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Cancer is second leading cause of death in the United
States, and part of improving survival outcomes is early
detection and treatment. Assessment of molecular
pathology is critical for cancer treatment, as tumor grade
and metastatic potential determines therapeutic modal-
ity and likelihood of efficacy. Tissue-based analyses
using tumor biopsies are limited by their availability and
narrow scope of sampling (i.e., only one small section of
a large, heterogeneous or metastatic tumor). Recent
technology uses circulating tumor DNA, termed cell-
free tumor DNA (ctDNA), that is present in body fluids
(blood plasma, urine, spinal fluid) from dead cancer cells
to assay for cancer type and grade. The advantage of liq-
uid biopsies like ctDNA is that the DNA is reflective of
both local tumors and distant metastatic sites, and that
multiple samples can be taken non-invasively. However,
these assays are only effective for tumor types with a
high mutational burden, require complex analysis and
are associated with high false positive/negative rates.
Recent work in the microbiome space has suggested
that fecal microbial composition and metabolites have
predictive features in both colorectal cancer (CRC) and
response to chemotherapy or immunotherapy (1).
Previous efforts have been made to use the fecal micro-
biota signature as a non-invasive diagnostic and
prognostic tool for CRC, however, the application to
broader cancer types has not been attempted. Thus, the
diagnostic power of microbiota still remains unclear, but
represents an area of particular interest for both identify-
ing biomarkers of disease and therapeutic response.

In a recent manuscript published in Nature, Poore
et al. address the possibility of using microbial DNA
(mbDNA) to discriminate between cancer and healthy
patients (2). They mined The Cancer Genome Atlas
(TCGA), a compendium of whole-genome and whole-
transcriptome sequencing studies that were performed
on over 20,000 primary cancer and normal-matched

samples of 33 cancer types, for microbial sequences.
Microbial reads were examined from 18,116 samples
from 10,481 patients, of which 6.4 x 1012 reads were
classified as non-human (7.2% of total). Of this subset,
35.2% were identified as bacteria (3.5% of total), and
12.6% of these bacterial sequences were resolved to the
genus level using a publicly available reference database.
Despite rigorous standards for sample quality by the
TCGA, there were several limitations to the use of these
sequences. The tumor-associated microbiome DNA is
of low biomass compared to host tissue DNA, which
makes identifying and eliminating low-abundance and
batch-specific contaminants challenging. The samples
were sequenced at several centers using different plat-
forms, a documented confounding variable in microbial
studies, and healthy individuals were excluded from
sampling. Additionally, the TCGA did not require nega-
tive blank extraction controls to be sequenced, therefore
limiting ability to identify contaminants from the RNA/
DNA isolation process. To address these challenges,
Poore et al. implemented stringent, state-of-the-art bio-
informatics pipelines. Their statistical framework was
designed to identify potential contaminants, removing
taxa only found in single batches or sequencing centers.
This process identified 283 potential contaminating
microbes, which were eliminated along with up to 92%
of total reads using a strict filtering schema.

To assess the predictive ability of the resulting
tumor-associated microbial signatures, the group trained
a machine learning (ML) model using the normalized
data to perform 1) cancer vs normal discrimination, 2)
identification of cancer type, and 3) distinction between
stage I and IV cancers. This model performed well for
outcomes 1 and 2, with an area under the precision-
recall curve P-value of 0.0089 for distinguishing one
cancer type versus all others. The model also was able to
discriminate between stage I and stage IV tumors in
three cancer types, including CRC, but not for other
types or for intermediate stages, a noted limitation.
Cancers with published associations to the presence
of specific microorganisms (i.e., Fusobacterium spp. in
gastrointestinal tumors (1), human papillomavirus infec-
tion in cervical squamous cell carcinoma and head and
neck squamous cell carcinoma samples (3)) were also
examined to ensure that the analysis could detect these
specific microbial signals in their associated cancer
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samples. The risk of using such stringent parameters is
that real signals reflecting the normal commensal micro-
biota of the body sites may be discarded with cancer-
associated signal; Poore et al. addressed this problem by
re-evaluating the ML models pre and post-
decontamination, and found that while two of the 33
may be unreliable, for all other cancer types, data that
underwent this rigorous decontamination performed as
well or better in tissue-vs-normal distinction. Cancer
type identification was less accurate, and thus a universal
decontamination pipeline may not be appropriate in all
situations. These findings indicate that there are unique
microbial signatures that belong to discrete tumor type
tissues, and that these signatures may be useful for
diagnosis.

Spurred by these findings, the group then sought to
compare the ability of blood-based mbDNA in discrimi-
nating between normal and healthy tissue and between
cancer types. They focused on using plasma-based signa-
tures as opposed to whole blood, and developed a ML
model based on the sequences from the matched blood
samples in the TCGA cohort. The resulting model per-
formed well in distinguishing between types of cancer,
but again struggled to distinguish between cancer
grades, a significant limitation for predictive biomarkers.
Interestingly, the algorithm was able to discriminate

healthy vs tumor in two cancer types that have a low
mutational burden, glioblastoma multiforme at 95% ac-
curacy and pancreatic adenocarcinoma at 93%, which
opens up new interest in examining a microbial compo-
nent in development or progression of these diseases.
Poore et al. sought to validate their findings through an-
alyzing an additional cohort of 69 subjects (cancer and
HIV-free) and 100 patients with one of three cancer
types: prostate, lung and melanoma. Cell free DNA was
extracted from these samples using gold-standard micro-
biology practices and whole metagenomic sequencing
was performed. The same decontamination and normal-
ization pipeline was applied to the analysis of these
reads, followed by the ML protocol used earlier
(Figure 1). The resulting algorithm was able to discrimi-
nate between healthy and cancer patients in all cancer
types tested except for melanoma (also the smallest co-
hort), and this performance was repeated using a second
analysis pipeline and taxonomic classification database.
Their results suggest that mbDNA is a potential bio-
marker for cancer detection and diagnosis in liquid bi-
opsies like plasma, and excitingly that their model may
outperform current technology for finding low muta-
tional burden cancers like glioblastoma multiforme and
pancreatic adenocarcinoma.

Figure 1. A machine learning model based on circulating microbial blood-based DNA is a potential diagnostic tool for discrimi-
nating between healthy vs normal patients and cancer type. Microbial blood-based DNA in plasma from patients is sequenced
and then analyzed via a rigorous bioinformatics pipeline. The microbial signature is used to diagnose cancer, with potential
applications for predicting appropriate treatment and therapeutic response. Created with BioRender.com
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The study by Poore et al. suggests that there are
existing associations between specific cancers and micro-
biota, and that these relationships could be valuable for
non-invasive cancer detection and diagnosis. However,
only patient samples with known cancer diagnoses were
enrolled in the TCGA study, and therefore the predic-
tive power of mbDNA will require further testing using
a longitudinal, randomized study. Since microbiota rep-
resent a complex ecosystem with members from bacte-
ria, fungi and virus, it would be of great interest to
investigate the predictive diagnostic power of the myco-
biome/virome in cancer since 64% of the genomic reads
identified in the study were from non-bacterial origin.
Another tremendous opportunity for using mbDNA is
the possibility to predict treatment response and to de-
sign a microbiota-based precision medicine approach. It
would be important to address this possibility by linking
microbiota signals with therapeutic response and sur-
vival data currently available for this cohort.

How applicable is the mbDNA approach to the
clinical setting? The Poore et al. study relies on next
generation sequencing (NGS) and sophisticated bioin-
formatic analysis. The application of NGS in oncology
is quite standard (whole genome, exome, transcriptome)
but clinical laboratories mostly utilize targeted gene se-
quencing for cancer diagnosis. A larger NGS approach
such as the one described by Poore et al. is more
compatible with academic hospitals or commercial labo-
ratories than mainstream clinics. Another critical aspect
of the technology is whether mbDNA could diagnose
cancer in an individual at pre-cancer stage or early stage
1, especially in hard-to-screen cancers such as pancre-
atic, stomach and brain cancer. The Poore et al. model
had limited success in discriminating between stages,
and thus this remains an unknown relationship. The
rate of false positive/negatives is a concern for any
screening modalities. In a study using serum bacterial
DNA to identify patients with hepatocellular carcinoma,

ML was able to distinguish patients with hepatocellular
carcinoma only 79.8% of the time, meaning two out of
every 10 patients would have received either a false or a
missed diagnosis (4). Even current liquid biopsy tech-
nique has been shown to have high variability between
samples and a lack of reproducibility, serious concerns
which have prevented inclusion of this approach as
mainstream clinical diagnostic tool (5). Large multi-
center studies are needed to validate a mbDNA-based
model for diagnostic use in the clinic, and the micro-
biota signature may be more appropriate as a part of a
comprehensive biomarker panel than a singular diagnos-
tic. In summary, Poore et al. opens up a new path to
cancer diagnostics by bringing the microbiome as a po-
tential cancer biomarker, and highlights the benefits of
using big data to find clinically relevant associations.
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