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the potential to support both needs by looking at what the virus does to us, rather than looking for the virus itself.
Methods: In this pilot study, sebum samples were collected from 67 hospitalised patients (30 COVID-19 posi-
tive and 37 COVID-19 negative) by gauze swab. Lipidomics analysis was carried out using liquid chromatog-
raphy mass spectrometry, identifying 998 reproducible features. Univariate and multivariate statistical
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. . analyses were applied to the resulting feature set.
COVID-19 diagnostics . .. . .. .. e . . .
Sebomics Findings: Lipid levels were depressed in COVID-19 positive participants, indicative of dyslipidemia; p-values
Multi-variate analysis of 0-022 and 0-015 were obtained for triglycerides and ceramides respectively, with effect sizes of 0-44 and
Lipidomics 0-57. Partial Least Squares-Discriminant Analysis showed separation of COVID-19 positive and negative par-
Liquid chromatography-mass spectrometry ticipants with sensitivity of 57% and specificity of 68%, improving to 79% and 83% respectively when con-

trolled for confounding comorbidities.
Interpretation: COVID-19 dysregulates many areas of metabolism; in this work we show that the skin lipi-
dome can be added to the list. Given that samples can be provided quickly and painlessly, we conclude that
sebum is worthy of future consideration for clinical sampling.
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the detection of SARS-CoV-2 viral RNA collected from the upper

1. Introduction respiratory tract via polymerase chain reaction (PCR). Whilst these

types of tests are easily deployable and highly selective for the virus,

SARS-CoV-2, a novel coronavirus, was identified by the World they suffer from a significant proportion of false negative events; [4]

Health Organization as originating in the Wuhan province of China in in addition, scarcity of reagents can be an issue for the scale of testing

late 2019, [1,2] and causes Corona Virus Disease 2019 (COVID-19). required. Furthermore, PCR approaches are diagnostic rather than
Mass testing has been identified by the World Health Organisationas ~ Prognostic in nature [5].

a key weapon in the battle against COVID-19 to contain outbreaks Approaches that measure the indirect effect of the virus on the host

and reduce hospitalisations [3]. Current approaches to testing require (35 0pposed to direct measurement of the virus itself) may offer a com-
plementary solution in clinical or mass testing settings; for example,
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Research in context

Evidence before this study

Previous studies have identified differences in the sebum of
individuals with Parkinson’s Disease and with Type 1 Diabetes
Mellitus that can be detected by mass spectrometry; in the case
of Parkinson’s Disease changes to metabolism can even be
detected by smell. COVID-19 is reported to cause a wide range
of metabolic dysregulation, previously detected in blood and
breath, suggesting that such disruption of normal metabolism
could extend to the skin.

Added value of this study

In this pilot study of 67 participants, dysregulation of the sebum
lipidome has been observed in COVID-19 positive participants, so
adding skin to the list of organs that are disrupted by the disease.
Analysis shows sebum triglycerides in particular as depressed in
cases of the disease. This illustrates the additional metabolic infor-
mation available from this biofluid, as well as suggesting potential
for sebum to be investigated as a means of diagnostic testing.

Implications of all the available evidence

The work provides evidence of COVID-19 infection causing dys-
lipidemia in the stratum corneum. When adjusting for con-
founding factors, separation between COVID-19 positive and
negative participants was also possible, with sensitivity and
specificity similar to that seen in other matrices. Given that
sebum samples can be provided (and transported) rapidly and
painlessly, we conclude that sebum is worthy of future consid-
eration for clinical sampling, both to offer insight into the
COVID-19's impact on skin and barrier function, and also to
investigate whether larger cohorts would allow for sufficient
stratification to improve sensitivity and selectivity further.

lipids for reproduction, COVID-19 can be expected to disrupt the lipi-
dome [7]. Evidence of a dysregulated lipidome has been observed in
patients with COVID-19; triglyceride levels have been found to be sig-
nificantly increased in the serum and plasma of COVID-19 patients,
alongside changes in lipoprotein particle size and distribution. This has
been characterised as pathogenic in nature and consistent with
increased atherosclerotic risk; [8,9] lipidomics therefore offers a prom-
ising route to better understanding of - and potentially diagnosis for -
COVID-19. Sebum is a biofluid secreted by the sebaceous glands and is
rich in lipids. A sample can be collected easily and non-invasively via a
gentle swab of skin areas rich in sebum (for example the face, neck or
back). Characteristic features have previously been identified from
sebum for a limited number of conditions such as Parkinson’s Disease
and Type 1 Diabetes Mellitus; [10,11,12] sebum changes have also
been reported in pregnancy [13]. In addition, whilst the mechanisms
for the role of sebum in barrier function are not fully described, sebum
lipids provide this function directly and also through commensal bac-
teria interactions; lipid dysregulation would have implications for skin
health [14]. In this work, we explore differences in sebum lipid profiles
for patients with and without COVID-19, with a view to exploring
sebum’s future use as a non-invasive sampling medium, as well as
expanding the understanding of sebum as a sampling matrix.

2. Methods
2.1. Background

In May 2020 several UK bodies announced their intention to pool
resources and form the COVID-19 International Mass Spectrometry

(MS) Coalition [5]. This consortium has the proximal goal of providing
molecular level information on SARS-CoV-2 in infected humans, with
the distal goal of understanding the impact of the novel coronavirus
on metabolic pathways in order to better diagnose and treat cases of
COVID-19 infection. This work took place as part of the COVID-19 MS
Coalition and all data will be stored and fully accessible on the MS
Coalition open repository.

2.2. Participant recruitment and ethics

Ethical approval for this project (IRAS project ID 155921) was
obtained via the NHS Health Research Authority (REC reference: 14/
LO/1221). The participants included in this study were recruited at
NHS Frimley Park NHS Trust, totalling 67 participants, during May
and June 2020. Collection of the samples was performed by research-
ers from the University of Surrey at Frimley Park NHS Foundation
Trust hospitals. Participants were identified by clinical staff to ensure
that they had the capacity to consent to the study, and were asked to
sign an Informed Consent Form; those that did not have this capacity
were not sampled. Consenting participants were categorised by the
hospital as either “query COVID” (meaning there was clinical suspi-
cion of COVID-19 infection) or “COVID positive” (meaning that a posi-
tive COVID test result had been recorded during their admission). All
participants were provided with a Patient Information Sheet explain-
ing the goals of the study.

2.3. Sample collection, inactivation and extraction

Patients were sampled immediately upon recruitment to the
study. This meant that the range in time between symptom onset
and sebum sampling ranged from 1 day to > 1 month, an inevitable
consequence of collecting samples in a pandemic situation. Each par-
ticipant was swabbed on the right side of the upper back, using
15 cm by 7.5 cm gauzes that had each been folded twice to create a
four-ply swab. The surface area of sampling was approximately
5 cm x 5 cm, pressure was applied uniformly whilst moving the
swab across the upper back for ten seconds. The gauzes were placed
into Sterilin polystyrene 30 mL universal containers.

Samples were transferred from the hospital to the University of
Surrey by courier within 4 h of collection, whereupon the samples
were then quarantined at room temperature for seven days to allow
for virus inactivation, avoiding heat treatment given potential for
lipid degradation [15]. Finally, the vials were transferred to —80 °C
storage until required. Alongside sebum collection, metadata for all
participants was also collected covering inter alia sex, age, comorbid-
ities (based on whether the participant was receiving treatment), the
results and dates of COVID PCR (polymerase chain reaction) tests,
bilateral chest X-Ray changes, smoking status, and whether the par-
ticipant presented with clinical symptoms of COVID-19. Values for
lymphocytes, CRP and eosinophils were also taken - here values
within five days of sebum sampling were recorded.

The extraction, storage and reconstitution of the obtained samples
followed Sinclair E, Trivedi D, Sarkar D, et al. [16] Samples were ana-
lysed over a period of five days. Each day consisted of a run incorpo-
rating solvent blank injections (n = 5), pooled QC injections (n = 3),
followed by 16 participant samples (triplicate injections of each)
with a single pooled QC injection every six injections. Each day’s run
was completed with pooled QC injections (n = 2) and solvent blanks
(n=3). Atriplicate injection of a field blank was also obtained.

2.4. Instrumentation and software

Analysis of samples was carried out using a Dionex Ultimate 3000
HPLC module equipped with a binary solvent manager, column com-
partment and autosampler, coupled to a Orbitrap Q-Exactive Plus
mass spectrometer (Thermo Fisher Scientific, UK) at the University of
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Surrey‘'s lon Beam Centre. Chromatographic separation was per-
formed on a Waters ACQUITY UPLC BEH C18 column (1-7 pum,
2-1 mm x 100 mm) operated at 55 °C with a flow rate of 0-3 ml min"
1

The mobile phases were as follows: mobile phase A was acetoni-
trile:water (v/v 60:40) with 0-1% formic acid, whilst mobile phase B
was 2-propanol:acetonitrile (v/v, 90:10) with 0-1% formic acid (v/v).
An injection volume of 5 uL was used. The initial solvent mixture
was 40% B, increasing to 50% B over 1 min, then to 69% B at 3-6 min,
with a final ramp to 88% B at 12 min. The gradient was reduced back
to 40% B and held for 2 min to allow for column equilibration. Analy-
sis on the Q-Exactive Plus mass spectrometer was performed in split-
scan mode with an overall scan range of 150 m/z to 2 000 m/z, and
5 ppm mass accuracy. Split scan was chosen to extend the m/z range
from 150 to 2 000 m/z whilst maximising the number of features
identified [17,18]. MS/MS validation of features was carried out on
Pooled QC samples using data dependent acquisition mode. Operat-
ing conditions are summarised in Table S1 (Supplementary Materi-
als).

2.5. Materials and chemicals

The materials and solvents utilised in this study were as follows:
gauze swabs (Reliance Medical, UK), 30 mL Sterilin™ tubes (Thermo
Scientific, UK), 10 mL syringes (Becton Dickinson, Spain), 2 mL micro-
centrifuge tubes (Eppendorf, UK), 0.2 um syringe filters (Corning
Incorporated, USA), 200 uL micropipette tips (Starlab, UK) and
Qsert™ clear glass insert LC vials (Supelco, UK). Optima™ (LC-MS)
grade methanol was used as an extraction solvent, and Optima™
(LC-MS) grade methanol, ethanol, acetonitrile and 2-propanol were
used to prepare injection solvents and mobile phases. Formic acid
was added to the mobile phase solvents at 0.1% (v/v). Solvents were
purchased from Fisher Scientific, UK.

2.6. Data processing

LC-MS outputs (.raw files) were pre-processed for alignment, nor-
malisation and peak identification using Progenesis QI (Non-Linear
Dynamics, Waters, Wilmslow, UK), a platform-independent small
molecule discovery analysis software for LC-MS data. Peak picking
(mass tolerance +5 ppm), alignment (RT window 415 s) and area
normalisation was carried out with reference to the pooled QC sam-
ples. Features identified in MS were initially annotated using accurate
mass match with Lipid Blast in Progenesis QI, whilst validation was
performed using data dependent MS/MS analysis using LipidSearch
(Thermo Fisher Scientific, UK) and Compound Discoverer (Thermo
Fisher Scientific, UK), without imputation of missing values. This pro-
cess yielded an initial peak table with 14,160 features. All those fea-
tures with a coefficient of variation across all pooled QCs above 20%
were removed, as were those that were not present in at least 90% of
pooled QC injections. These features were then field blank adjusted:
all those features with a signal to noise ratio below 3x were also
rejected. The remaining set of 998 features were deemed to be
robust, reproducible and suitably distinct from those found in the
field blank.

Inclusion criteria were also applied to participant data, requiring
both full completion of metadata and also agreement between the
result of the PCR COVID-19 test (Y/N) and the clinical diagnosis for
COVID-19 (Y/N). Whilst these inclusion criteria reduced the total
number of participants from n = 87 to n = 67 (nine participants did
not have complete metadata, seven participants presented with clini-
cal symptoms but had a negative RT-PCR result and four participants
had a positive RT-PCR result but no symptoms), this was considered
worthwhile given the potential for misdiagnosis to confound the
development of statistical models.

2.7. Statistical analysis

Data processing and analysis of the pareto-scaled peak:area
matrix was conducted through a combination of the R package mixO-
mics, [19] supplemented by user-written scripts in the statistical pro-
gramming language R. [20]| PLS-DA was used for classification and
prediction of data. Separation and classification was based on maha-
labonis distance between observations. Leave-one-out cross-valida-
tion was used for PLS-DA model validation to test accuracy,
sensitivity and specificity; variable importance in projection (VIP)
scores were used to assess feature significance.

2.8. Role of funding source

Funding was provided for sample collection by the EPSRC Impact
Acceleration Account, as well as EPSRC Fellowship Funding EP/
R031118/1. Mass Spectrometry was funded under EP/P001440/1.
Sample collection and processing was funded by the University of
Surrey and the BBSRC BB/T002212/1. The funding bodies were nei-
ther involved in the design of the study nor in the analysis of the
data.

3. Results
3.1. Population metadata overview

The study population analysed in this work included 67 partici-
pants, comprising 30 participants presenting with COVID-19 clinical
symptoms (and an associated positive COVID-19 RT-PCR test) and 37
participants presenting without. A summary of the metadata is
shown in Table 1.

There were more male participants in the COVID-19 positive
group (M:F ratio of 0-57) compared to the participant population
overall (M:F ratio of 0-52); given recruitment took place in a hospital
environment, this may reflect increased severity amongst males [21].
Age distributions for COVID-19 positive and negative cohorts were
almost identical (mean age of 64.7 years and 65-0 years respectively).
On average 19 days had elapsed from symptoms onset to sebum
swab, consistent with recruitment during hospitalisation. Comorbid-
ities are associated with both hospitalisation and more severe out-
comes for COVID-19 infection, but will also alter the metabolome of
participants, representing both a causative and confounding factor.
The impact on classification accuracy of these comorbidities was
tested by stratifying participant data by comorbidity to see if separa-
tion improved; this process is described in the following sections. In
this pilot study, comorbidities were less well represented in the
cohort of COVID-19 positive participants than in the cohort of
COVID-19 negative participants.

Levels of C-Reactive Protein (CRP) were significantly higher for
COVID-19 participants, whilst lymphocyte and eosinophils levels
were lower. A two-tailed Mann Whitney U test on the CRP indicator
provided a p-value of 0-031, and on the lymphocytes a p-value of
0.004. Effect sizes (calculated by Cohen's D) were 0-56 and 0-85
respectively. COVID-19 positive participants were also more likely to
present with bilateral chest X-ray changes (21 out of 30 COVID-19
positive patients, versus 2 out of 37 COVID-19 negative patients).
COVID-19 positive participants experienced higher rates of requiring
oxygen | CPAP, higher rates of escalation, and lower survival rates
(Table 1). These observations were in agreement with literature
descriptions of COVID-19 symptoms and progression [22].

3.2. Overview of features identified by liquid chromatography mass
spectrometry (LC-MS)

998 features were identified reproducibly by LC-MS (present in
greater than 90% of pooled QC LC-MS injections, coefficient of



Table 1

Summary of clinical characteristics by participant cohort.
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Parameters Negative for COVID-19  Positive for COVID-19
n 37 30
Age (mean, standard devia- 6500 & 193 6407 £ 19¢4
tion; years)
Male [ Female (n) 18/19 17 /13
Treated for Hypertension (n) 17 10
Treated for High Cholesterol 10 5
(n)
Treated for Type 2 Diabetes 12 7
Mellitus (n)
Treated for ischaemic Heart 7 4
Disease (n)
Current Smoker (n) 0
Ex-Smoker (n) 10 4
Medical Acute Dependency 11
admission (n)
Intensive Care Unit admis- 0 5
sion (n)
Survived Admission (n) 35 27
Time between onset and NA 19+8
sebum test (mean, stan-
dard deviation; days)
Time between positive RT- NA 3+7
PCR test and sebum test
Lymphocytes (mean, stan- 10 £ 0e5 06 + 003

dard deviation; cells / L)

C-Reactive Protein (mean,
standard deviation; mg /
L)

1321 £ 957

18103 + 11792

Eosinophils (mean, standard  0e3 + 04 0e2 + 004
deviation; 100 / L)
Bilateral Chest X-Ray 2 21
changes (n)
Continuous Positive Airway 2 10
Pressure (n)
0, required (n) 10 20
@
L d
s ° ~
: [3

signific

variation below 20% across pooled QCs, signal to noise ratio greater
than three) and these formed the basis of the analysis in this work.
Differences between COVID-19 positive and negative participants
were observed across a range of lipids, with the most consistent dif-
ference seen in reduced lipid levels, especially triglycerides (Fig. 1).

Aggregate levels of triglycerides identified by MS/MS were
depressed for COVID-19 positive participants, and also for ceramides,
albeit fewer lipids of the latter class were identified and validated.
The lipids with the most statistically significant differences between
the populations are listed in Table S2 (Supplementary Materials)
together with their m/z values and p-values, alongside equivalent sta-
tistics for other indicators. The distributions of the natural log of
aggregated lipid ion counts by class were not characterised as normal
by Shapiro-Wilk normality tests [23]. Two-tailed Mann-Whitney U-
tests were performed to test the significance of aggregate levels of
these lipid classes. These resulted in p-values of 0-022 and 0-015 for
triglycerides and ceramides respectively, with effect sizes (calculated
by Cohen's D) of 0-44 and 0-57, indicative of medium effect size; the
statistical significance of the alteration in levels of triglycerides
between positive and negative cohorts is comparable to that for CRP
or for lymphocytes (Fig. 2). These results are suggestive of dyslipide-
mia within the stratum corneum due to COVID-19.

3.3. Population-level clustering analyses

No clustering was identifiable at the total population level by
principal component analysis (PCA), i.e. by unsupervised analysis.
Partial least squares discriminant analysis (PLS-DA) performed on the
same data set revealed limited separation (Fig. 3), with the area
under the receiver operating curve (AUROC) over two components of
0.88. AUROC can be inflated when only used on a single training data
set, and so a confusion matrix was constructed using a leave-one-out
approach. Validating accuracy in this way (Table 2) showed sensitiv-
ity of just 57% and specificity of 68%. Given the wide range of comor-
bidities, this is not unexpected.

Fig. 1. Volcano plot of features for COVID-19 positive (n = 30) versus negative (n = 37), labelled lipids validated by MS/MS.
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Fig. 2. Boxplots of diagnostic indicators versus triglyceride levels.
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Fig. 3. PLS-DA plot for 67 participants, classified by COVID-19 positive | negative.

Confusion matrix for COVID-19 positive versus negative (all participants).

All Participants (n=67)  True COVID-19 Positive ~ True COVID-19 Negative

(n=30) (n=37)
Predicted COVID-19 Pos-  57% (17) 32%(12)
itive (%, n)
Predicted COVID-19 43%(13) 68% (25)

Negative (%, n)

3.4. Investigation of confounding factors

To test the impact of age, diagnostic indicators (CRP, lymphocytes
and eosinophils) and time elapsed between onset of symptoms and
sebum sampling, these variables were pareto-scaled and included in
the matrix for PLS-DA modelling. Variable importance in projection
(VIP) scores for lymphocytes, CRP, and eosinophils were 2-47, 1.77
and 0.72 respectively, ranking 1, 90 and 466 out of 1003 total fea-
tures. As a single feature, depressed lymphocyte levels show high
correlation with COVID-19 positive status, consistent with
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Table 3
Summary of model parameters for different population subsets.
Population Category 1 (n) Category 2 (n) Accuracy  Sensitivity  Specificity
All participants COVID-19 Positive (30) ~ COVID-19 Negative (37)  62% 57% 68%
Male COVID-19 Positive (17) ~ COVID-19 Negative (18)  66% 65% 67%
Female COVID-19 Positive (13) ~ COVID-19 Negative (19)  59% 54% 63%
Type 2 Diabetes Mellitus ~ COVID-19 Positive (7) COVID-19 Negative (12)  73% 71% 75%
High Cholesterol COVID-19 Positive (5) COVID-19 Negative (10)  87% 100% 80%
Hypertension COVID-19 Positive (10) ~ COVID-19 Negative (17)  81% 80% 82%
Ischaemic Heart Disease COVID-19 Positive (4) COVID-19 Negative (7) 68% 50% 86%
Statins COVID-19 Positive (11) ~ COVID-19 Negative (21)  63% 55% 90%
20
= 10
g
2
) Legend
N
8 O COVID-19 Negative
& 0 COVID-19 Positive
Q
]
g
3
10 1
20 1
20 -10 0 10 20

X-variate 1: 11% expl. var

Fig. 4. PLS-DA plot for 15 participants with hypertension, COVID-19 positive | negative.

lymphocyte count being both a diagnostic and prognostic biomarker
[24]. Age as a vector had a VIP score of just 0-05 (ranking 958 out of
1002 total features), indicating that age is a smaller influencer of stra-
tum corneum lipids than other factors. Days elapsed between onset
of symptoms and sebum sampling ranked 102 out of the total fea-
tures in importance, indicating that although the variation in time
between onset and sampling was suboptimal it did not prove a major
confounder in this analysis.

Overall, PLS-DA separation improved by the addition of lympho-
cyte and CRP indicators, with slight model accuracy increases when
these two variables were included in the feature matrix (from 62% to
64% accuracy for the overall population, for example). Given that this
work focuses on sebum sampling, however, in the analyses that fol-
low only features obtained from sebum are included, i.e. information
from other diagnostic indicators is excluded from classification mod-
els.

To test whether separation based on sebum alone would improve
in smaller / more homogenous groups, separate PLS-DA models were
built for each split of the population by comorbidity. If model perfor-
mance improved (measured by predictive power - Q2Y - and sensi-
tivity and specificity via leave-one-out cross validation) then this
could indicate that sebum lipid profiling would perform better if
models were constructed based on stratified and matched datasets.
Table 3 shows the results for these metrics across the different mod-
elled subsets.

Separation generally improved as the data were grouped more
finely and modelled predictive power improved. Based on an average
weighted by most significant (in terms of predictive power) comor-
bidity for these subsets, sensitivity improved to 79% and specificity
improved to 83%, with overall accuracy improving to 82%. For

example, PLS-DA modelling of the subset of 27 participants under
medication for hypertension (Fig. 4) showed both good separation
and better sensitivity and specificity (Table 4). These data suggest
that comorbidities are confounders in skin lipidomics.

Similarly, PLS-DA modelling of the subset of participants under
medication for high cholesterol showed good separation (Figure S2
and Table S3, Supplementary Materials), with sensitivity of 100% and
specificity of 80%. This subgroup of 15 was treated with lipid-lower-
ing agents, specifically statins. The subgroup of 11 comprising partici-
pants undergoing treatment for ischaemic heart disease (IHD) also
showed much better separation (Figure S3 and Table S4, Supplemen-
tary Materials), with better overall accuracy, with sensitivity and
specificity of 50% and 86% respectively. This subgroup received varied
medication, but participants presenting with IHD were also being
prescribed statins. Finally, the subset of participants under medica-
tion for T2DM (Figure S4 and Table S5, Supplementary Materials) also
showed both good separation and better sensitivity and specificity
(of 71% and 75% respectively). This subgroup of 19 was typically being
treated with oral hypoglycaemics, in four cases with insulin alone
and in three instances with diet control only.

Table 4
Confusion matrix for COVID-19 positive versus negative (participants with
hypertension).

Hypertension (n =27) True COVID-19 Positive ~ True COVID-19 Negative

(n=10) (n=17)
Predicted COVID-19 Pos-  80% (8) 18%(3)
itive (%, n)
Predicted COVID-19 20% (2) 82%(14)

Negative (%, n)
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Fig. 5. Heat map of VIP scores ranked by commonality to different subgroup PLS-DA models.

Model performance (Figure S5 and Table S6, Supplementary
Materials) also improved versus the base population for a stratified
dataset based on those participants taking statins (sensitivity of 55%
and specificity of 90%). Given that statins control cholesterol and lipid
levels, this may have provided a more similar “baseline” against
which to measure perturbance in the lipidome by COVID-19; patients
taking statins which included both participants treated for high cho-
lesterol and also participants with poor diabetic control or history of
ischaemic heart disease, where statins are routinely added prophy-
lactically to improve long-term outcomes.

Looking across the models, there was commonality in the features
identified as significant in differentiating between COVID-19 positive
and negative. Many features featured in all subsets with VIP scores
above 2 (dark grey in Fig. 5), but others did not, a possible indicator
of overfitting due to the smaller groups when stratified. Where over-
lap does occur between the features, this may reflect the natural
overlap between the subset populations, for example the subset of
participants presenting with high cholesterol is largely a subset of
the participants receiving treatment by statins.

Triglycerides made up the majority of lipids with the highest com-
mon VIP scores. Triglycerides also dominated the list of lipids vali-
dated by MS/MS with the most statistically significant differences
between overall COVID-19 positive and negative participants (Table
S2, Supplementary Materials). Odd-chain fatty acids were present in
eleven of the twenty most statistically significant lipids, unusual
within the mammalian lipidome, but consistent with odd-chain fatty
acids being more prevalent in sebaceous gland lipids than other tis-
sues [25,26]. MS/MS spectra for selected lipids of high statistical sig-
nificance with regard to differentiating between COVID-19 positive
and negative, including lipids with odd-chain fatty acids, are shown
in Figure S1 (Supplementary Materials).

4. Discussion

At the aggregate level, analysis of the metadata for the partici-
pants in this study illustrates the challenges involved in constructing
a well-designed sample set during a pandemic. Age ranges of partici-
pants were large, a wide range of comorbidities were present, and
the time between symptom onset and sebum sampling ranged from
1 day to > 1 month, leading to many confounding factors. In addition,
participant recruitment of the most severely affected was limited by
ethics approval only covering patients who could give informed con-
sent. Definitive separation has not proved possible in this pilot study,
given that too few datapoints were available to rigorously stratify by
medication or by comorbidity. In addition, the requirement to store

the samples for seven days prior to analysis may have altered the
lipid profile, albeit — with the exception of squalene — the major lipid
classes in sebum including triglycerides have previously been found
to be stable at ambient temperatures for up to a month [27]. In future
studies storing gauzes in methanol would be preferable to halt enzy-
matic activity during the storage period [28].

Nonetheless, at the aggregate level, participants with a positive
clinical COVID-19 diagnosis present with depressed lipid levels (odd-
chain triglycerides in particular), with the possibility of an altered
microbiome on the skin surface, reduced barrier function and skin
health. Other work has found evidence of dyslipidemia in plasma
from COVID-19 positive patients, [29,30,9] although evidence of
whether upregulation or downregulation is dominant for these lipid
classes is mixed. Plasma triglyceride levels have been found to be ele-
vated in blood plasma for mild cases of COVID-19, but triglyceride
levels in plasma may also decline as the severity of COVID-19
increased [31].

It should be remembered, however, that the primary role of skin is
barrier function, and lipid expression in the stratum corneum
depends on de novo lipogenesis — in fact nonskin sources such as
plasma provide only a minor contribution to sebum lipids, [32] which
limits the relevance of broader pathway analysis to this biofluid.

Furthermore, these findings suggest that better stratification of
participants could yield a clearer separation of positive and negative
COVID-19 participants by their lipidomic profile. The overall accuracy
in the stratified groups of 82% is comparable to that recently reported
using breath biochemistry of 81%, [4] albeit overfitting is a risk in any
pilot study with small n. This risk can only be reduced through both a
larger training set of data and subsequently testing the models on
future independent validation sets, made possible through cohesive
efforts such as the work of the MS Coalition.

Another point to note is a possible lack of confounders in the par-
ticipant population from seasonal respiratory viruses or seasonal
environment factors (humidity, temperature). Whilst the COVID-neg-
ative patients included patients with respiratory illnesses (e.g. COPD,
asthma) and COVID-like symptoms, samples were collected between
May and July, when the incidence of respiratory viruses is generally
low. Both the common cold and influenza have some symptoms
overlap with COVID-19 and may possibly lead to alterations to lipid
metabolism that could interfere with the identification of features
related to COVID-19 infection. Such viruses within the UK are more
prevalent in autumn and winter [33]. Whilst it seems unlikely that
seasonal respiratory viruses were a major confounding factor in this
work, this is a factor that will need to be taken into account in future
studies along with seasonal environmental influences. This may also
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allow the opportunity to test sebum’s selectivity and specificity with
regard to other respiratory viruses.

In conclusion, we provide preliminary evidence that COVID-19
infection leads to dyslipidemia in the stratum corneum. We further
find that the sebum profiles of COVID positive and negative patients
can be separated using the multivariate analysis method PLS-DA,
with the separation improving when the patients are segmented in
accordance with certain comorbidities. Given that sebum samples
can be provided quickly and painlessly, we conclude that sebum is
worthy of future consideration for clinical sampling for COVID-19
infection.
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