaller than the number of source neurons [34,39], PCR and 

FR define a more concise relationship between the two areas and are, therefore, more 

interpretable. Second, since the regression dimensions must lie in a subspace of the source 

activity with high variance (or covariance), the regression weights can be identified more 

reliably. However, since PCR and FR identify latent variables using only activity within the 

source area (Figure 1c), it is possible for some source activity patterns that are predictive of 

the target activity to be left out during the dimensionality reduction stage. Figure 1c 

illustrates such a scenario, where using only the top two principal components does not 

allow us to accurately predict the activity of target neuron 1.

Another approach to extracting a parsimonious description of population interactions is to 

explicitly consider the regression dimensions when performing dimensionality reduction. In 

particular, it is possible that the collection of regression dimensions is confined to a subspace 

of the source population activity. If that is the case, we can summarize the regression 

dimensions using a smaller number of dimensions of population activity, termed predictive 

dimensions (Figure 1d). Methods that simultaneously perform dimensionality reduction and 

relate activity across areas include reduced-rank regression [40] (RRR; Figure 2c), canonical 

correlation analysis [41] (CCA; Figure 2d), and partial least squares [42] (PLS; Figure 2d). 

These methods have been used to relate activity across areas [31••,32••,36,37•,38••], to 

extract informative projections of source population activity [43,44], and to align 

multivariate activity across different conditions [45,46]. Box 1 highlights two recent studies 

that leveraged RRR and CCA to study inter-areal interactions.

Whether inter-areal interactions can be well described using a small number of predictive 

dimensions can have important functional consequences: if all regression dimensions lie in a 

subspace of the source population activity, a ‘communication subspace’, only activity within 

this subspace is relevant for predicting target activity [31••]. In particular, activity outside of 

this subspace remains private to the source population. This structure could thus be used to 

gate which patterns of source population activity are relayed to the target area, and which 

ones are not [31••,35]. This ‘null space’ concept has been proposed to allow neural activity 

to unfold without driving downstream activity [30••,31••,47] or movement [35,48–50].

Like PCR and FR, RRR reduces the source activity into a smaller number of latent variables 

(Figure 2c). In contrast to PCR and FR, RRR identifies latent variables that are most 
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predictive of the target population activity. Because of this difference, RRR might find 

dimensions in the source population that capture a small amount of variance in the source 

activity (compare source variance explained in Figure 1c versus Figure 1d). If this were the 

case, it would imply that the largest activity fluctuations in the source area are not those 

most related to activity in the target area.

Whereas RRR treats the source and target populations asymmetrically (i.e., it seeks to 

explain the target activity using the source activity; Figure 2c), CCA and PLS treat the two 

populations symmetrically (Figure 2d). CCA identifies pairs of dimensions, one in each 

area, that explain the greatest correlation between the two populations. These dimensions 

represent an activity pattern across source neurons and an activity pattern across target 

neurons. PLS is similar to CCA, but identifies components that explain the greatest 

covariance between the two populations. No rule dictates which method returns a more 

meaningful description of inter-areal interactions. For example, CCA might find dimensions 

that are highly correlated across areas, but capture little variance in each area. In other 

words, only a small fraction of the activity in each area is related across areas. On the other 

hand, PLS might find dimensions that account for high variance within each area, but are 

weakly correlated across areas.

The methods discussed so far are linear, and hence cannot identify nonlinear interactions. 

Several extensions have been proposed to detect nonlinear interactions. Kernel CCA (kCCA) 

[51] and deep network-based methods (e.g., deep CCA[52]) can be used to capture nonlinear 

transformations of activity across areas. These nonlinear methods can provide more accurate 

predictions than linear methods but tend to be less interpretable, as the nonlinear 

transformation combines activity across neurons in complex ways. Distance covariance 

analysis (DCA) [53] offers a compromise: it is able to detect nonlinear interactions between 

areas, yet returns a set of linear dimensions in each area along which these interactions 

occur, similar to CCA.

Time-series methods

The approaches described above are static in nature: they treat each time point in the 

recorded activity as independent, and do not explicitly consider the flow of time. However, 

the activity in a target area likely does not depend solely on the activity of the source area at 

one point in time, but on the history of activity in the source area as well as its own history. 

Furthermore, two areas might also be reciprocally connected, so that the activity relayed 

from the source to the target area might be transformed and relayed back, in turn influencing 

the source area.

A simple approach to studying time dependencies in inter-areal interactions is to apply the 

static methods described above while considering a time shift between the activity in the 

source and target areas. For example, applying the multivariate methods described above to 

activity that has been shifted in time between areas (with positive and negative time shifts) 

might provide insight into the aspects of activity most involved in feedforward and feedback 

interactions.
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Linear auto-regressive models extend this idea by using linear regression to predict activity 

in a target area using source area activity with multiple time delays. This approach forms the 

basis of Granger causal modeling [21,54,55], which tests whether the past activity of a 

source area linearly predicts the present activity in a target area, above the predictability 

afforded by the past activity in the target area itself. These auto-regressive methods have also 

been extended to capture nonlinear interaction effects. For example, introducing a fixed non-

linearity to the output of the linear model results in a generalized linear model (GLM), 

which has been used extensively to study neuronal activity (Figure 2a) [27,30••,56].

While potentially more powerful than static methods like LR, these approaches often involve 

models with a large number of parameters. This property can make them more prone to 

overfitting and hamper interpretability. For example, the linear auto-regressive model 

involves one set of regression parameters per time point into the past, resulting in one 

regression dimension per target neuron per time point. The large number of parameters is not 

usually an issue for inferring the presence or absence of statistical dependencies between the 

activity in different brain areas, such as in Granger causal modeling or directed information 

based approaches. However, it hinders our ability to decon-struct the fitted models with the 

objective of understanding what aspects of the source activity accounted for any observed 

dependency.

To address these challenges, dimensionality reduction methods have been proposed that 

capture the temporal dependencies between areas using latent variables. Examples include 

group Latent Auto-Regressive Analysis (gLARA) [57], Delayed Latents Across Groups 

(DLAG) (Gokcen et al., abstract T-27, Computational and Systems Neuroscience (Cosyne) 

Conference, Denver, CO, February 2020) and Dynamic CCA (DCCA) [58]. All of these 

methods share a similar framework: latent variables are used to summarize the population 

activity within each area and/or shared across areas. A state (i.e., dynamics) model describes 

how the latent variables change over time and interact with other latent variables. An 

observation model describes how the recorded population activity relates to the latent 

variables.

Interpretational Challenges and Considerations

By leveraging neuronal population responses, multivariate methods can be powerful tools 

for understanding inter-areal interaction. But they also introduce several interpretational 

challenges, particularly when not all relevant brain areas or neurons are recorded (Figure 3 

a). Thus, care should be taken when interpreting what the outputs of these methods imply 

about interactions between brain areas [25•]. Below we outline three such challenges.

Changes within an area can masquerade as changes in inter-areal interactions

Suppose we record from two brain areas, A and B. One might ask whether the interaction 

between areas A and B has changed — between, for example, two points in time or two 

experimental conditions. A straightforward approach to address this question might be to 

look for changes in the pairwise correlation between neurons in the two areas. However, 

changes in across-area correlation can either be due to a change in across-area interaction or 

some other change that is independent of the across-area interaction. For example, an 
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increase in independent input to one area might lead to a decrease in across-area correlation 

(because of increased variance; Figure 3b), even though the interaction between areas 

remains fixed.

One can construct examples where multivariate methods similarly detect spurious changes in 

inter-areal interaction. As a result, interpreting changes in the way brain areas interact 

requires one to carefully consider the method used to summarize the interactions (e.g., 

pairwise correlations, CCA, etc.), as well as to apply a clear definition of what should, and 

should not, be considered a change in interaction structure. For example, if approximating an 

interaction using a linear model, one might define a change in inter-areal interaction as a 

change in the matrix that maps source to target activity. Using these definitions, one can 

create a null model, and generate surrogate data that matches the observed recordings as 

well as possible [48], but for which there is no change in the interaction structure (e.g., the 

mapping matrix is held fixed) [31••]. One can then assess whether the statistical method 

used still detects a change in interaction structure in this instance. If so, one should carefully 

reevaluate the effects found in the neuronal recordings.

Regression weights do not reflect synaptic weights

For the methods described above, one may be tempted to relate the estimated weights of 

each source neuron to its functional properties (e.g., tuning). However, this endeavor can be 

dangerous: the weight for each source neuron can depend on which other source neurons are 

included in the analysis. For example, consider using five source neurons to predict the 

activity of a target neuron (Figure 3c). The regression procedure returns a set of weights. 

When the regression is re-performed using only three neurons, the regression weights for 

those neurons can change drastically. This phenomenon is relevant to most experimental 

settings, since we are only able to monitor a subset of neurons providing input to the target 

area. For these reasons, it is often safer to interpret instead the predicted target activity 

returned by the regression, the rank of the interaction, or how the identified predictive 

dimensions are related to the structure of the source population activity [31••,33••,35].

Orthogonal does not mean uncorrelated

Suppose one identifies a dimension of interest within a population activity space (Figure 3d, 

left). Projections of population activity onto this dimension (z1) could be predictive of, for 

example, an external variable [33••,35,43,48,59] or activity in another area [30••,31••,32••]. 

If we interpret this projection as a linear readout by downstream neurons, then population 

activity that lies in orthogonal dimensions will not be read out by downstream neurons (such 

activity lies in the ‘null space’ of the readout). Hence, orthogonal dimensions describe a 

means by which populations of neurons can compartmentalize information 

[30••,31••,32••,35,47–50,59–67].

Given this property, orthogonal dimensions would seem like a useful tool for statistically 

partitioning population activity: after identifying a dimension z1, activity that is unrelated to 

projections onto z1 could be identified using orthogonal dimensions (z2). Perhaps 

counterintuitively, activity along orthogonal dimensions might still be highly correlated with 

activity along the original dimension (Figure 3d, upper right). As a result, activity along z2 is 
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still predictive of the target variable (color is still ordered; see right inset). Thus, orthogonal 

does not mean uncorrelated.

To find uncorrelated dimensions (z3), where projections of population activity are 

uncorrelated to those along z1, one would need to compute them using the covariance of 

(source) population activity [31••] (Figure 3d, lower right). Activity along z3 is not 

predictive of the target variable (color is not ordered; see right inset). Whether or not a pair 

of dimensions is uncorrelated depends on the distribution of activity in the (source) 

population activity space. In contrast, whether or not a pair of dimensions is orthogonal is a 

purely geometric notion, independent of activity. Dimensions that are both orthogonal and 

uncorrelated are a special case — these dimensions are the principal components of the 

(source) population activity.

Discussion

As population recordings in multiple brain areas are becoming increasingly common, the 

need for statistical methods that can dissect interactions between brain areas is ever 

increasing. Although the methods reviewed here have yielded new scientific insight, there 

remain opportunities and challenges for further methods development. First, there is a need 

for methods that can uncover the intricate temporal relationships between areas (which arise 

from spike conduction delays, recurrent interactions, indirect pathways, etc.), yet remain 

interpretable. Second, the methods described here aim to capture interactions across areas, 

while remaining indifferent to experimental variables of interest (e.g., stimulus, choice, 

motor output, etc.). Inter-areal activity patterns are then related to these experimental 

variables after the fact. To aid interpretation, future methods might leverage all information 

jointly, for example segregating which aspects of a sensory stimulus are shared across areas 

and which ones are not. Third, as the number of brain areas that can be simultaneously 

monitored increases [37•,68,69], there is a need for methods that can interrogate the 

interaction of more than two brain areas. Although some existing methods have natural 

extensions to three brain areas or more, the number of possible models that need to be 

compared can grow exponentially with the number of areas. Thus, we need ways to guide 

model selection. Finally, although we have focused on scenarios in which we know the brain 

area that each neuron belongs to, there are settings in which the functional groupings of 

neurons are less clear. There is a need for methods that can identify functional groupings 

among neurons based on their interactions [70,71]. Taken together, the development of new 

methods is likely to enable new and deeper insights into how brain areas work together to 

enable sensory, cognitive, and motor function.

Acknowledgements

We thank A. Jasper and T. Verstynen for valuable discussions. This work was supported by Simons Collaboration 
on the Global Brain 543009 (C.K.M.), 542999 (A.K.), 543065 (B.M.Y.), 364994 (A.K., B.M.Y.), NIH U01 
NS094288 (C.K.M.), NIH EY028626 (A.K.), Irma T. Hirschl Trust (A.K.), NIH R01 HD071686 (B.M.Y.), NIH 
CRCNS R01 NS105318 (B.M.Y.), NSF NCS BCS 1533672 and 1734916 (B.M.Y.), NIH CRCNS R01 MH118929 
(B.M.Y.), and NIH R01 EB026953 (B.M.Y.).

Semedo et al. Page 8

Curr Opin Neurobiol. Author manuscript; available in PMC 2021 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

1. Yang W, Yuste R: In vivo imaging of neural activity. Nat Methods 2017, 14:349–359. [PubMed: 
28362436] 

2. Jun JJ et al.: Fully integrated silicon probes for high-density recording of neural activity. Nature 
2017, 551:232–236. [PubMed: 29120427] 

3. Kohn A et al.: Principles of corticocortical communication: proposed schemes and design 
considerations. Trends Neurosci 2020, 43:725–737. [PubMed: 32771224] 

4. Felleman DJ, Essen DCV: Distributed hierarchical processing in the primate cerebral cortex. Cereb 
Cortex 1991, 1:1–47. [PubMed: 1822724] 

5. Markov NT et al.: Cortical high-density counterstream architectures. Science 2013, 342.

6. Harris JA et al.: Hierarchical organization of cortical and thalamic connectivity. Nature 2019, 
575:195–202. [PubMed: 31666704] 

7. Pesaran B, Nelson MJ, Andersen RA: Free choice activates a decision circuit between frontal and 
parietal cortex. Nature 2008, 453:406–409. [PubMed: 18418380] 

8. Bosman C et al.: Attentional stimulus selection through selective synchronization between monkey 
visual areas. Neuron 2012, 75:875–888. [PubMed: 22958827] 

9. Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S: The pulvinar regulates information 
transmission between cortical areas based on attention demands. Science 2012, 337:753–756. 
[PubMed: 22879517] 

10. Buzsáki G, Schomburg EW: What does gamma coherence tell us about inter-regional neural 
communication? Nat Neurosci 2015, 18:484–489. [PubMed: 25706474] 

11. Wong YT, Fabiszak MM, Novikov Y, Daw ND, Pesaran B: Coherent neuronal ensembles are 
rapidly recruited when making a look-reach decision. Nat Neurosci 2016, 19:327–334. [PubMed: 
26752158] 

12. Reid RC, Alonso J-M: Specificity of monosynaptic connections from thalamus to visual cortex. 
Nature 1995, 378:281–284. [PubMed: 7477347] 

13. Nowak LG, Munk MHJ, James AC, Girard P, Bullier J: Cross-correlation study of the temporal 
interactions between areas V1 and V2 of the macaque monkey. J Neurophysiol 1999, 81:1057–
1074. [PubMed: 10085333] 

14. Roe AW, Ts’o DY: Specificity of color connectivity between primate V1 and V2. J Neurophysiol 
1999, 82:2719–2730. [PubMed: 10561440] 

15. Jia X, Tanabe S, Kohn A: Gamma and the coordination of spiking activity in early visual cortex. 
Neuron 2013, 77:762–774. [PubMed: 23439127] 

16. Pooresmaeili A, Poort J, Roelfsema PR: Simultaneous selection by object-based attention in visual 
and frontal cortex. Proc Natl Acad Sci 2014, 111:6467–6472. [PubMed: 24711379] 

17. Oemisch M, Westendorff S, Everling S, Womelsdorf T: Interareal spike-train correlations of 
anterior cingulate and dorsal prefrontal cortex during attention shifts. J Neurosci 2015, 35:13076–
13089. [PubMed: 26400938] 

18. Zandvakili A, Kohn A: Coordinated neuronal activity enhances corticocortical communication. 
Neuron 2015, 87:827–839. [PubMed: 26291164] 

19. Ruff DA, Cohen MR: Attention increases spike count correlations between visual cortical areas. J 
Neurosci 2016, 36:7523–7534. [PubMed: 27413161] 

20. Ruff DA, Cohen MR: Stimulus dependence of correlated variability across cortical areas. J 
Neurosci 2016, 36:7546–7556. [PubMed: 27413163] 

21. Quinn CJ, Coleman TP, Kiyavash N, Hatsopoulos NG: Estimating the directed information to infer 
causal relationships in ensemble neural spike train recordings. J Comput Neurosci 2011, 30:17–44. 
[PubMed: 20582566] 

Semedo et al. Page 9

Curr Opin Neurobiol. Author manuscript; available in PMC 2021 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Campo AT et al.: Feed-forward information and zero-lag synchronization in the sensory 
thalamocortical circuit are modulated during stimulus perception. Proc Natl Acad Sci 2019, 
116:7513–7522. [PubMed: 30910974] 

23. Venkatesh P, Dutta S, Grover P: How should we define information flow in neural circuits? 2019 
IEEE international symposium on information theory (ISIT) 2019:176–180. ISSN: 2157–8095.

24. Friston KJ, Harrison L, Penny W: Dynamic causal modelling. NeuroImage 2003, 19:1273–1302. 
[PubMed: 12948688] 

25•. Reid AT et al.: Advancing functional connectivity research from association to causation. Nat 
Neurosci 2019, 22:1751–1760 [PubMed: 31611705] Reid and colleagues review functional 
connectivity methods, proposing best practices and suggesting ways in which these methods 
could facilitate inference of causal interactions between brain areas.

26. Fries P: Neuronal gamma-band synchronization as a fundamental process in cortical computation. 
Annu Rev Neurosci 2009, 32:209–224. [PubMed: 19400723] 

27. Truccolo W, Hochberg LR, Donoghue JP: Collective dynamics in human and monkey sensorimotor 
cortex: predicting single neuron spikes. Nat Neurosci 2010, 13:105–111. [PubMed: 19966837] 

28. Chen JL, Voigt FF, Javadzadeh M, Krueppel R, Helmchen F: Long-range population dynamics of 
anatomically defined neocortical networks. eLife 2016, 5:e14679. [PubMed: 27218452] 

29. Li N, Daie K, Svoboda K, Druckmann S: Robust neuronal dynamics in premotor cortex during 
motor planning. Nature 2016, 532:459–464. [PubMed: 27074502] 

30••. Perich MG, Gallego JA, Miller LE: A neural population mechanism for rapid learning. Neuron 
2018, 100:964–976, e7 [PubMed: 30344047] Using a combination of dimensionality reduction 
and generalized linear models, Perich and colleagues propose a scheme by which, during 
learning, premotor cortex preferentially uses its “output-null” space relative to the primary motor 
cortex.

31••. Semedo JD, Zandvakili A, Machens CK, Yu BM, Kohn A: Corticalareas interact through a 
communication subspace. Neuron 2019, 102:249–259 e4 [PubMed: 30770252] Semedo et al. use 
reduced-rank regression to find that only a small number of V1 population activity patterns are 
relevant when predicting V2 population activity. The finding suggests a population-level 
mechanism by which information can be selectively shared across brain areas.

32••. Ames KC, Churchland MM: Motor cortex signals for each arm are mixed across hemispheres 
and neurons yet partitioned within the population response. eLife 2019, 8Using a combination of 
principal components analysis, linear regression and partial least squares, Ames and Churchland 
study how the structure of population-level activity can enable both hemispheres of motor cortex 
(M1) to be active, even when only one arm is moved. They find that each hemisphere partitions 
contra and ipsilateral arm movements into different subspaces.

33••. Ruff DA, Cohen MR: Simultaneous multi-area recordings suggest that attention improves 
performance by reshaping stimulus representations. Nat Neurosci 2019, 22:1669–1676 [PubMed: 
31477898] Using principal component regression, Ruff and Cohen find that attention induces 
changes in the population activity in middle temporal area (MT) such that the stimulus 
representation becomes aligned with the dimensions most related to activity in superior colliculus 
(SC).

34. Cunningham JP, Yu BM: Dimensionality reduction for large-scale neural recordings. Nat Neurosci 
2014, 17:1500–1509. [PubMed: 25151264] 

35. Kaufman MT, Churchland MM, Ryu SI, Shenoy KV: Cortical activity in the null space: permitting 
preparation without movement. Nat Neurosci 2014, 17:440–448. [PubMed: 24487233] 

36. Lara AH, Cunningham JP, Churchland MM: Different population dynamics in the supplementary 
motor area and motor cortex during reaching. Nat Commun 2018, 9:1–16. [PubMed: 29317637] 

37•. Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD: Distributed coding of choice, action and 
engagement across the mouse brain. Nature 2019, 576:266–273 [PubMed: 31776518] Steinmetz 
and colleagues trace the onset of action, stimulus and choice signals throughout the mouse brain 
by recording from approximately 30,000 neurons in 42 brain regions of behaving mice.

38••. Veuthey TL, Derosier K, Kondapavulur S, Ganguly K: Single-trial cross-area neural population 
dynamics during long-term skill learning. Nat Commun 2020, 11:4057 [PubMed: 32792523] 
Veuthey and colleagues studied M1-M2 interactions during motor learning and found that reach-

Semedo et al. Page 10

Curr Opin Neurobiol. Author manuscript; available in PMC 2021 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



related activity in the across-area subspace identified by canonical correlation analysis (CCA) 
emerged with learning. Furthermore, inactivation of M2 impacted M1 activity preferentially 
within the across-area subspace

39. Gao P, Ganguli S: On simplicity and complexity in the brave new world of large-scale 
neuroscience. Curr Opin Neurobiol 2015, 32:148–155. [PubMed: 25932978] 

40. Izenman AJ: Reduced-rank regression for the multivariate linear model. J Multivar Anal 1975, 
5:248–264.

41. Hotelling H: Relations between two sets of variates. Biometrika 1936, 28:321–377.

42. Wold H: Soft modelling by latent variables: the non-linear iterative partial least squares (NIPALS) 
approach. J Appl Probab 1975, 12:117–142.

43. Kobak D et al.: Demixed principal component analysis of neural population data. eLife 2016, 
5:e10989. [PubMed: 27067378] 

44. Rumyantsev OI et al.: Fundamental bounds on the fidelity of sensory cortical coding. Nature 
2020:1–6.

45. Sussillo D, Churchland MM, Kaufman MT, Shenoy KV: A neural network that finds a naturalistic 
solution for the production of muscle activity. Nat Neurosci 2015, 18:1025–1033. [PubMed: 
26075643] 

46. Gallego JA, Perich MG, Chowdhury RH, Solla SA, Miller LE: Long-term stability of cortical 
population dynamics underlying consistent behavior. Nat Neurosci 2020, 23:260–270. [PubMed: 
31907438] 

47. Raposo D, Kaufman MT, Churchland AK: A category-free neural population supports evolving 
demands during decision-making. Nat Neurosci 2014, 17:1784–1792. [PubMed: 25383902] 

48. Elsayed GF, Lara AH, Kaufman MT, Churchland MM, Cunningham JP: Reorganization between 
preparatory and movement population responses in motor cortex. Nat Commun 2016, 7:13239. 
[PubMed: 27807345] 

49. Stavisky SD, Kao JC, Ryu SI, Shenoy KV: Motor cortical visuomotor feedback activity is initially 
isolated from downstream targets in output-null neural state space dimensions. Neuron 2017, 
95:195–208 e9. [PubMed: 28625485] 

50. Hennig JA et al.: Constraints on neural redundancy. eLife 2018, 7:e36774. [PubMed: 30109848] 

51. Lai PL, Fyfe C: Kernel and nonlinear canonical correlation analysis. Int J Neural Syst 2000, 
10:365–377. [PubMed: 11195936] 

52. Andrew G, Arora R, Bilmes J, Livescu K. Deep canonical correlation analysis. In: International 
conference on machine learning; 2013. p. 1247–55. http://proceedings.mlr.press/v28/
andrew13.html. ISSN: 1938–7228.

53. Cowley B et al.: Distance covariance analysis. PMLR 2017:242–251 In: http://
proceedings.mlr.press/v54/cowley17a.html.

54. Kamiński M, Ding M, Truccolo WA, Bressler SL: Evaluating causal relations in neural systems: 
Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern 
2001, 85:145–157. [PubMed: 11508777] 

55. Kim S, Putrino D, Ghosh S, Brown EN: A Granger causality measure for point process models of 
ensemble neural spiking activity. PLoS Comput Biol 2011, 7.

56. Pillow JW et al.: Spatio-temporal correlations and visual signalling in a complete neuronal 
population. Nature 2008, 454:995–999. [PubMed: 18650810] 

57. Semedo J, Zandvakili A, Kohn A, Machens CK, Yu BM. Extracting latent structure from multiple 
interacting neural populations. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger 
KQ, editors. Advances in Neural Information Processing Systems, vol 27. Curran Associates, Inc.; 
2014. p. 2942–2950. http://papers.nips.cc/paper/5625-extracting-latent-structure-from-multiple-
interacting-neural-populations.pdf.

58. Rodu J, Klein N, Brincat SL, Miller EK, Kass RE: Detecting multivariate cross-correlation 
between brain regions. J Neurophysiol 2018, 120:1962–1972. [PubMed: 29947591] 

59. Mante V, Sussillo D, Shenoy KV, Newsome WT: Context-dependent computation by recurrent 
dynamics in prefrontal cortex. Nature 2013, 503:78–84. [PubMed: 24201281] 

Semedo et al. Page 11

Curr Opin Neurobiol. Author manuscript; available in PMC 2021 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proceedings.mlr.press/v28/andrew13.html
http://proceedings.mlr.press/v28/andrew13.html
http://proceedings.mlr.press/v54/cowley17a.html
http://proceedings.mlr.press/v54/cowley17a.html
http://papers.nips.cc/paper/5625-extracting-latent-structure-from-multiple-interacting-neural-populations.pdf
http://papers.nips.cc/paper/5625-extracting-latent-structure-from-multiple-interacting-neural-populations.pdf


60. Druckmann S, Chklovskii D: Neuronal circuits underlying persistent representations despite time 
varying activity. Curr Biol 2012, 22:2095–2103. [PubMed: 23084992] 

61. Murray JD et al.: Stable population coding for working memory coexists with heterogeneous 
neural dynamics in prefrontal cortex. Proc Natl Acad Sci 2017, 114:394–399. [PubMed: 
28028221] 

62. Wang J, Narain D, Hosseini EA, Jazayeri M: Flexible timing by temporal scaling of cortical 
responses. Nat Neurosci 2018, 21:102–110. [PubMed: 29203897] 

63. Parthasarathy A et al.: Time-invariant working memory representations in the presence of code-
morphing in the lateral prefrontal cortex. Nat Commun 2019, 10:4995. [PubMed: 31676790] 

64. Stringer C et al.: Spontaneous behaviors drive multidimensional, brainwide activity. Science 2019, 
364. [PubMed: 31624212] 

65. Gründemann J et al.: Amygdala ensembles encode behavioral states. Science 2019, 364. [PubMed: 
31624212] 

66. Tang C, Herikstad R, Parthasarathy A, Libedinsky C, Yen S-C: Minimally dependent activity 
subspaces for working memory and motor preparation in the lateral prefrontal cortex. eLife 2020, 
9:e58154. [PubMed: 32902383] 

67. Yoo SBM, Hayden BY: The transition from evaluation to selection involves neural subspace 
reorganization in core reward regions. Neuron 2020, 105:712–724 e4. [PubMed: 31836322] 

68. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ: Whole-brain functional imaging at cellular 
resolution using light-sheet microscopy. Nat Methods 2013, 10:413–420. [PubMed: 23524393] 

69. Pinto L et al.: Task-dependent changes in the large-scale dynamics and necessity of cortical 
regions. Neuron 2019, 104:810–824 e9. [PubMed: 31564591] 

70. Kiani R et al.: Natural grouping of neural responses reveals spatially segregated clusters in 
prearcuate cortex. Neuron 2015, 85:1359–1373. [PubMed: 25728571] 

71. Buesing L, Machado TA, Cunningham JP, Paninski L. Clustered factor analysis of multineuronal 
spike data. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. 
Advances in Neural Information Processing Systems, vol27. Curran Associates, Inc.; 2014. p. 
3500–3508. http://papers.nips.cc/paper/5339-clustered-factor-analysis-of-multineuronal-spike-
data.pdf.

Semedo et al. Page 12

Curr Opin Neurobiol. Author manuscript; available in PMC 2021 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://papers.nips.cc/paper/5339-clustered-factor-analysis-of-multineuronal-spike-data.pdf
http://papers.nips.cc/paper/5339-clustered-factor-analysis-of-multineuronal-spike-data.pdf


Box 1

Recent studies using PCR, RRR and CCA to study inter-areal interactions

Several recent studies have applied the methods reviewed here to deepen our 

understanding of inter-areal interactions. For instance, Kaufman et al. [35], leveraged 

principal component regression (PCR) to propose a novel mechanism by which neurons 

in motor cortex (PMd/M1) can remain active without driving arm movements during 

movement preparation (Box Figure, panel a). They defined a potent subspace (orange 

dimension), along which changes in neural activity drive arm movements. In order to 

avoid driving arm movements, changes in preparatory activity (represented by the blue 

ellipse) are confined to the null subspace (gray dimension, orthogonal to the potent 

subspace) and avoid the potent subspace. Semedo et al. [31••] studied inter-areal 

interactions between early visual areas (V1 and V2) using factor regression (FR) and 

reduced-rank regression (RRR), and found that only a small subspace of V1 activity was 

predictive of activity in V2, termed a communication subspace (Box Figure, panel b, 

orange dimension). Furthermore, they found that the most dominant dimensions of V1 

activity (defined using FR; blue dashed dimension) were not well aligned with the 

communication subspace. Ruff and Cohen [33••] found that attention changed stimulus 

representations in MT (Box Figure, panel c, blue ellipses) making them more aligned 

with the dimensions of MT activity that are predictive of activity in superior colliculus 

(SC) (defined using PCR; orange dimension). Veuthey et al. [38••], used canonical 

correlation analysis (CCA) to find the dimensions of activity most correlated across 

motor cortical areas M1 and M2 during a reach-to-grasp task (the across-area subspace; 

Box Figure, panel d, orange dimension). They found that inactivation of M2 influenced 

M1 activity more within the across-area subspace than outside of this subspace (the local 

subspace; gray dimension). Namely, M1 activity (the blue trajectory) followed a similar 

time course within the local subspace before and during M2 inactivation, but its time 

course was distinct (and largely attenuated) along the across-area subspace.
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Schematics of scientific results.
(a) M1 preparatory activity (blue ellipse) preferentially avoids the subspace that drives 

arm movements (orange dimension), and instead resides in the ‘null’ subspace (gray 

dimension). Adapted from [35]. (b) A subspace (orange dimension) of V1 activity (blue 

ellipse) is communicated with V2, whereas activity outside this subspace (gray 

dimension) remains private to V1. Adapted from [31••]. (c) Stimulus representations in 

MT (blue ellipses) are better aligned to the SC readout (orange dimension) when the 

stimuli are attended (right panel) compared to when they are not attended (left panel). 

Adapted from [33••]. (d) When M2 is inactivated (compare right panel to left panel), M1 

activity (blue trajectory) is preferentially modified within the M1-M2 across-area 
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subspace (orange dimension) relative to the area-specific local subspaces (gray 

dimension). Adapted from [38••].
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Figure 1. 
Relating activity between two populations of neurons. (a) Predicting the activity of one 

target neuron. For illustrative purposes, we show 3 source neurons. Each dot corresponds to 

the observed activity in the source population at a given time. The color of each dot 

represents the activity of one target neuron, recorded simultaneously with the source 

neurons. Note that there are regions in the source activity space for which the activity of the 

target neuron is low (left side), and regions where it is high (right side). The target neuron’s 

activity changes smoothly along the regression dimension (black line). (b) Predicting the 

activity of a target population. Using linear regression to predict activity in a target 

population amounts to using linear regression to separately predict the activity of each target 

neuron. This yields a regression dimension for each target neuron (black lines). (c) 
Characterizing inter-areal interactions using dimensionality reduction on the source 

population. One way to increase interpretability and combat overfitting when performing 

linear regression is to first find a small number of latent variables in the source activity 

(represented by the blue plane), and then use them to predict target activity. In this example, 

we cannot accurately predict target neuron 1’s activity using only the first two principal 

components of the source activity (color has no structure), though the identified dimensions 

capture much of the variance in the source area (85%). (d) Characterizing inter-areal 

interactions using dimensionality reduction on the source and target populations. Another 

way to summarize inter-areal interactions is to find a subspace of source activity that is 

maximally predictive of target activity. In contrast to panel (c), here we can accurately 

predict target neuron 1’s activity using the first two predictive dimensions (color is highly 
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structured). However, the predictive dimensions explain less variance of the source activity 

(35%) than the principal components.
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Figure 2. 
Graphical depiction of multivariate methods for studying inter-areal interactions. (a) The 

weights in a linear regression model (or a GLM) define the population activity pattern in 

area A that is most predictive of the activity of a neuron in area B (black circle). (b) 
Principal component regression first identifies latent variables using activity in area A only 

(gray squares). Each latent variable represents a population activity pattern that explains the 

most variance in area A. Latent variables are then treated as independent variables and used 

to predict activity of a neuron in area B (the dependent variable; black circle). Factor 

regression is similar; however, each latent variable represents a population activity pattern 

that explains the most shared variance within area A. Note that (a) and (b) show a single area 

B neuron being predicted, but both classes of methods can be applied to a population of 

neurons in area B by repeating the same process for each neuron in area B. (c) Reduced-rank 

regression uses population activity in both areas to identify latent variables. Neurons in area 

A are treated as independent variables (gray circles), while neurons in area B are treated as 

dependent variables (black circles). Latent variables represent population activity patterns in 

area A that are most predictive of population activity in area B. (d) Like reduced-rank 

regression, canonical correlation analysis uses population activity in both areas to identify 

latent variables. However, it treats populations symmetrically (i.e., all neurons are treated as 

dependent variables), and identifies a common set of latent variables for both areas A and B. 

Each latent variable represents jointly a population activity pattern in area A and a 
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population activity pattern in area B that are highly correlated. Partial least squares is 

similar; however, each latent variable represents jointly a population activity pattern in each 

area that describes large activity covariance across areas. In (a)–(d), the activity of the 

neurons (circles) in both areas is observed, whereas the latent variables (squares) are inferred 

from the observed neural activity. Boxes (blue and red shading) indicate which neurons are 

used to identify latent variables. Symbols are colored gray to indicate independent variables, 

and black to indicate dependent variables, when relating activity across areas.

Semedo et al. Page 19

Curr Opin Neurobiol. Author manuscript; available in PMC 2021 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Interpretational challenges and considerations of multivariate methods. (a) Recorded areas A 

and B (shaded gray) are just two areas of a larger network made up of areas A–F. Thus the 

identified statistical associations between these areas reflect both direct and indirect 

interactions. Interactions may be asymmetric, and occur over connections with different 

latencies (τ1, τ2). (b) A change in the variance (var) of input from area F to area B can 

change the strength of the correlation (corr) between areas A and B. In this case, one can be 

led to believe that the interaction between areas A and B changed, even though the only 

change was in the input from area F to area B. (c) The regression weight for each source 

neuron can depend on which other source neurons are included in the regression. Leaving 

out neurons in the regression can dramatically change the regression weights of remaining 

Semedo et al. Page 20

Curr Opin Neurobiol. Author manuscript; available in PMC 2021 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons. (d) (Left) One may identify a dimension in population activity space that encodes a 

variable of interest (z1), for example, the stimulus or a behavioral variable (grayscale 

shading of dots). Then, in an effort to find a variable unrelated to the activity projected onto 

z1, one could identify projections of activity onto an orthogonal dimension (z2) or 

projections onto an uncorrelated dimension (z3). This uncorrelated dimension is not, in 

general, orthogonal to z1, and depends on the covariance of the population activity. (Upper 

right) Changing to the orthogonal basis, where the axes represent z1 and z2, reveals that 

these dimensions are correlated. Bottom inset shows one-dimensional projections onto z1, 

which was identified so that the dot coloring would be ordered. Right inset shows one-

dimensional projections of population activity onto z2, which show some ordering based on 

dot color. (Lower right) Changing to the uncorrelated basis, where the axes represent z1 and 

z3, illustrates that these variables are uncorrelated. Right inset shows one-dimensional 

projections of population activity onto z3, which show little to no ordering based on dot 

color.
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