
Lee et al. Cell Death and Disease          (2021) 12:250 

https://doi.org/10.1038/s41419-021-03539-5 Cell Death & Disease

ART ICLE Open Ac ce s s

Epigenetic regulation of p62/SQSTM1 overcomes
the radioresistance of head and neck cancer cells
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Abstract
Tumors are composed of subpopulations of cancer cells with functionally distinct features. Intratumoral heterogeneity
limits the therapeutic effectiveness of cancer drugs. To address this issue, it is important to understand the regulatory
mechanisms driving a subclonal variety within a therapy-resistant tumor. We identified tumor subclones of HN9 head
and neck cancer cells showing distinct responses to radiation with different levels of p62 expression. Genetically
identical grounds but epigenetic heterogeneity of the p62 promoter regions revealed that radioresistant HN9-R clones
displayed low p62 expression via the creation of repressive chromatin architecture, in which cooperation between
DNMT1 (DNA methyltransferases 1) and HDAC1 (histone deacetylases 1) resulted in DNA methylation and repressive
H3K9me3 and H3K27me3 marks in the p62 promoter. Combined inhibition of DNMT1 and HDAC1 by genetic
depletion or inhibitors enhanced the suppressive effects on proliferative capacity and in vivo tumorigenesis following
irradiation. Importantly, ectopically p62-overexpressed HN9-R clones increased the induction of senescence along with
p62-dependent autophagy activation. These results demonstrate the heterogeneous expression of p62 as the key
component of clonal variation within a tumor against irradiation. Understanding the epigenetic diversity of p62
heterogeneity among subclones allows for improved identification of the functional state of subclones and provides a
novel treatment option to resolve resistance to current therapies.

Introduction
Cancer arises from the clonal evolution of a single cell

during tumor development. However, most human cancers
are characterized by extensive intratumoral heterogeneity,
containing clonal subpopulations with distinct phenotypes
and biological properties. Tumor heterogeneity at diagnosis
can be altered by selective pressure from cytotoxic and

molecular targeted chemotherapies, which promotes the
growth of minor, therapy-resistant tumor cell clones and
induces the recurrence of resistance1–3. Head and neck
cancer is the seventh most common malignancy world-
wide4, and the majority of patients with cancer receive
radiation therapy with curative and adjuvant chemotherapy
in early and advanced stage tumors5. Despite this, resis-
tance of head and neck cancer to radiotherapy is one of the
primary reasons for locoregional recurrence6,7. Therefore,
it is important to understand the mechanisms associated
with the responses of subclones to cancer therapy to
improve treatment effectiveness.
Autophagy is a highly conserved nutrient recycling

process that removes unnecessary or dysfunctional com-
ponents via a non-selective bulk incorporation8. On the
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other hand, under metabolic and therapeutic stress con-
ditions, cells drive a selective autophagy that involves
adaptors to ensure efficient recognition and sequestration
of the cargo within autophagosomes9,10, possibly allowing
for exploiting autophagy as a therapeutic strategy for
targeting cancer cells. We and others have demonstrated
that a persistent and high autophagic flux is linked to
cellular senescence as a tumor suppressive mechan-
ism11,12. p62/SQSTM1 (hereafter p62) is the first identi-
fied autophagy adaptor13,14. p62 has fundamental
functions in tumorigenesis and tumor maintenance owing
to its ability to interact with key proteins in various sig-
naling pathways15–18. However, the molecular mechan-
isms controlling p62 expression and the clinical
significance of the p62 levels within a tumor are poorly
understood.
Functional variation of clones within an individual

tumor results, in part, from the presence of genetically
different subpopulations19. However, epigenetic intratu-
mor heterogeneity plays a relatively more important role
in the phenotypic variation of cancer cells with a high
degree of genetic homogeneity1,3. At the molecular level,
epigenetic mechanisms that contribute to tumor hetero-
geneity include DNA methylation, histone modifications,
and chromatin remodeling20,21, which events involve
several classes of epigenetic regulators that transfer or
remove chemical groups to or from DNA or histones,
respectively22,23.
In this study, we identified two distinct subclones iso-

lated from a primary head and neck tumor. Each clone
with distinct radiation sensitivity showed different levels
of p62 expression via epigenetic regulation in the p62
promoter regions. Here, based on the roles in autophagy
and senescence induction, we addressed p62 as a candi-
date therapeutic target to overcome clonal variation to
radiation response and to improve prognostic outcomes.

Materials and methods
Cell culture
AMC-HN9 cells (Asan Medical Center-Head and Neck

cancer 9, referred to as HN9 in this study) were estab-
lished from an undifferentiated primary head and neck
cancer sample isolated from a patient treated at Asan
Medical Center24 and were authenticated by short tandem
repeat sequence analysis. The cells were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM; Invitro-
gen, Grand Island, NY, USA) supplemented with 10% fetal
bovine serum (FBS; Invitrogen), 100 µg/ml penicillin/
streptomycin, and 100 µM non-essential amino acids
(Invitrogen) at 37 °C in a humidified 5% CO2 atmosphere.

Reagents and radiation
Bafilomycin-A1, 5-Aza-2′-deoxycytidine (5-Aza), and

MS-275 (Enzo Life Science, Farmingdale, NY, USA) were

purchased from Sigma (St. Louis, MO, USA). For irra-
diation, a 6 MV photon beam generated by a linear
accelerator (CLINAC 600 C; Varian, Palo Alto, CA, USA)
at a dose rate of 2 Gy/min was used.

Single-cell cloning from the tumor cells
HN9 cells were harvested and resuspended in fresh

medium to generate a single-cell suspension with a den-
sity of ~10 cells/ml. Then, 100 µl of the single-cell sus-
pension was dispensed into each well of a 96-well culture
plate. Each well was checked under a phase-contrast
microscope, and wells containing only a single cell were
marked. When a colony reached confluence, it was
transferred to a six-well dish and was maintained until
nearly confluent.

Monitoring of the cell growth rate
Time-dependent cell response profiling was performed

using the xCELLigence RTCA DP System (ACEA Bios-
ciences, San Diego, CA, USA) as described by the man-
ufacturer. The growth rate of the cells was measured
based on the doubling time obtained using the xCELLi-
gence System.

Xenograft model
To determine the tumorigenic activity of each clone,

flank xenografts were established in 5- to 6-week-old male
athymic nude mice (BALB/c nu/nu) by subcutaneous
injection of 1 × 107 cells. When the tumors reached
50–100 mm3, mice with established xenografts were
stratified by tumor volume and randomized into treatment
groups. All groups included five to eight mice, which were
euthanized after two weeks of treatment. Animal experi-
ments were approved by the Institutional Animal Care and
Use Committee at the Asan Institute for Life Sciences.

Clonogenic cell survival assay
Cells exposed to different doses of radiation were plated

in duplicates at a limiting dilution in six-well plates and
incubated in complete medium for 14 days. After staining
with crystal violet, clones with >50 cells were counted as
positive colonies. The plating efficiency and surviving cell
fraction, expressed as a percentage, were calculated rela-
tive to those of non-irradiated cells.

mRFP-GFP/LC3 image analysis
The autophagy reporter plasmid, ptfLC3 (encoding

mRFP-GFP-MAP1LC3B; #21074), was purchased from
Addgene (Cambridge, MA, USA). Plasmid transfection
was performed with Lipofectamine 2000 according to the
manufacturer’s instructions. Then, 24 h after transfection,
cells were pretreated with bafilomycin-A1 and irradiated,
and >20 cells per condition were imaged on a confocal
system (Zeiss, LSM 780).
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p62 overexpressing viral infection
The gene encoding p62 was amplified from pcDNA4/

TO-HA-p62 (#28027, Addgene) by PCR using Pfu DNA
polymerase (ELPIS, Seoul, Korea). The amplified DNA
fragment was purified and subcloned into pLenti-suCMV-
Rsv-GFP (GenTarget, San Diego, CA, USA) using an
EzCloning Kit (Enzynomics, Daejeon, Korea). The lenti-
viral vector construct was co-transfected with psPAX2
(encoding a packaging plasmid; #12260, Addgene) and
pMD2.G (encoding VSV-G envelop plasmid; #12259,
Addgene) into HEK293T cells using the Neon Transfec-
tion System (Invitrogen). For control and p62 over-
expression, supernatants containing the lentivirus were
collected and infected into HN9-R clones.

shRNA lentivirus infection
To generate the lentivirus, pLKO vector or DNMT1-

shRNA were transfected together with psPAX2 and
pMD2.G into HEK293T cells. For transient infection, cells
were infected with the lentivirus in the presence of 5 μg/
ml Polybrene (Sigma). The effects of DNMT1-shRNA
were measured 48 h after transfection.

RNA sequencing analysis
The RNA seq analysis was commercially commissioned

to Life is Art of Science (Gimpo, Korea). The expression
differences of the genes of raw data were evaluated by
Skewer ver. 0.2.225, STAR ver. 2.5 software26, and Cuf-
flinks software ver. 2.2.127. The P values of multiple tests
were adjusted using the Benjamini-Hochberg method and
the significance level was set at false-discovery rate
(FDR) ≤ 0.05 and |log2 FC | ≥ 0.5. Genes that were dif-
ferentially expressed between clones were analyzed using
Fisher’s exact test to determine significant enrichment of
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways.

Immunoprecipitation
For immunoprecipitation, cells were lysed in RIPA

buffer directly followed by sonication. Clarified cell lysates
were incubated with the indicated antibodies overnight,
and protein A/G beads (Santa Cruz Biotechnology, Inc.)
were added for 3–5 h. Beads were washed four times with
RIPA buffer. Proteins were eluted in SDS-sample buffer
and subjected to western blot analyses. Band intensity was
quantified using ImageJ software (National Institutes of
Health, Bethesda, MD, USA).
The following antibodies were used: LC3B (L7543;

Sigma), p62 (M162-3B; MBL International Corporation,
Woburn, MA, USA), DNMT1 (ab13537; Abcam),
DNMT3A (ab2850; Abcam), DNMT3B (ab16049;
Abcam), HDAC1 (sc7872; Santa Cruz Biotechnology
Inc.), HDAC2 (sc7899; Santa Cruz Biotechnology Inc.),
HDAC3 (sc376957; Santa Cruz Biotechnology Inc.),

NCoR (ab24552; Abcam), acetyled Histone H3 (06-599;
Sigma-Aldrich), Histone H3 (ab1791; Abcam), Histone
H3K9ac (07-352; Sigma-Aldrich), Histone H3K4me3
(39915; Active Motif), Histone H3K27me3 (ab6002;
Abcam), MeCP2 (ab2828; Abcam), and β-actin (A5441;
Sigma).

Chromatin immunoprecipitation (ChIP) assay
A ChIP assay was performed using a Pierce™ Agarose

ChIP Kit (Thermo Fisher Scientific, Rockford, USA)
according to the manufacturer’s protocols. Precipitated
chromatin DNA was recovered and analyzed by PCR. The
PCR primer sequences used were P1 forward 5′-GCA
CTC ACC TTC CAG GAG GTG-3′, reverse 5′-ATT GTC
AAT TCC TCG TCA CTG-3′ or P2 forward 5′-TGT TAT
TGA GCT GTA ACT GAA-3′, reverse 5′-CAT GGC
CTG TCC ACA CAA CAG-3′.

Soft-agar assay
Cells (105 cells/well) were mixed with 0.4% agarose in

growth medium, plated on top of a solidified layer of 0.5%
agarose in growth medium, in a six-well plate, and fed
every 3 days with growth medium. After 3–4 weeks, the
colonies were dyed with crystal violet (0.01% solution) and
counted using OpenCFU software (http://opencfu.
sourceforge.net/).

Statistical analysis
All value were presented as the mean ± standard error.

Statistical differences were evaluated using independent-
sample two-tailed unpaired Student’s t-test or analysis of
variance with Bonferroni correction using Microsoft Excel
or Prism software. The log-rank test was used for clono-
genic survival analysis. The threshold for statistical sig-
nificance was set at p < 0.05. Sample sizes of all
experiments were predetermined by calculations derived
from our experience. No sample was excluded from the
analyses. Investigators were not blinded to the group
allocation during the experiment and outcome assess-
ment. Significance values and the number of replicates
were indicated in each figure legend.

Results
Subclones with different p62 levels within a tumor display
distinct responses to irradiation
We previously showed that prolonged inhibition of

mTOR improved sensitivity to radiation of radioresistant
cancer cells to be conditioned to enter autophagy-prone
senescence12. Moreover, we found that not all cells in a
given condition exhibited senescence features, suggesting
the possibilities of partial responses and the presence of
cancer cells that escaped senescence. To define the
results, we aimed to characterize subclonal populations of
primary head and neck carcinoma, and isolated single
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clones from the radioresistant HN9 cell line (Fig. 1A). Of
23 single cell-derived clones, we identified two subclones
with distinct cell morphologies (HN9-S and HN9-R, Fig.
1A), in which the differences in molecular phenotypes
were confirmed. Whereas the spindle-shaped HN9-R
clones displayed rapid cell proliferation in culture condi-
tions (doubling time, 17.2 h) and showed an aggressive
tumor formation after xenograft (reaching 2000 mm3 at
28 days after injection), HN9-S clones with an epithelial-
like shape had a lower proliferative ability (doubling time,
31.5 h) and showed a slower tumor growth rate than those
of the parental HN9-P cells (Fig. 1B, C). Additionally,
HN9-S clones showed lower clonogenic survival rate
against irradiation than other clones (Fig. 1D) and
induced greater senescence, as evidenced by the percen-
tage of cells positive for senescence-associated
β-galactosidase (SA-β-gal) staining (Supplementary Fig.
1A), but little apoptosis was observed in any cells (Sup-
plementary Fig. 1B, C).

To understand the phenotypic characterization of the
two subclones, we performed genome-wide analysis using
next-generation sequencing. Two isolated clones were
identical to the parental HN9-P cells without any differ-
ences in mutations between the clones (99.997% con-
cordance rate, data not shown). However, a transcriptome
analysis by mRNA sequencing showed a total of 337 dif-
ferentially expressed genes (DEGs) between HN9-R and
HN9-S clones, and there were 178 and 159 genes with
significantly increased or reduced transcripts in HN9-R
relative to HN9-S clones, respectively (false-discovery rate
(FDR) ≤ 0.05, Fig. 2A and Supplementary Table 1). Of
these DEGs, 8 Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were associated with p62 (p ≤ 0.01, Fig.
2B) and included in pathways with DEGs downregulated
at HN9-R clones. In particularly, the level of p62 gene
expression was significantly downregulated by 2.4-fold in
resistant HN9-R clones, which difference was verified
using qRT-PCR and western blot analysis (Fig. 2C).
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CpG islands of the p62 promoter are hypermethylated by
DNMT1 in HN9-R cells
Gene expression is reversibly altered by epigenetic

regulation in clonal evolution, which plays an important
role in driving phenotypic variety and tumorigenesis28,29.
Given the heterogeneous expression of p62 in HN9 cells,
CpG islands in the p62 promoter region were

unmethylated with no significant differences between
HN9-P and HN9-S clones; however, in HN9-R clones, the
p62 promoter regions were moderately methylated (Fig.
2D). Upon treatment of the DNMT inhibitor 5-Aza-2′-
deoxycytidine (5-Aza), the expression of p62 in HN9-R
was restored by the hypomethylation of promoter CpG
islands (Fig. 2E). Bisulfite sequencing analysis showed that
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HN9-R clones had substantially higher methylation of
nine CpG sites at the p62 promoter than HN9-S clones
(Fig. 2F and Supplementary Fig. 2), indicating that the two
clones possessed different patterns of DNA methylation at
the p62 promoter.
Next, we compared the levels of co-repressors (NcoR1

and HDAC1) and histone H3 modifications among the
HN9 cells to understand the overall expression levels of
the p62 gene by epigenetic regulation30. The NcoR1 and
HDAC1 levels did not significantly differ among all cell
types, but the Ac-H3 and H3K9ac levels specifically
increased, with H3K4me3 in HN9-S clones showing high
p62 expression (Fig. 3A). The ChIP assay revealed that the
levels of transcriptionally active histone markers, Ac-H3
and H3K4me3, were elevated in the p62 promoter region
of HN9-S clones, whereas that of the inactive histone
marker H3K27me3 was low (Fig. 3B). Notably, DNMT1
depletion dramatically decreased the cell proliferation and
colony formation of HN9-R clones compared to those of
HN9-P and HN9-S clones (Fig. 3C, D), implying a ther-
apeutic efficiency of epigenetic regulation by DNMT1 in
radioresistant HN9-R clones.

Epigenetic regulation of p62 increases the sensitivity to
radiation of HN9 cells
Epigenetic modulation can cure a refractory tumor by

inducing the re-expression of essential tumor suppressor
genes31. DNMT1 represses genes by recruiting the
methyl-CpG-binding protein (MeCP2), which gradually
recruits HDACs32. Co-immunoprecipitation experiment
verified that DNMT1 was bound to HDAC1 and HDAC2
in three HN9 cells (Fig. 4A). DNMT1 silencing decreased
the recruitment of HDAC1 or HDAC2 to the p62 pro-
moter of HN9-R clones (Fig. 4B). Also, inhibition of
HDAC1 combined with DNMT1 depletion enhanced the
inhibitory effect on tumorigenesis (Fig. 4C, D), which
corresponded with the level of p62 mRNA expression
(Fig. 4E).
Histological analysis showed that the levels of Ki67 and

H3K27me3 expression decreased in DNMT1-depleted
HN9-R tumors treated with MS275 and that hetero-
geneity of p62 substantially decreased in the tumors (Fig.
4F). An in vivo ChIP assay demonstrated that a depletion
of DNMT1 efficiently reduced the formation of
DNMT1–HDAC1 complexes and subsequently sup-
pressed the recruitment of HDAC1 to the p62 promoter
region, whereas p300 was recruited (Fig. 4G). And MS275
treatment induced the recruitment of Ac-H3, H3K9ac,
and H3K4me3 to the p62 promoter region in DNMT1-
depleted HN9-R tumors, while H3K27me3 recruitment
decreased as expected (Fig. 4H).
Likewise, co-treatment of 5-Aza and MS275 impaired

colony formation compared to that in the cells treated
only with 5-Aza (Fig. 5A) and significantly suppressed

tumor volume and weight compared to those of the non-
treated control (Fig. 5B, C). Histological analysis showed
that the levels of Ki67 and H3K27me3 expression
decreased in 5-Aza- and MS275-treated HN9-R tumors
and that p62 expression dramatically increased (Fig. 5D).
Additionally, co-treatment significantly dissociated the
DNMT1–HDAC1 complexes (Fig. 5E) and induced an
enhanced recruitment of Ac-H3, H3K9ac, and H3K4me3
and a decrease of H3K27me3 to the p62 promoter region
(Fig. 5F). Corresponding with these findings, the
implanted tumor volume and weight significantly
decreased in the co-treatment group of 5-Aza/MS275 and
radiation compared to the radiation-only group (Supple-
mentary Fig. 3A, B), which was correlated with an
increased enrichment of H3K9ac and H3K4me3 and a
decline of H3K27me3 to the p62 promoter region (Sup-
plementary Fig. 3C–E).

p62 overexpression improves the sensitivity to radiation of
resistant cancer cells
To confirm the mechanism by which the level of p62

determines the radioresistance of HN9 cancer cells, we
observed whether the maintenance of p62 level mediates
efficient transition to the senescent state through autop-
hagy, which can improve responsiveness to irradiation in
HN9-R clones, consistent with previous findings11,15.
When irradiated, HN9-S showed a prominent accu-

mulation of LC3-II after 24 h, whereas HN9-R showed a
slight increase in the level of LC3 (Fig. 6A). On the other
hand, the level of p62 was not dramatically changed fol-
lowing irradiation both in HN9-S and R clones, although
transiently reduced during the early hours (2–6 h) in
HN9-S clones (Fig. 6A), which made us to take turnover
of LC3 to LC3-II as an autophagic flux reporter rather
than p62 level at least in HN9 cells. Furthermore, in the
presence of bafilomycin-A1 that functionally inhibits
autolysosomal activity, HN9-R clones had less accumu-
lated LC3-II than HN9-S clones and the cells did not
show a marked increase of autophagic flux after irradia-
tion (Fig. 6B). However, the overexpression of p62 in the
HN9-R clones increased an accumulation of LC3 over
time after irradiation (Fig. 6C), and induced a massive
accumulation of LC3-II in the presence of bafilomycin-A1
compared to that in the control (Fig. 6D). Also, the p62
overexpressing cells exposed to irradiation increased the
number of RFP-positive, GFP-positive puncta (Fig. 6E)
that visually proved the effective transition from autop-
hagosomes to autolysosomes33. In particular, when con-
sidering the inborn radiation resistance of HN9-R clones
and the fractionated application of radiation therapy in
clinic, clonogenic survival and SA-β-gal staining data
indicated that p62 overexpression can significantly
improve the response to radiation in the cells (Fig. 6F, G).
Furthermore, we could consolidate our findings by the
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evidences that the ablation of p62 in HN9-S clones low-
ered autophagic flux and caused an resistance against
irradiation and a reduction of senescence, which were
restored by exogenous overexpression of p62 (Fig. 7A, B
and Supplementary Fig. 4A, B).
Taken together, the two clones isolated from a primary

tumor showed distinct differences in the responses to
radiation, and this difference was associated with p62-
dependent autophagic flux and senescence. Additionally,
p62 was maintained in a transcriptionally inactive state by
the enrichment of HDAC1–DNMT1 complexes in the
p62 promoter region in HN9-R clones; thus, simultaneous
inhibition of DNMT1 and HDAC1 enhanced the
responses to irradiation by decreasing epigenetic repres-
sion of the p62 expression (Fig. 7C).

Discussion
Intratumoral heterogeneity has a major effect on ther-

apeutic outcomes because subpopulations consisting of
cancer cells require selective and specific34. However,
major therapeutic strategies have not considered the
functional diversity of clones or the frequency of action-
able alterations. This study demonstrates that, given the
heterogeneous expression of p62 in subclones within a
tumor, combined inhibition of epigenetic modifiers
(DNMT1 and HDAC1) reversed the histone pattern and
increased p62 expression, which significantly improved
the sensitivity to radiation of HN9-R clones.
To date, many studies have shown that upregulation of

p62 has fundamental functions in tumorigenesis17,35,36.
p62 accumulation effectively induces carcinogenesis in
autophagy-competent livers by protecting precancerous
cells from oxidative stress-induced death17. Additionally,
the loss of p62 in the stroma regulates cellular redox via
an mTORC1/c-Myc pathway, which generates an envir-
onment conducive to inflammation and in turn maintains
a pro-tumorigenic metabolic state35. Unlike the roles of
p62 in tumor initiation and progression, our findings
imply the clinical significance of p62 targeting in terms of
heterogeneous tumor treatment, providing an integrative
understanding of p62 as a major determinant of the
reactivity to cancer therapy.

In particular, to monitor autophagic flux appropriately,
we observed a conversion of LC3-I to LC3-II over time, an
amount of accumulated LC3-II in the presence of bafi-
lomycin A1 and immunofluorescence images of RFP-
GFP-LC3 reporter, but not p62 degradation. Although the
p62 is widely used as an indicator of autophagic degra-
dation, it was reported its inconsistency of autophagic
activity. The level of p62 protein is determined by its
transcriptional upregulation in some cases and dynami-
cally regulated depending on cell contexts37,38. Further-
more, given that the transcriptional level of p62 is
epigenetically regulated differently in each clone, we
choose to adopt LC3B as a more reliable indicator for
autophagy flux in our experiments with other com-
plementary methods.
Prior to isolating HN9 cells, the patient had never

been exposed to any cancer treatment and showed an
extremely poor prognosis after tumor resection, which
indicates that clonal variety within a tumor may be
acquired during tumor development rather than
induced by the selective pressure of anti-cancer agents.
The gene-based analyses revealed that functional var-
iation of clones was controlled by the distinct epige-
netic mechanism. In addition, each clone expanded
into a heterogeneous culture that fully recapitulated
the parent cell-type heterogeneity in in vivo transplants
(Supplementary Fig. 5), as implicated in the previous
study39.
High tumor heterogeneity has been associated with

shorter progression-free survival40 and is a potential
prognostic feature in a variety of malignancies41,42. One
potential approach to overcome intratumoral hetero-
geneity is to target multiple pathways simultaneously. In
our experimental design, the targeting of both p62-
mediated autophagy and a conversion of senescence to
apoptosis could act to limit the selection of resistance
mechanisms.
In conclusion, our findings indicate that clonal variation

of p62 expression induces inconsistent responses to irra-
diation, and concurrent treatment with epigenetic drugs
suppresses the recurrence of resistant tumor cells and
reverses the resistance. Furthermore, defining the

(see figure on previous page)
Fig. 6 Overexpression of p62 increases autophagic flux and senescence to responses to radiation in HN9-R clones. A–D Turnover of LC3
over time after irradiation (IR) at 4 Gy (A, C) and accumulated amounts of LC3-II at 24 h after 4 Gy of IR in the presence of bafilomycin-A1 (Baf A1,
1 nM, 4 h; B, D) in HN9-S vs HN9-R clones (A, B) or vector control vs p62-overexpressed HN9-R clones (C, D) analyzed by immunoblotting. In B and D,
the relative ratio of LC3-II to β-actin was used as an indicator of autophagic flux, which was calculated by comparing the cells treated with IR and Baf
A1 to that with IR only. Results are presented as means ± standard error of the mean (SEM). Western blots are representative of three independent
experiments. E Measurement of autophagic flux by mRFP-EGFP/MAP1LC3B puncta assay to irradiation (4 Gy, 6 h) after pretreatment of Baf A1 (10 nM,
1 h) in vector control and p62-overexpressed HN9-R clones. Graph represents quantification of RFP-positive, GFP-positive autophagosomes (yellow
puncta) and RFP-positive, GFP-negative autolysosomes (red puncta). Scale bars, 20 μm in GFP image and 10 μm in magnified image. F, G Clonogenic
survival (F) and percentage of cells positive for senescence-associated beta-galactosidase (SA-β-gal) staining of p62-overexpressed HN9-R after
irradiation of 4 Gy (G). All results were obtained from at least three independent experiments. Results are presented as means ± standard error of the
mean (SEM). *p < 0.05; **p < 0.01; ***p < 0.005.
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relationship between epigenetic heterogeneity of p62
expression and tumor progression can lead to new diag-
nostic tools and treatment strategies to improve the
therapeutic outcomes further.
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