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Expanding the drug discovery space with predicted
metabolite–target interactions
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Metabolites produced in the human gut are known modulators of host immunity. However,

large-scale identification of metabolite–host receptor interactions remains a daunting challenge.

Here, we employed computational approaches to identify 983 potential metabolite–target

interactions using the Inflammatory Bowel Disease (IBD) cohort dataset of the Human

Microbiome Project 2 (HMP2). Using a consensus of multiple machine learning methods, we

ranked metabolites based on importance to IBD, followed by virtual ligand-based screening to

identify possible human targets and adding evidence from compound assay, differential gene

expression, pathway enrichment, and genome-wide association studies. We confirmed known

metabolite–target pairs such as nicotinic acid–GPR109a or linoleoyl ethanolamide–GPR119 and

inferred interactions of interest including oleanolic acid–GABRG2 and alpha-CEHC–THRB.

Eleven metabolites were tested for bioactivity in vitro using human primary cell-types. By

expanding the universe of possible microbial metabolite–host protein interactions, we provide

multiple drug targets for potential immune-therapies.
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Endogenous metabolites produced in the gastro-intestinal
tract (GIT) by microbial and human metabolic processes
have a significant role in modulating host immune

responses1. Therefore, targeting the interspecies cross-talk
between microbial metabolites and human host receptors holds
a recognized therapeutic potential2. Disentangling these interac-
tions in order to retrieve meaningful information remains highly
challenging3. Observational studies of microbial metabolite
abundances in human disease-related cohorts can suggest general
associations with disease etiology but lack the granularity to
identify specific metabolite–host receptor pairings4 or causal
relationships5. Conversely, mechanistic studies that have either
focused on a few selected metabolites screened against specific
receptors6, or adopted system biology modeling7 are limited by
our current knowledge of metabolic pathways and are difficult to
scale to identify hundreds or thousands of interactions with
druggable potential.

Growing in vitro receptor–ligand assay databases have greatly
increased the hypothesis space for drug discovery8 while giving
meaningful mechanistic information regarding metabolite–protein
interactions. Here we present the results of a large-scale compu-
tational analyses, using bioinformatic and chemoinformatic
approaches, to identify multiple and specific interactions between
endogenous metabolites and human host proteins. We utilized a
multi-omics dataset from an Inflammatory Bowel Disease (IBD)
cohort9 published by the Human Microbiome Project 2 con-
sortium (HMP2)10. IBD includes Ulcerative Colitis (UC) and
Crohn’s Disease (CD), whose etiology heavily depends on the
interplay between the GIT microbiome and immune system11.
We then used virtual ligand-based screening to predict the activity
of the original query metabolites on multiple targets12 based upon
historical assay databases containing interaction data between
similar molecules and specific targets. We believe that these pre-
dicted interactions will further our understanding of host–
microbiome interactions as well as assist in drug discovery for IBD
and other diseases.

Results
Ranking metabolites for relative importance in disease states.
The HMP2 consortium IBD cohort sub-study9 involved intensive
multi-omics characterization of patients with CD or UC and non-
IBD control subjects. We focused on the metabolomics data
collected from stool over the course of one year (specifically, the
pre-processed metabolomics abundance tables) and bulk tran-
scriptomics data obtained from biopsies of different sections of
the gut at the beginning of the study (specifically, the pre-
processed transcriptomic count tables) (see Methods). Patients
with less than 3 samples per datatype or with only one sampling
point were excluded, to the final sample size described in Table 1.
Each sample included data on 548 metabolites (matched against
the Human Metabolome Database [HMDB]), and 43870 tran-
scripts (aligned to Genome Reference Consortium Human Build
37 [GRCh37]).

Metabolomic samples did not cluster effectively by disease state
in embedded projections (Fig. 1a). To better define metabolite
relevance for CD or UC etiology we utilized an ensemble method
that combined results from multiple analytical methods (speci-
fically, power estimation and both feature importance and SHAP
values, each from two selected machine learning methods)
combined into a single consensus score, normalized between 0
and 1, where 1 represents the most significant metabolite across
all methods (Supplementary Figs. 1 and 2; Supplementary Data 1).
Using power estimation alone, approximately 73% of the 548
metabolites were differentially abundant (log-fold change with q
value ≤ 0.05) between non-IBD controls and either CD or UC
patients (Fig. 1b). Metabolites in the top quartile of the consensus
scoring, 29% of which overlapped with significantly differentially
abundant metabolites detected in the original HMP2-IBD study9,
were considered for downstream analysis (n= 192) (Fig. 1c). We
also annotated the selected 192 metabolites from HMDB, but no
statistical difference was found in the consensus scoring across
metabolite ontology (Supplementary Fig. 3).

In agreement with previous studies, CD and UC patients had a
significant (i.e., q value < 0.05) depletion of short chain fatty acids
like butyrate (log10fc=−0.15[CD]; −0.06[UC]) and valerate/
isovalerate (log10fc=−0.29[CD]; −0.48[UC]). Significant enrich-
ments included several acylcarnitines, arachidonate (log10fc=
0.59[CD]; 0.60[UC]), taurocholate (log10fc= 0.16[CD]; 0.04
[UC]), with a correspondent depletion of lithocolate (log10fc=
−0.30[CD]; −0.58[UC]) and deoxycholate (log10fc=−0.53[CD];
−0.53[UC]). Among the highest-ranking metabolites in CD and
UC, we also detected a substantial and significant enrichment in
nicotinuric acid, (log10fc= 0.43[CD]; 1.16[UC]), C18:1 carnitine
(log10fc= 0.54[CD]; 0.30[UC]) and several triacylglycerols, while
porphobilinogen (log10fc=−0.26[CD]; −0.70[UC]), tetradeca-
nedioic acid (log10fc=−0.76[CD]; −0.86[UC]) and nicotinic
acid (log10fc=−0.49[CD]; −0.99[UC]) were notably depleted.

Connecting metabolites as ligands to specific human proteins.
To connect metabolites with perspective receptors, we used their
chemical structure as query to find structurally similar natural or
synthetic compounds with functional assay data in the ChEMBL
database. The original metabolites were mapped to ChEMBL
compounds by similarity searches using canonical chemical fin-
gerprints which reduced the total space of metabolites and per-
spective targets to 13,082 unique pairs. We further filtered for
compounds having high similarity scores with the top-ranking
metabolites (i.e., Tanimoto similarity ≥ 0.85 or Tverskyα=0.05

similarity ≥ 0.95) and, for those, only binding proteins with per-
spective high affinity (i.e., either pIC50 or pEC50 values, hereafter
referred to as pxC50 ≥ 5.5) were retained. Highly pleiotropic
metabolites (i.e., metabolites with ≥ predicted 20 targets), or
pleiotropic targets (i.e., targets with predicted associations to ≥ 20
metabolites) were removed to further refine the hypothesis space.

A total of 135 metabolites were provisionally connected to 80
different perspective targets (Fig. 2a; Supplementary Data 2).
Those metabolites fell mostly into the lipid-like and organic acid

Table 1 Overview of the samples and patient dataset used in this study (after filtering from the original study by Lloyd-price
et al9.).

Participants by sampling Total samples over time

Diagnosis Metabolomics Host transcriptomics Metabolomics Host transcriptomics

CD 43 50 127 265
UC 25 30 74 146
nonIBD 22 26 51 135
Total 90 106 252 546
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Fig. 1 Metabolomics results and comparisons to the original HMP2 IBD study9 (HMP2). a UMAP analysis of the metabolomics sample distribution by
Crohn’s disease (CD) and Ulcerative Colitis (UC) patients and controls (nonIBD). b Volcano plot showing the differential abundance of each metabolite per
disease state against the consensus scoring of each state. c Number of metabolites considered relevant in HMP2 and current study per disease state,
subdivided into overlapping and non-overlapping subsets. d Total number of metabolites selected relevant in each study. e Intersection matrix between
metabolites selected each study. f Correlation plot between the bootstrapped power estimation method used to determine metabolite differential
abundance between CD and UC patients results. g Correlation between the consensus scoring used in this study and HMP2 FDR-adjusted p values for each
metabolite (refer to Table 1 for samples composition).
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macro-categories with expected modulatory activity against 9
macro-categories of drug targets (Fig. 2b). For example, 7-
methylguanine, is structurally similar (Tverskyα=0.05 similarity =
0.96) to 8-aminoguanine (CHEMBL8040) which is an inhibitor
(pxC50= 5.8–6.2) of purine nucleoside phosphorylase (PNP).
Among the lipid-like metabolites, heptanoic acid was connected
through azelaic acid (CHEMBL1238, Tverskyα=0.05 similarity=
0.955) to the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) and peroxisome proliferator-activated
receptors alpha (PPARA) with high inhibitory activity (pxC50=
6.0 and 8.6). Hydrocinnamic acid, depleted in both UC and CD
patients was connected to cytochrome P450 p1a2 (CYP1A2)
(Tanimoto similarity= 0.89) via a strong analog inhibitor (pxC50

= 8.3). Nicotinic acid (underrepresented in CD and UC patients)
was connected to its known receptor, the hydroxycarboxylic acid
receptor 2 (HCAR2 or GPR109a), whereas the product of its
degradation, nicotinuric acid, was overrepresented and connected
to Lamin A/C protein (LMNA) through a binder analog
(Tverskyα=0.05 similarity= 0.97, pxC50=7.65) with unknown
directionality. Alpha-carboxyethyl hydroxychroman (alpha-
CEHC) was also connected to LMNA but also to the thyroid
hormone receptor beta (THRB). However, since the modulatory
action of the analog compound is unknown and alpha-CEHC is
depleted in UC but enriched in CD, we were unable to infer
directionality of the interaction. Oleanolic acid was connected
through other plant terpenoids (urolic and moronic acid) and
bacterial-specific sphingolipids (i.e., CHEMBL1334750) to several
targets of interest for pharmaceutical purposes such as GPBAR1
(G Protein-Coupled Bile Acid Receptor 1) and PTPN7 (Protein
tyrosine phosphatase non-receptor type 7).

Connecting gene expression and metabolite abundance. We
then considered differential expressed genes (DEGs) comparing
non-IBD against CD and UC states respectively, accounting for
the heavy impact of the biopsy location variable (Fig. 3a). A total
of 2170 DEGs occurred overall, of which 820 DEGs were shared
by both CD and UC (Fig. 3b). Pathway enrichment analysis
determined a high representation of immune inflammation-
related pathways (i.e., Cytokine Signaling, NRF2 non−canonical
NF− kB pathway, Interleukin 3, 14 and 17 signaling) (Supple-
mentary Fig. 4; Supplementary Data 3).

Starting from DEGs, we proceeded to parse connections with
differentially abundant metabolites using the ChEMBL database, by
inverting the workflow described above. After parsing all possible
modulators among for DEGs, top-ranking metabolites were
considered modulators if having any similar analog with functional
activity against the candidate gene represented by the transcript,
resulting in a total of 45 prospectively druggable targets.

Several metabolites underrepresented in IBD were classified as
tentative negative modulators of upregulated targets. For example,
receptors of the CXC ligand 8 (CXCL8 or IL8) chemokine family,
CXCR1 and CXCR2, were overexpressed while their known
negative modulator compounds, ibuprofen (pxC50= 7.0) and its
HMP-2 derivative, 2-hydroxibuprofen, (Supplementary Data 3),
were under-represented in IBD patients although below the
consensus scoring threshold (Supplementary Data 1).

Another example is HCAR2 (GPR109a) which was upregulated
in CD and UC patient biopsies (log2fc= 6.15 [CD] and 4.51
[UC]) while its competing modulators, nicotinic acid and
trigonelline were depleted and enriched, respectively, in IBD
patients’ stool (Fig. 3c; Supplementary Data 2).
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We also built connections based on co-directionality between
metabolite depletion and corresponding downregulation of
perspective targets. For example, GPR119 was downregulated in
the UC cohort (log2fc=−1.39) and its known activator, linoleoyl
ethanolamide (pxC50= 5.66) was significantly depleted in UC
patients (Supplementary Data 1). Neuronal acetylcholine receptor
subunit beta-2 (CHRNB2) was downregulated in UC patients
(log2fc=−1.08) where L-acetylcarnitine and cotinine were
depleted, both analog to acetylcholine (Tverskyα=0.05 similarity
=0.95 and 0.99), a strong inhibitor of CHRNB2 (pxC50= 8.8).
Nitric oxide synthase 2 (NOS2), upregulated in IBD patients
(log2fc= 2.60[CD]; 3.49[UC]), was connected to the depletion of
negative modulators such as L-arginine (pxC50= 6.52, log10fc=
−0.31[CD]; −0.19[UC]).

Assigning candidate metabolites to targets with genetic evi-
dence. We retrieved 808 genes with genetic association to IBD
from the GWAS catalog13 and an extensive published review of
IBD pathways14. These genes were intersected with target-
compound assay and HMP2 datasets which resulted in 464
potential unique pairings of candidate genetic targets with
metabolite modulators (Supplementary Data 4), 13 of which have

metabolites with known modulation mechanisms (Fig. 4a–d;
Supplementary Data 5).

CXCR1 and CXCR2 were mapped to a regulatory variant
(rs11676348-T) statistically associated with an increase risk to
UC15 (Supplementary Fig. 5), and in our study were mapped to
an inhibitor, ibuprofen. An intronic variant statistically associated
to inflammatory skin disease (rs4795067)16 is mapped to NOS2,
which is also part of enriched nitric oxide and microbe-sensing
pathways, both involved in IBD phenotypes (Fig. 4a); we
connected NOS2 with the scarcity of arginine, an inhibitor.
Other metabolite–target pairings, although not differentially
expressed in the HMP2 dataset, had interesting genetic and
metabolomics associations. For instance, an intergenic variant
(rs79243092-C) mapped to gamma-aminobutyrate receptor
subunit 2 (GABRG2) is linked to an increase in macrophage
inflammatory protein 1b in Europeans17. In our study we linked
GABRG2 to several conjugated bile acids and corticosteroids
depleted in IBD, including oleanolic acid, through ganaxolone
(CHEMBL1568698) and allopregnanolone (CHEMBL207538),
two activator compounds (Fig. 4b). Finally, variant rs56330463-
C mapped to the serotonin receptor (HTR4) is associated with
increase in monocytes, an inflammatory phenotype18. Notably,
serotonin was depleted in UC an CD patients while its precursor,
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Fig. 4 Overview of identified for putative target proteins. Metabolites were connected through similar ChEMBL compounds where similarity is classified
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shown in Supplementary Fig. 5.
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H-hydroxy-L-tryptophan (5-HTP) was enriched (Fig. 4c). Finally,
intronic variant rs402219-G, inside the solute carrier family
22 member 3 gene (SLC22A3) is genetically associated to
another monocyte-related inflammatory marker;19,20 SLC22A3
is antagonized by corticosterone (CHEBL110739) and several
corticosterone-similar metabolites were enriched in disease states
(Fig. 4d). In summary, our collective analyses identified
thousands of unique of metabolite–targets pairs, 983 of which
having known direction of modulation (Supplementary Data 6,
unfiltered results in Supplementary Data 7).

Biological effects of specific metabolites from complex in vitro
cellular assays. To evaluate the biological activity of predicted
receptor–metabolites pairings, we profiled eleven candidate
metabolites across a standardized panel of disease-relevant
human primary cell-based phenotypic cellular assays, the Bio-
MAP® Diversity PLUS panel21. The profiled metabolites were 13-
cis-retinoic acid, acetylcholine, adenosine, alpha-CEHC, butyrate,
histamine, ibuprofen, lithocholic acid, nicotinic acid, oleanolic
acid and serotonin (assay results and plots are shown in Sup-
plementary Data 8 and Supplementary Fig. 6, respectively). Dif-
ferent concentrations were tested for each metabolite due to
cytotoxicity constraints, but keeping highest concentrations above
reported average concentrations measured in human blood (as
from the HMDB). None of the compounds showed cytotoxicity
effects. However, quantitative differences in the responses of
specific cellular systems could be related to the metabolite con-
centrations which were determined by compound solubility and
avoidance of cytotoxicity.

In Fig. 5, we show examples of four metabolites where
knowledge-based canonical pathway analyses were used to identify
explanatory links between the perspective modulated targets for
each metabolite and their respective in vitro assay readouts.
Butyrate is a known immunomodulator of GPR41, GPR43 and
HCAR2 so we performed in vitro assays for benchmarking
purposes. Butyrate showed anti-inflammatory and immunomo-
dulatory related activity (i.e., decreased levels of IL-6, IL-8, IL-10,
and TNF-alpha) across multiple cellular assays representing T cell
dependent B cell activation (BT), fibroblasts (HDF3CGF) and
coronary artery smooth muscle cells (CASM3C) (Fig. 5a), but also
had antiproliferative effects on lymphocytes in the BT system.

Nicotinic acid (vitamin B3) is an anti-inflammatory activator
of HCAR2. Nicotinic acid was largely inactive at tested
concentrations with minor lowering of soluble IL-17A in the
BT system (Fig. 5b). Alpha-CEHC was a highly scoring
metabolite in our analysis with unclear directionality to disease
mechanisms. Alpha-CEHC also had low activity with slight
suppression of several inflammatory markers in the HDF3CGF
system of dermal fibroblast cells modeling wound healing and
fibrosis (Fig. 5c). Finally, we show oleanolic acid which has
known anti-inflammatory properties and, based on our analysis,
potentially interacts with GABRG2 as its target. Oleanolic acid
showed strong anti-inflammatory and immunomodulatory activ-
ity across multiple systems including the above-mentioned BT,
CASM3C and HDF3CGF systems as well as KF3CT which
models Th1 cutaneous inflammation. Interestingly, oleanolic acid
was not antiproliferative to lymphocytes in the BT assay, contrary
to butyrate. We also mapped oleanolic acid to PTPN7 which can
modulate VCAM1 (suppressed in HDF3CGF fibroblast assay)
through effects on p38 MAP-kinase (Fig. 5d).

Discussion
We greatly expand the number of potential protein–metabolite
interactions based on a well-characterized IBD multi-omics
dataset from HMP29 by going beyond conventional associative

studies. Machine learning algorithms evaluated the relative
importance of each metabolite in the context of the whole
metabolomics profile while adoption of a consensus scoring
minimized biases across the different methods (Supplementary
Fig. 1 and 2). Compared to the HMP2 IBD study, our consensus
scoring retrieved more relevant metabolites without recurring to a
dysbiosis score, an index derived from the beta-diversity analyses
of the metagenomic specimens, which poses issues for reprodu-
cibility across cohorts and translatability to treatment purposes22.
Patterns of enrichments and depletion expected for UC and CD
from the literature or the HMP2 study, were confirmed by our
method, such as the depletion of short chain fatty acids like
butyrate and valerate in CD and UC23. Thus, we believe that
consensus scoring for each metabolite across the whole metabo-
lomic signature of the disease state better defines the hypothesis
space for metabolite–target interactions. Additionally, while
consensus scores had significantly different distributions between
CD and UC patients, it was not particularly impacted by the
metabolite ontology (Supplementary Fig. 3) which reflects the
strong relationship occurring between diet and microbial
metabolism.

Our study detected several metabolites known to have
important roles in the disease state then built connections with
host metabolism and disease states. For example, nicotinic acid
was connected to its known receptor, GPR109 (HCAR2), an
interaction known to reduce inflammation in IBD24. This finding
was in accordance with experimental evidence showing anti-
inflammatory effects of niacin in a HCAR2-dependent manner25.
Counterintuitively, we found HCAR2 to be significantly over-
expressed in CD and UC patients. HCAR2 is often involved in
lipid metabolism26 and colonic inflammation24. We also found
that trigonelline, another activator of HCAR2, was over-
represented. Trigonelline has protective effects in IBD DSS mice
models27, but is also involved in lipid metabolism, suggesting its
role in the HCAR2 upregulation28.

Nicotinuric acid, degradation product of nicotinic acid, was
instead connected to LMNA, whose knock-out promotes
inflammatory responses in IBD mice models, through increase in
CD4+ T-cells29. A potency assay built this connection, so the
directionality of this interaction with respect to disease is unclear,
but might help to explain nicotinuric acid effects on lympho-
cytes30. Histamine was enriched in both UC and CD patients and
its cognitive receptor HRH4 was over-expressed. Histamine also
induced a pro-inflammatory in vitro profile. Collectively, these
findings are well-aligned with the proposed contribution of an
activated histamine-HRH4 axis in other inflammatory disorders
such as Meniere disease31.

Long chain polyunsaturated fatty acids (i.e., arachidonic acid,
docosapentanoic acid and 8,11,14-eicosatrienoic acid) in IBD are
known pro-inflammatory metabolites32 and we detected their
significant enrichment in HMP2 study patients. Other metabo-
lites with high consensus score but yet unknown disease impli-
cations belong to compound classes associated with either anti-
inflammatory (phenylpropanoids33) or pro-inflammatory (cho-
lesteryl esters34) activities.

A deeper understanding of the mechanistic interaction in this
disease space is still necessary for the development of IBD ther-
apeutics35. By leveraging a virtual screening approach, we con-
nected metabolites to compounds with measured modulation
properties recorded in ChEMBL using 2d-similarity screening via
molecular fingerprints. We limited our searches to functional assays
in order to have immediate and confident direction of modulation
between the compound and the target protein. Purposely, we did
not extend computational screening to QSAR models to avoid
known pitfalls of predictive associations36 and only defined “posi-
tive”modulation (which includes agonist, activators, cofactors, etc.),
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“negative modulation” (including inhibitors, antagonists, etc.) or
“other” for all uncharacterized or unclear interactions. Additionally,
we used a target classification based on mechanism of action for
drug and treatment37 and found that the most connected proteins

were well-known drug targets such as GPCRs, transcriptional fac-
tors and various enzymes.

Several host–metabolite pairings emerge from our analyses
which have yet to be explored for drug purposes to the best of our

Fig. 5 Examples of biomarker readouts from in vitro cell assays for four of eleven tested metabolites. a Butyrate, b Nicotinic acid, c Alpha-CEHC and d
Oleanolic acid. Metabolites were administered at different concentrations, here ranked from higher to lower (concentrations in Supplementary Data 8).
Readouts graph show the differential abundance vs baseline for the B and T cell system (BT), arterial smooth muscle cells (CASM3C) and wound healing
(HDF3CGF) (full results for all 11 metabolites are shown in Supplementary Fig. 6). Knowledge-based graphs on the right represent possible pathway
connections between the proposed targets for each metabolite and the most significant biomarker readouts. Interactions are color-coded for positive
(green), negative (red) and unknown (gray) modulation.
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knowledge. Hydrocinnamic acid (or phenylpropanoid acid),
which is ingested through seeds and metabolized by Clostridia
species, has known anti-inflammatory properties33 and was
depleted in both UC and CD patients. Hydrocinnamic acid has a
mild inhibition effect on toll-like receptor 7 (TLR7) which is an
activator of innate immunity NF-κB expressing cells38, thus
might be useful to dampen the inflammatory response.

Oleanolic acid is a plant triterpenoids with anti-inflammatory
properties39. We connected oleanolic acid (and its analog ursa-
nolic acid) to PTPN7 which interacts with MAP-kinases to lower
expression of downstream NF-κB40. Oleanolic acid was also
connected to GPBAR1, which has anti-inflammatory activity41, as
well as GABRG2, which is genetically associated with an increase
in macrophage inflammatory protein 1b. The directionality
between the GABRG2 genetic variant and the inflammatory
phenotype needs further confirmation. In vitro assays performed
in this study, provide further confirmation of the immune-
modulatory and anti-inflammatory properties of oleanolic acid
and lends support to further determination of mechanism of
action, perhaps starting with GPBAR1 and PTPN7 mediated
responses.

GABRG2 was also connected to several bile acids conjugates.
Imbalances between conjugated bile acids operated by the microbial
metabolism, such as the detected increase in glycocholate and
taurocholate severely impacts the inflammation mechanism
through modulation of the farnesoid receptor (FXR)42.

GPR119 is an orphan GPCR (i.e., its endogenous ligand has
not been yet identified), which was downregulated in the UC
cohort. GPR119 has also been previously linked to endocanna-
binoid metabolites43 and shows similar mechanistic anti-
inflammatory properties in colitis, through release of the
glucagon-like peptide GLP-144. Using in vitro assay data, we
connected GPR119 with a strong activator underrepresented in
IBD patients, linoleoyl ethanolamide, which has been shown to
lower LPS-induced macrophage inflammation in dermatitis45.
We also made another putative connection between L-
acetylcarnitine and CHRNB2, both of which were associated
separately in neuronal diseases46.

Retrospective studies suggest that drugs targeting human genes
with genetic associations to disease mechanisms might have a
higher probability of success in the clinic47,48. Therefore, we
sought to align target-metabolite pairings with genetic association
to IBD- or inflammation-related phenotypes. The genes NOS2,
CXCR1 and CXCR2, which have robust genetic associations with
such phenotypes, were also connected to CD or UC disease states
through metabolomics and transcriptomics. For example, the
connection built between depletion in L-arginine and enrichment
in NOS2 confirms the antioxidant effects of L-Arg49. Serotonin
receptor HTR4 is another target involved in both the gut-brain
axis and inflammation. We found serotonin depletion to the
advantage of 5-HTP, its precursor. 5-HTP enrichment has been
previously reported for IBD50 and gut microbiota have a key role
in modulating serotonin synthesis and regulating 5-HTP pro-
duction51. We have also confirmed anti-inflammatory effects of
serotonin in vitro cell assay (Supplementary Fig. 6).

CXCR1 and CXCR2 were overexpressed in IBD patients while
ibuprofen, a negative modulator, was under-represented. Ibu-
profen, a well-known nonsteroidal anti-inflammatory drug
(NSAID), was derived from a natural metabolite, propionic
acid52. NSAIDs possibly promote exacerbation events in IBD
patients, however, a recent meta-analysis of published data failed
to find a statistically significant association between NSAID usage
and colitis occurrence53. It is unclear whether this cohort of IBD
patients was prevented to assume ibuprofen by medical pre-
scription, but the causal determination of such interactions is
beyond the scope of this study.

Interestingly, the connections we built included potential bio-
markers of disease severity. For example, 7-methylguanine, a
biomarker of colorectal cancer54, was connected through 8-
aminoguanine with purine nucleoside phosphorylase (PNP). PNP
deficiency is responsible for T-cell lymphopenia55. The anti-
directional evidence might suggest that, in the HMP2 cohort,
increase in 7-methylguanine does not modulate the immune
system, but is rather a consequence of the ongoing dysbiosis in
these patients, possibly due to the detected overabundance of E.
coli9.

In conclusion, we identified 983 high quality hypothetical
connections between gut microbial metabolites and human pro-
teins with potential relevance to IBD and other immune-related
diseases. These proposed connections require further experi-
mental validation in order to establish their direct role in disease
causality or progression, rather than a consequence of disease
dysfunction. Nonetheless, our study highlights the relationship
importance of diet and human-hosted microbiota in modulating
the immune system responses and provides perspective
metabolite–target connections for drug design purposes.

Methods
Statistics reproducibility. Metabolomics and host transcriptomics data were
downloaded from the public repository of the HMP2 project, the Inflammatory
Bowel Disease Multi-omics Data Base (https://ibdmdb.org/). Samples description,
collection, replicates, and preprocessing analyses are described in Lloyd-Price
et al.9. Of the original 132 participants only those with metabolomics or tran-
scriptomics samples were included in this analysis, resulting in the sample size and
distributions described in Table 1.

Metabolomics data analysis. Peak areas for each metabolite were normalized for
each LC/MS method using total sum scaling and isometric log-transformation. The
values were then averaged across methods to result in a table of metabolite by
samples. PCA was used to filter outlier samples (only two outlier samples were
filtered out).

Bootstrap-coupled estimates56 were performed on each metabolite singularly
(5000 iterations) using multi-control grouped design (i.e., UC vs nonIBD and CD
vs nonIBD) and significance was assessed via Mann–Withey U test (p values were
FDR-corrected with Benjamini & Hochberg method)57.

Machine learning analysis was performed as follows: six machine learning
classifier methods from Python packages Scikit-learn 0.21.358 (logistic regression,
k-nearest neighbors, random forest, 3-layers dense neural net, gaussian naïve
Bayes, linear kernel one-vs-rest), XGBoost 0.9059 and a novel generalized version of
mixed effects random forest model (with the XGBoost kernel)60 were tested with
default parameters to predict diagnosis labels from the transformed metabolomics
data matrix. Recruitment site, use of antibiotics and patient age metadata were
included in the training matrix as additional features. A 10-fold stratified cross
validation was used to avoid overfitting. All methods performances were assessed
with the weighted F1-score of the predictions on the holdout test set (15% of the
dataset) and the best method was selected for the highest score (XGBoost).

XGBoost was also trained separately with additional hyperparameter tuning
using GridSearch 5-fold cross-validation. Then, a generalized mixed effects
machine learning model with an XGBoost core, based on the generalized mixed
effects random forest60, was trained using participant ID as cluster, hospital site as
random effect and sex, age and antibiotics as fixed effect. Explanatory metabolite
weight per disease state prediction was assessed for XGBoost and mixed effect
XGBoost using feature importance, gain and SHAP values59.

Finally, the following features were scaled in the interval [0,1] and combined to
generate the consensus score: (i) FDR-adjusted p value from the Mann–Whitney U
test on the bootstrap-coupled estimation; (ii) feature gain per metabolite in the
XGBoost model; (iii) feature importance per metabolite in the XGBoost model; (iv)
SHAP value per metabolite per disease state in the XGBoost model; (v) feature
importance per metabolite in the generalized mixed effects XGBoost model; (vi)
SHAP value per metabolite per disease state in the generalized mixed effects
XGBoost model. Consensus score was computed by averaging the selected scaled
predictors scaling the average between [0,1] and square-root-normalization.
Definition of metabolite classes and origin were parsed from The Human
Metabolome Database 4.0 (HMDB)61 and summary visualizations were built using
Upset visualizations62.

Host transcriptomics data analysis. Uniform Manifold Approximation and
Projection (UMAP)63 visualizations were built using R package uwot v0.1.8. Count
data from biopsies were normalized using R package DESeq2 1.22.264. Due to the
important effect of biopsy location on expression data, samples were assigned to a
dummy variable representing either ileum or non-ileum biopsies. Differential gene
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expression per each disease state was analyzed using a � diagnosis*is ileum for-
mula with DESeq2. Pathway enrichment analysis was performed using protein
interaction networks in R package pathfindR 1.3.065 on the Reactome database66.
Definition of the target classes of interest for drug design purposes were assigned
using a pre-defined target map67.

Similarity searches and ligand-based virtual screening. All metabolites ori-
ginally present from the metabolomics dataset were used as queries for similarity
searches (i.e., before any filtering step). HMDB was used to parse SMILES strings
for each metabolite (with additional manual curation to fix mismapping/missing
HMDB codes from the original HMP2 study). SMILES strings were converted into
2D chemical fingerprint using Python package RDKit. Similarity searches were
performed using Tanimoto and Tverskyα=0.05 similarity scores against compounds
in the ChEMBL database v25 (https://www.ebi.ac.uk/chembl)68 internally ingested,
using ChemAxon MadFast Similarity Search software with default parameters. The
full hypothesis space included 2,721,397 unique compound–target pairs from the
ChEMBL database. Assays data were then parsed for each compound using their
unique ChEMBL ID numbers.

Target selection from genome-wide association studies. Genetic association to
IBD, CD and UC an inflammatory conditions was parsed from the GWAS cata-
log69 (release 2020-07-14) and looking for disease traits containing the keywords
“inflammatory”, “Crohn”, “colitis”, “monocyte”, or “lymphocyte”. Mendelian evi-
dence was parsed manually from The Online Mendelian Inheritance in Man
database (OMIM)70 from reference #266600 which includes Crohn’s Disease and
Ulcerative Colitis. Additional candidate targets were added manually from a recent
comprehensive reviews of IBD-related pathways14. Networks representations are
optimized manually via RCy3 and Cytoscape 3.828.

In vitro validation assays. In vitro assays were performed using the Discovery
PLUS platform of the BioMAP panel21 at Eurofins Panlabs, Inc. (St Charles, MO,
USA). BioMAP systems are constructed with one or more primary cell types from
healthy human donors, with stimuli (such as cytokines or growth factors) added to
capture relevant signaling networks that naturally occur in human tissue or
pathological conditions. Conditions tested are as follows: vascular biology model
for inflammatory environment Th1-specific (3C) and a Th2-specific (4H); Th1
inflammatory state specific to arterial smooth muscle cells (CASM3C); monocyte-
driven Th1 inflammation (LPS); T cell stimulation (SAg); chronic Th1 inflam-
mation driven by macrophage activation (lMphg); T cell-dependent activation of B
cells that occurs in germinal centers (BT); Th1-specific (BE3C) and Th2-specific
(BF4T) airway inflammation of the lung; myofibroblast-lung tissue remodeling
(MyoF); skin biology (KF3CT) and wound healing (HDF3CGF). Protein biomarker
readouts are selected for predictiveness of their mechanism of action. Compounds
concentrations were selected based on compound solubility and minimizing
cytotoxicity (Table 1). After analysis the most important readouts are assigned to
the perspective targets through selected shortest paths on the canonical pathway
analysis performed via MetaCore (GeneGo) v20.1 (Thomson Reuters, https://
portal.genego.com/).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data from the IBD cohort are available at the IBDMDB website (https://ibdmdb.org),
including cohort description and sample handling and preprocessing. All pertinent
database are publicly available: HMDB61, ChEMBL68, OMIM70 and GWAS catalog13. All
other data are provided in Supplementary Data files. Any remaining information is
available from the corresponding author upon reasonable request.

Code availability
Scripts to reproduce the analyses are available as downloadable repository71 under
Creative Commons 4.0 open license; including instructions to build a Docker image for
reproducibility (https://doi.org/10.5281/zenodo.4439416).
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