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The interpretation of high throughput sequencing data is limited by our incomplete functional

understanding of coding and non-coding transcripts. Reliably predicting the function of such

transcripts can overcome this limitation. Here we report the use of a consensus independent

component analysis and guilt-by-association approach to predict over 23,000 functional

groups comprised of over 55,000 coding and non-coding transcripts using publicly available

transcriptomic profiles. We show that, compared to using Principal Component Analysis,

Independent Component Analysis-derived transcriptional components enable more confident

functionality predictions, improve predictions when new members are added to the gene sets,

and are less affected by gene multi-functionality. Predictions generated using human or

mouse transcriptomic data are made available for exploration in a publicly available web

portal.
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Modern high-throughput experiments enable researchers
to determine the association between each individual
gene and a phenotype. Currently, gene set enrichment

analysis (GSEA) is used to interpret which biological processes
are associated with the phenotype of interest1. Gene sets are
collections of genes that share a common characteristic (e.g.,
biological function). Overrepresentation of gene sets in the top
associated genes can be used to identify which biological pro-
cesses are driving the phenotype. Although gene sets are con-
tinuously updated, they are still far from complete. This can bias
and hamper the interpretation of high-throughput experiments2.

A strategy to reduce this limitation is to extend gene sets by
providing a gene set membership likelihood for every gene. This
can be accomplished by comparing gene co-expression patterns
within a guilt-by-association (GBA) strategy. For example, if there
are 50 genes that are known to be involved in DNA repair, a gene
that is strongly co-expressed with these 50 is likely to be involved
in DNA repair as well. A potential limitation arises when a gene is
involved in multiple biological processes3. Each biological process
is the result of the coordinated expression of multiple genes,
which together represent a transcriptional footprint. One of these
biological processes might have a transcriptional footprint that
dominates the observed gene expression profile and therefore
overshadows the other biological processes with more subtle
transcriptional footprints4. Therefore, relying on co-expression
may bias GBA predictions for genes involved in multiple biolo-
gical processes towards those biological processes with dominant
transcriptional footprints.

A strategy to overcome this limitation is to first apply principal
component analysis (PCA) to the gene expression input data.
Applying PCA results in a smaller set of new variables called
principal components (PCs). These PCs capture most of the
variance of the original input data. In the context of gene
expression data, PCs are referred to as transcriptional compo-
nents (TCs). Both dominant and more subtle transcriptional
footprints of biological processes can be captured by PCA-TCs4.
Using PCA-TCs in a GBA strategy improves gene set member-
ship predictions compared to regular gene to gene co-expression
patterns5. However, two or more PCA-TCs may still possess a
mutual nonlinear correlation. This correlation reflects the tran-
scriptional footprint of a biological process that is partially cap-
tured in multiple PCA-TCs. Segregating nonlinear correlations
into individual TCs may further improve gene set membership
predictions. Independent component analysis (ICA) can enable
the estimation of ICA-TCs that capture strong and subtle tran-
scriptional footprints while minimizing their mutual nonlinear
correlation6.

In this study, we utilize three large messenger RNA (mRNA)
expression datasets originating from microarray and RNA-
sequencing (RNA-seq) platforms, and 16 gene set collections in
a GBA strategy using ICA-TCs to infer gene set memberships for
up to 58,433 individual genes. We show that using ICA-TCs (1)
provides more confident functionality predictions, (2) improves
predictions when new members are added to the gene sets, and
(3) is less affected by gene multifunctionality in comparison with
PCA-TCs.

Results
Data acquisition. To generate our human microarray input
dataset, all publicly available unprocessed microarray expression
data generated with the Affymetrix HG-U133 Plus 2.0 platform
were downloaded from the Gene Expression Omnibus (GEO)7.
After preprocessing and quality control, a total of 106,462 sam-
ples were included for further analysis. The R package “jetset”
(version 3.4.0) served to obtain one-to-one mapping between

genes and the most representative probe sets on the Affymetrix
HG-U133 Plus 2.0 platform and resulted in unique expression
measurements for 19,635 genes (R jetset package v3.4.0)8. Gene
set collections (n= 16) were retrieved from The Human Pheno-
type Ontology (The Monarch Initiative), the Mammalian Phe-
notypes (Mouse Genome Database), and 14 collections from the
Molecular Signatures Database v6.29–11. These gene set collec-
tions contain 23,372 gene sets in total.

Consensus ICA captures the variance of the input dataset.
Consensus ICA (c-ICA) was performed on the input dataset to
calculate ICA-TCs (Fig. 1). In ICA, a preprocessing technique
called whitening is applied to make the estimation more time
efficient by reducing the dimensionality of the input dataset.
Whitening was achieved with PCA on the covariance matrix
between the genes and resulted in 817 PCs that captured 90% of
the total variance in gene expression observed in the human
microarray input dataset. Subsequently, using these 817 PCs as
input for c-ICA, we obtained 523 ICA-TCs with a credibility
index >0.5.

Framework for generating predictions using ICA-TCs. The c-
ICA method provides a mixing matrix (MM) together with the
ICA-TCs. In the MM each column corresponds to an ICA-TC and
each row corresponds to a gene. Each weight in the MM describes
the effect of a latent transcriptional regulating factor on the
expression level of a gene. The vector of weights of an individual
gene in the MM is referred to as the transcriptional regulatory
“barcode.” For each of the 23,372 gene sets, an average transcrip-
tional regulatory barcode was calculated by taking the mean vector
of weights in the MM of genes that are members of the gene set.
Next, the distance correlations between the transcriptional reg-
ulatory barcode of all combinations of genes and gene sets were
calculated12. A strong positive correlation indicates that the tran-
scriptional regulation of an individual gene is similar to the average
transcriptional regulation of members of the gene set. Gene sets that
capture biological processes with highly co-regulated genes generate
consistent regulatory barcodes. Therefore, genes with strong cor-
relation have a high likelihood of belonging in those gene sets even
if they are not currently members. For example, BRCA2 is a DNA
repair protein with a strong co-regulation with the cell cycle KEGG
(Kyoto Encyclopedia of Genes and Genomes) gene set (prediction
score= 15.53). Even though BRCA2 does not directly regulate the
cell cycle, progression through the G2–M checkpoint depends on
the successful repair of all DNA damaged during replication.
Therefore, when viewed through co-regulation BRCA2 participates
in two biological processes, namely, DNA repair and cell cycle
progression.

A permutation strategy in combination with a Gaussian kernel
density estimator enabled the construction of a null distribution
for each gene-to-gene set combination. The permutation tests
determined the significance of the distance correlation without
assuming an underlying shape for the null distribution of each
method. Resulting p values were transformed to a Z-score,
hereafter referred to as prediction score (see Supplementary
Notes). The prediction scores obtained using the human
microarray dataset are made available on a portal at http://
genetica-network.com. This interface allows users to rank the
scores of all genes that predict membership to a particular gene
set (gene set perspective) or the scores of all gene sets that predict
membership of a particular gene (gene perspective).

Using ICA-TCs results in stronger predictions than PCA-TCs.
Data-driven Expression Prioritized Integration for Complex
Traits (DEPICT) and the more recent GeneNetwork Assisted
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Diagnostic Optimization (GADO) are two successful methods
that utilize gene functional predictions obtained with a PCA-TC-
based GBA method5,13. DEPICT and GADO use predictions for
biological interpretation of genome-wide association studies and
to improve the discovery of disease-causing genes from exome
sequencing, respectively (Table 1). A comparison between the
predictions obtained with a GBA method using ICA-TCs and
PCA-TCs was performed. To ensure a fair comparison, the
whitened matrix that was used to run c-ICA served as input for
the PCA-TC-based method. Using the whitened matrix as input
ensures that both methods have the same amount of variance in
the expression data available for generating TCs.

First, genes that were already assigned to gene sets were
analyzed. A gene is expected to get a high prediction score for a
gene set of which it is currently a member. For each gene set, a
median prediction score for the subset of current member genes
was calculated as well as for the subset of genes that are not
assigned to any gene set in that collection (nonmember genes)
(Supplementary Data 1). Median prediction scores of member
genes were higher compared with nonmember genes in both the
PCA-TC- and the ICA-TC-based method. However, ICA-TC-
based predictions outperformed PCA-TC by obtaining higher
median prediction scores for current member genes in all gene
set collections (area under the curves (AUCs) calculated from

Fig. 1 Overview of the guilt-by-association methodology to calculate prediction scores. Transcriptional components (TCs) are calculated from a large
mRNA expression dataset using c-ICA or PCA. For every gene set in a gene set collection, a vector of means (transcriptional regulatory barcode) is
calculated by taking the mean vector of weights in the mixing matrix of genes that are members of the gene set. The correlation of each gene and each
barcode is calculated using distance correlation and a Z-transformed p value is estimated by performing a permutation test. The resulting Z-transformed p
values constitute prediction scores that can be interpreted as a ranking of gene set memberships predicted for a gene (gene perspective). Alternatively,
they can be interpreted as a ranking of genes predicted as members of a single gene set (gene set perspective). Finally, a gene-to-gene correlation matrix is
calculated from the prediction scores and used to cluster genes in the force-directed layout of the co-functionality network visualization.

Table 1 Guilt-by-association methods.

DEPICT and GADO GENETICA (ours)

Strategy Guilt-by-association prediction of gene functions using gene sets Guilt-by-association prediction of gene functions
using gene sets

Transcriptional components Principal component analysis Independent component analysis
Barcode Comparison of eigenvector scalars of member genes and

nonmember genes using Welch T test
Average of all mixing matrix weights of
member genes

Distance metric Pearson correlation Distance correlation
Permutation test No, parametric p values used Yes, permutation p values used
Reference 5,13 This study
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Fig. 2 Distribution of prediction scores for both the ICA-TC- and PCA-TC-based method. Boxplot of median prediction scores (x-axis) calculated from
the ICA-TC-based (blue) and PCA-TC-based (red) methodology for each of the 16 gene set collections (y-axis). Median prediction scores are calculated
separately for each gene set using both the ICA-TC- and the PCA-TC-based method for member (saturated) and nonmember genes (less saturated) and
plotted side to side. Prediction scores of ICA-TC-based method are higher for both the members and the nonmember gene subset. ICA-TC-based
predictions outperformed PCA-TC by obtaining higher median prediction scores for current member genes in all gene set collections (area under the
curves (AUCs) calculated from two-sided Mann–Whitney U test range 0.7–0.99). Hinges of boxes represent second and third quartiles and whiskers
extend by half that interquartile range. Center of box corresponds to median.
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two-sided Mann–Whitney U test range 0.7–0.99; Fig. 2). More-
over, median prediction scores for nonmember genes were also
higher for ICA-TC- than PCA-TC-based predictions (AUCs all
>0.99). These results indicate that the ICA-TC-based method
provides predictions with higher confidence than the PCA-TC-
based method.

To explore if a subset of gene sets is better predicted with the
PCA-TC-based method the differences between gene set
prediction scores of both PCA and ICA methods were
calculated (delta). Gene sets with deltas higher than zero were
defined as ICA-improved and below zero as PCA-improved
gene sets. We observed that 811/23,413 (3.4%) gene sets
belonged to the PCA-improved subset (Supplementary Fig. 1).
Gene sets belonging to the PCA-improved subset had
fewer members (median= 23) than the ICA-improved subset
(median= 57).

ICA-TCs outperform PCA-TCs in predicting future ontologies.
The predictive power of the PCA-TC- and ICA-TC-based GBA
prediction strategies was further evaluated by generating predic-
tions using a previous version of three Gene Ontology (GO) gene
set collections (Molecular Signatures Database C5 v3.0). Genes
that are not members in v3.0 are expected to obtain high pre-
diction scores if they got added as members to those gene sets in
later version updates. In addition, such a gene would be expected
to have an equal or higher prediction score when predictions are
generated using the newer gene set versions with updated
membership information. This would indicate the capacity of the
method to predict future gene set memberships and to improve
predictions when updated gene set membership information is
available.

Genes that were added as member of a gene set after v3.0 are
referred to as updated member genes. Median prediction scores
for these updated member genes were calculated with the ICA-
TC- and PCA-TC-based method (Fig. 3). This was done
independently with v3.0 and v6.2 as input for the transcriptional
barcode generation step. Only gene sets that got new genes added
in between v3.0 and v6.2 were included in this analysis.
Prediction scores for the updated member genes with v3.0
barcodes were higher for ICA-TC- compared to the PCA-TC-
based method (AUC ranging from 0.90 to 0.96). This indicates
that the ICA-TC-based method outperforms the PCA-TC
method at predicting future gene memberships in the GO gene
set collection.

Surprisingly, for the PCA-TC-based method, scores of the
updated member genes were lower when using v6.2 barcodes
than when using v3.0 barcodes as input (AUC ranging from 0.19
to 0.34). In contrast, using v6.2 as input did improve prediction
scores when applying ICA-TC-based method (AUCs ranging
from 0.65 to 0.71). This indicates that the ICA-TC- but not the
PCA-TC-based method is able to improve predictions when
updated membership information is available for the GO gene set
collections.

Gene membership frequencies do not drive prediction scores.
Previously, it was shown that multifunctionality, rather than
association, can be a main driver of functional predictions when
using GBA methodology14. Here, the degree of multifunctionality
of a gene is defined as a function of the number of gene sets of
which it is currently a member14. The degree of multi-
functionality of a gene might have a strong correlation with the
gene set prediction scores of that gene. This would indicate that
the likelihood of a gene being a member of the gene set, as
expressed by the prediction score, can largely be explained by the

degree of multifunctionality and not by the predictions obtained
with the GBA strategy.

Per gene set collection, the degree of multifunctionality was
calculated for all genes (see “Methods”). The associations between
the degree of multifunctionality and the prediction scores (Fig. 4
and Supplementary Data 2) were lower for the ICA-TC-based
method than the PCA-TC-based method (AUCs range
0.03–0.47). This means that ICA-TC-based predictions are less
driven by the membership frequencies of a gene and therefore are
relying more on the GBA strategy. The predictions of some gene
set collections showed on average higher association with
multifunctionality. The most affected gene set collections were
either constructed based on predicted targets of transcriptional
regulators (microRNA and transcription factor targets) or
obtained from signatures of published perturbation experiments
(Chemical and Genetic Perturbations and Immune signatures). In
conclusion, the association between the degree of multifunction-
ality and prediction scores is very limited for most gene sets for
both the ICA-TC and PCA-TC method.

Mouse and human prediction scores are correlated. In addition,
ICA-TC-based gene function predictions were generated for
mouse microarray samples (GPL1261 platform; n= 25,585;
genes= 18,425) for 16 gene set collections (n= 23,128). We
correlated the prediction scores between the unique ortholog
mapping genes (n= 14, 589) between human and mouse micro-
array datasets for every matching gene set collection to investigate
the concordance between prediction scores (Supplementary
Fig. 2). A subset of 10,974/14,589 (75.2%) mouse genes have a
correlation >0.3 to their human orthologs based on their pre-
diction scores for at least one of the gene set collections. GO
Cellular Component and Cancer Modules gene set collections
showed the highest median Spearman correlations (0.155 and
0.154, respectively). The low correlating gene predictions across
species could be explained by the smaller number of samples
(n= 25, 585) and the more limited sample heterogeneity available
in the mouse dataset compared to the human microarray dataset
(n= 106,462). These results show that many genes may be
similarly regulated in both species. The mouse prediction scores
have been made available at http://www.genetica-network.com.

Current gene sets do not capture all co-regulation clusters.
When using a GBA strategy with mRNA profiles, high pre-
diction scores for a biological process depend on three factors.
First, the existence of at least one gene set that covers that
process. Second, if such a gene set contains all relevant genes
involved in that biological process. Third, the degree of co-
regulation among the genes of that biological process as
reflected by possessing similar transcriptional regulatory bar-
codes. The existence of co-regulated biological processes that
are underrepresented in current gene set collections was eval-
uated with the human microarray-based prediction scores.
Hierarchical clustering was applied to the transcriptional reg-
ulatory barcodes of individual genes (see “Methods” for details),
which resulted in 173 clusters of co-regulated genes (Supple-
mentary Data 3). The size of the clusters ranged between 10 and
389, which is similar to the size range 23,372 gene sets used in
our ICA-TC-based GBA method.

For each cluster, the similarity among transcriptional regulatory
barcodes was defined as the median pairwise correlation between
gene members. This is referred to as the cluster transcriptional
similarity score. In addition, for each member gene, the maximum
prediction score obtained in any of the 23,372 gene sets in our
framework was obtained. Then, a median per cluster was calculated,
referred to as cluster predictability score. A correlation (R= 0.59)
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was observed between the cluster transcriptional similarity and
cluster predictability scores of the 173 clusters (Fig. 5). This
confirms that our method provides higher prediction scores for the
biological processes that are well represented in a gene set and
involves genes that are highly co-regulated. However, some clusters
were observed with a low predictability score and high transcrip-
tional similarity score. These clusters may represent co-regulated
biological processes that are underrepresented or completely
missing in current gene set collections. In general, the member
genes of these clusters tended to be of unknown functionality, such
as open-reading frames (ORFs) or uncharacterized loci (LOC). In
addition, a pan-collection multifunctionality score was calculated
using the gene set frequencies of all 16 gene set collections for each
gene. The low multifunctionality scores of the genes belonging to
these clusters reflect their low frequency of gene set memberships
across all 16 gene set collections. Taken together, these results
indicate that patterns of co-regulation can point towards sets of
genes that participate in the same biological process even when that
biological process is not well characterized in current gene set
collections.

GENETICA predicts co-functionality of uncharacterized genes.
Genes that encode uncharacterized proteins are referred to as
chromosome ORFs (Corfs) or uncharacterized LOCs. Compared
to the PCA-TC-based method, the ICA-TC-based method gen-
erated higher prediction scores for both Corfs and LOCs with the
Hallmark gene set collection (AUC calculated with two-sided
Mann–Whitney U test 0.76; Fig. 6a). Hierarchical clustering of
the ICA-TC-based prediction scores of 835 Corfs and LOCs based
on the Hallmark gene set collection resulted in 116 clusters when
using a height cutoff of 0.8. Cluster 17 was captured from 28
Corfs and LOCs that were predicted to be members of the DNA
repair Hallmark gene set (Fig. 6b). Out of the 28 uncharacterized
genes in this cluster, seven have been recently implicated in DNA
repair based on experimental work (Fig. 6b and Supplementary
Data 4). Cluster 84 consisted of Corfs predicted to be involved in
estrogen receptor signaling and response (Fig. 6b). In this cluster,
C6orf141 has recently been suggested to be estrogen receptor
alpha regulated in breast cancer cells15 (Supplementary Data 4).
These results show that GENETICA can predict the functionality
of uncharacterized genes.

Fig. 3 ICA-TCs outperform PCA-TCs in predicting future gene set memberships. The predictive power of the PCA-TC- and ICA-TC-based GBA
prediction strategies was further evaluated by generating predictions using a previous version of three Gene Ontology gene set collections (Molecular
Signatures Database C5 v3.0). Boxplots show the prediction scores for every gene set using only genes that were added to the gene set between v3.0
(blue) and v6.2 (yellow). Prediction scores of this subset of genes degrade when using the newer version of the gene set (area under the curves (AUCs)
calculated from two-sided Mann–Whitney U test ranging from 0.19 to 0.34) when generating predictions with the PCA-TC- but not when using the ICA-
TC-based method (AUCs ranging from 0.65 to 0.71). Only gene sets for which new members were included are depicted. Hinges of boxes represent
second and third quartiles and whiskers extend by half that interquartile range. Center of box corresponds to median.
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GENETICA shows co-functionality in essentiality screen hits.
We developed a visualization tool capable of constructing net-
works of genes based on predicted co-functionality in one gene
set collection (see “Methods” for details). Genes are clustered
together in the co-functionality network based on how similar
their prediction scores are for the gene sets in the selected col-
lection. Co-functionality networks can be explored for an input
list of genes to a maximum of 300.

As an example, we used the results of a recent study, in which
multiple CRISPR-based genetic screens were performed in RPE-1
cells treated with different DNA-damaging agents16. Each screen
uncovered genes that are essential for cell survival in the context
of specific DNA damage-inducing agents. Overall, 840 genes were
found essential for survival in the context of at least one DNA-
damaging agent. Out of these 840 genes, only 334 genes were
assigned to a DNA repair gene set at the time of the analysis. For
the 506 genes that are currently not assigned to DNA repair
pathways, the ICA-TC-based method generated higher prediction
scores than the PCA-TC-based method for the “GO DNA
REPAIR” gene set (Fig. 7).

Next, we constructed a co-functionality network with all 840
essential genes based on the GO Biological Process collection. We
observed a large cluster containing 114 genes with high pairwise
co-functionality (R > 0.7). A high prediction score (Z-score 12)
was observed in this cluster for the DNA repair gene set

(Supplementary Fig. 3). Some genes in the cluster (n= 32) were
not members of a DNA repair gene set in the original analysis,
but are nevertheless known to participate in DNA repair. In other
cases, these genes participate in biological processes that
are indirectly associated with the cellular response to DNA
damage and repair such as cell cycle regulation and nucleotide
metabolism or by regulating components of the DNA damage
response pathway. Less direct associations include the protein
kinase C-interacting cousin of thioredoxin PICOT, which has
only been recently shown to regulate the phosphorylation and
activation of CHK1, CHK2, and H2AX17. The ubiquitin conjugase
UBE2S has also been recently shown to bind to components of
nonhomologous end joining18. Finally, some genes are still
underexplored in the context of the cellular response to DNA
repair (GLMN, CFAP20, C1ORF112, SAMD1), but have a high
prediction score for DNA repair, which makes them candidates
for further study.

In addition, we investigated three genome-wide CRISPR
screens that aimed to capture genes involved in the inflammatory
response to bacterial lipopolysaccharide (LPS)19, lysosomal
accumulation20, and viral entry21.

A co-functionality network was built using all 111 hit genes of
the response to bacterial LPS CRISPR screen performed on
dendritic cells (Fig. 8a)19. Two clusters were observed. The first
cluster showed high prediction scores for Immunological

Fig. 4 Correlation between prediction scores and gene multifunctionality. Boxplot of distance correlation between gene set prediction scores of genes
(n= 19,635) and the gene set collection multifunctionality score (y-axis) for each gene set collection (x-axis). Multifunctionality scores are compared
against ICA-TC-based (blue) or PCA-TC-based (red) predictions. The magnitude of correlation varies across gene set collections and between gene sets in
a collection. The associations between the degree of multifunctionality and the prediction scores were lower for the ICA-TC-based method than the PCA-
TC-based method (area under the curves (AUCs) calculated from two-sided Mann–Whitney U test range 0.03–0.47). Hinges of boxes represent second
and third quartiles and whiskers extend by half that interquartile range. Center of box corresponds to median.
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Signatures gene sets defining the response to TREM-1, a receptor
involved in amplifying the cellular response to LPS, and gene sets
defining the response to Francisella tularensis, a pathogen that
produces LPS (Fig. 8a). In contrast, the second cluster showed a
high prediction score for an Immunological Signatures gene set
defining reactive oxygen species-induced genes within dendritic
cells (Fig. 8a). These results show the possibility to use a co-
functionality network to identify distinct biological processes that
are related to the phenotype under investigation in a CRISPR
screen.

In the genome-wide CRISPR-knockout screen identifying 16
genes essential for lysosomal integrity, a network was built with
GO Biological Process and KEGG gene set collections20. The
ICA-TC-based prediction scores of the 16 genes for KEGG
lysosome gene set ranged from 0.8 to 2.6, indicating that the ICA-
TC method did not confidently predict these genes to play a role
in lysosome-related processes (Fig. 8b). Reassuringly, the ICA-
TC-based method still generated higher prediction scores than
the PCA-TC method for the KEGG lysosome gene set. This

suggests that this particular CRISPR screen identified genes that
have unique expression patterns that are incompatible within a
GBA strategy.

The third genome-wide screen, studying genes involved in
Ebola virus infection prioritized 13 genes21. Within the original
publication, GNPTAB, a gene encoding a protein normally
involved in the production of mannose-6-phosphate, was
subsequently validated. Concordantly, GNPTAB showed the
highest ICA-TC-based prediction score (prediction score= 6.4)
for negative regulation of viral transcription by the host in the GO
biological Process gene set collection (Fig. 8c). The other 12 genes
showed prediction scores ranging from 0.7 to 2.6 for the
respective gene set, demonstrating how ICA-TC-based prediction
scores can be used to prioritize genes for further validation.

Using RNA-seq data improves only ICA-TC-based predictions.
RNA-seq experiments measure more genes and have a higher
dynamic range of measurement than mRNA microarray

Fig. 5 Relationship between the degree of transcriptional similarity and predictability among clusters of co-regulated genes. Scatterplot of cluster
transcriptional barcode similarity (x-axis) and cluster predictability score (y-axis) for cluster groups (n= 173). The cluster transcriptional similarity is
defined as the median pairwise distance between every gene in the cluster as defined in the distance correlation matrix. A median of the maximum
prediction score of each gene in the cluster was calculated to represent the cluster predictability score. Multifunctionality is depicted with a gradient from
high (dark blue) to low (cyan). Clusters with high similarity but low predictability scores are composed of more uncharacterized genes (ORFs and LOCs)
than other clusters. In addition, the multifunctionality scores of the genes belonging to these clusters are low (cyan), reflecting low frequency of gene set
memberships.
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experiments. However, the amount and diversity of publicly
available microarray experiments still surpasses publicly available
RNA-seq experiments. To evaluate whether RNA-seq profiles
may improve upon the prediction scores generated using
microarray data, the ICA-TC and PCA-TC-based methods were
applied to a large set of publicly available RNA-seq samples (n=
29,138) (See Supplementary Notes). Using RNA-seq data did not
improve the average prediction scores in most gene set collections
when applying the PCA-TC-based method (AUC range:
0.12–0.41, p values < 2.6 × 10−4)(Fig. 9a). By contrast, average
prediction scores improved in most gene set collections when
applying the ICA-TC-based method (AUC range: 0.54–0.95,
p values < 2.04 × 10−2) (Fig. 9b). The PCA-TC method had
comparable multifunctionality associations when using RNA-seq
and microarray input data for most gene set collections and
improved in the case of the Oncogenic Signatures collection
(AUC 0.21, p value 7.08 × 10−22) (Fig. 9c). Predictions obtained
using the ICA-TC-based method had a lower association to
multifunctionality for the microRNA Targets gene set collection
when using RNA-seq data as input in comparison with micro-
array data (AUC 0.12, p value 5.1 × 10−40) (Fig. 9d). Predictions
obtained using the ICA-TC-based method had a higher associa-
tion to multifunctionality for the Immunological signatures gene

set collection when using RNA-seq data as input (AUC 0.59,
p value 6.6 × 10−58). The subset of gene set median prediction
scores improved by microarray data in comparison to RNA-seq
data when using ICA-TC-based method was 14.83%. These
results show that the ICA-TC-based method can leverage RNA-
seq profiles to improve the predictions in some gene set collec-
tions. The prediction scores based on the RNA-seq dataset have
also been made available at http://genetica-network.com.

Discussion
In this study, we utilized three large expression profile datasets
generated with RNA-seq and microarray technologies, and 16
gene set collections in a GBA strategy using c-ICA to predict
functional annotations. We show that our ICA-TC-based GBA
strategy outperforms a currently successful method, which uses
PCA-TCs in a GBA strategy. In comparison to PCA-TC-, our
ICA-TC-based method (1) provides more confident functionality
predictions for known and unknown gene-to-gene set combina-
tions, (2) provides improved predictions when new knowledge is
added to gene set collections, and (3) is less biased by gene
multifunctionality.

Many genes do not yet have a defined function. Therefore, gene
function prediction methods remain an important tool for

Fig. 6 Predicted functions for uncharacterized genes using the Hallmark collection. a Boxplot of ICA-TC-based (blue) and PCA-TC-based prediction
scores (red) of Corf and LOC genes (n= 835) for the Hallmark gene set collection (x-axis). The vertical lines of boxes correspond to the median prediction
scores; hinges correspond to second and third quartiles of the data; whiskers extend up to 1.5 times the interquartile range; outliers are plotted as dots.
Center of box corresponds to median. b Heatmap depicting hierarchical clustering of Corfs and LOC genes (n= 835) based on the ICA-TC-based
prediction scores for the Hallmark gene set collection. Clusters were obtained with a height cutoff of 0.8, resulting in 116 clusters with a median size of five
members. Insets depict two clusters containing Corfs and LOC genes predicted to be involved in DNA repair, and estrogen receptor response. Genes
marked with an asterisk have been recently implicated in the predicted biological processes based on experimental work.
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researchers. The critical assessment of functional annotation is a
famous benchmark of methods that use protein sequence data to
predict gene functions via gene sets22. Other data such as gene
cross-species homology, protein–protein interaction, mRNA
transcription, essentiality, and semantics can also be used to
predict gene functions5,13,23–26. One limitation of using mRNA
expression data is that some information about the gene function
can only be found at the protein level using expression, interac-
tion, or sequence data. One advantage of mRNA expression data
is the greater amount of publicly available profiles in comparison
to protein experiment data.

New methods such as embeddings and neural networks can
identify complex relationships from protein and mRNA expres-
sion data, which serve to improve gene function predictions.

For example, autoencoders are a neural network architecture
currently used to infer a latent representation of the mRNA tran-
scription patterns obtained from both bulk and single-cell
samples27,28. This representation can be used as a regulatory bar-
code to generate gene function prediction scores within a GBA
strategy. Convolutional neural networks and deep neural networks
have also been used to directly improve gene function prediction
from the protein sequences29,30. The recently developed embedding
technique Uniform Manifold Approximation Projection has also
been utilized to predict novel protein interactions when processing
mRNA expression of different gene knockout experiments31.

In our framework, the prediction score is a Z-score obtained
from a p value. This p value represents the significance level for
the association between the transcriptional regulatory barcode of

an individual gene and the average barcode of a gene set. We do
not assume a shape for the underlying null distribution to cal-
culate the parametric p values due to several reasons. The number
of genes used to generate an average transcriptional regulatory
barcode differs between gene sets (range 10–500). In addition, the
association statistics used in the PCA-TC and ICA-TC-based
method also differ (Pearson versus distance correlation). Finally,
in the ICA-TC-based method, the average transcriptional reg-
ulatory barcode is generated by taking the mean vector of MM
weights of member genes. The PCA-TC-based method instead
calculates a vector of T statistics resulting from the per TC Welch
T tests comparing member genes against nonmember genes5.
Therefore, we utilized a permutation strategy to calculate a null
distribution for each gene to gene set combination, which was
then applied to calculate the p values. This enabled the generation
of comparable prediction scores (Z-scores), which allow the
comparison between our ICA-TC-based method and the PCA-
TC-based method that is used by DEPICT and GADO5,13.

Prediction scores obtained with the ICA-TC-based method
suggest that the majority of genes participate to a small degree in
most biological processes. This observation is also in line with a
recent report that shows how complex traits are associated with
every gene in the genome to a small degree in the context of
genome-wide association studies32. The PCA-TC-based method
did not generate similarly high prediction scores for all genes.
This suggests that the ICA-TC-based method is able to use more
information than the PCA-TC method from the same input
expression dataset.

Fig. 7 Predictions scores for genes found to be essential for DNA repair in a CRISPR-based screen. Both the PCA-TC and ICA-TC-based method
predictions for Gene Ontology Biological Process gene set GO DNA REPAIR are shown. Genes that belong (orange) or do not belong (blue) to the GO DNA
repair gene set are plotted in separate panels. For the case of genes that are not members of a DNA repair gene set, the scatterplot indicates that ICA-TC-
based predictions are higher, while PCA-TC-based predictions remain close to zero and are sometimes negative.
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Predicted gene functions can be used to find commonalities in
the functional annotations of a group of genes without the bias to
well-studied gene sets that can occur with conventional GSEA.
These predictions can also enable the prioritization of genes that
may be more likely to participate in a biological process from a
list of candidate genes obtained as the result of an experiment.
Finally, our unbiased clustering could be used to direct the future

updates of gene set collections and the efforts for functional
characterization of understudied co-regulated genes.

Methods
Data acquisition. We downloaded the following 14 gene set collections from the
Broad Institute Molecular Signatures Database v6.2 (Hallmark, Chemical and
Genetic Perturbations, BIOCARTA, KEGG, REACTOME, microRNA Targets,

Fig. 8 GENETICA predictions for other CRISPR-based screens. a Co-functionality network generated with 111 genes prioritized in a CRISPR screen
investigating the inflammatory response to bacterial lipopolysaccharide. Two clusters were formed that showed enrichment for predicted involvement in an
inflammatory response (right cluster) and oxidative stress response in dendritic cells (left cluster). Predictions in this co-functionality network were
based on the Immunological Signatures gene set collection. Only genes with a co-functionality above a threshold of R > 0.5 are shown in the network.
b Scatterplots of ICA-TC-based (y-axis) and PCA-TC-based (x-axis) prediction scores of all genes for the KEGG lysosome gene set. The orange- and blue-
colored dots designate the membership of genes to the respective KEGG lysosome gene set, and red dots designate genes identified in the CRISPR screen
mentioned in the text. c Scatterplots of ICA-TC-based (y-axis) and PCA-TC-based (x-axis) prediction scores of all genes for the GO Biological Process gene
set Negative regulation of viral transcription by the host. The orange and blue color dots designate the membership of genes to the respective GO
Biological Process gene set, and red dots designate genes identified in the CRISPR screen mentioned in the text; the dot corresponding to the GNPTAB gene
is highlighted.
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Transcription Factor Targets, Cancer Gene Neighborhoods, Cancer Modules,
Oncogenic Signatures, Immunological Signatures, GO-Cellular Component, GO-
Molecular Function, GO-Biological Process). In addition, we obtained two gene set
collections from other sources: The Mammalian Phenotypes and Human Pheno-
type Ontology. We discarded from further analysis gene sets that contained <10 or
>500 genes. Publicly available raw microarray expression data (CEL files) were

collected from GEO. All available samples hybridized to Affymetrix HG-U133 Plus
2.0 (GPL570) were included (April 2018).

Quality control and preprocessing. To identify samples that have been uploaded to
GEO multiple times, we generated an MD5 hash for each individual CEL file, after

Fig. 9 Median prediction scores and multifunctionality association for RNA-seq-based predictions. a, b Boxplot of median prediction scores (x-axis)
calculated by applying the PCA-TC-based (a) or ICA-TC-based (b) method to microarray (red and dark blue) and RNA-seq (yellow and blue) input data for
each of the 16 gene set collections (y-axis). Median prediction scores are calculated separately for each gene set using both RNA-seq and microarray input
datasets for member genes. Prediction scores of PCA-TC-based method tend to be higher when using the microarray input dataset. Prediction scores of
ICA-TC-based method tend to be higher when using the RNA-seq input dataset. c, d Boxplot of distance correlation between PCA-TC-based (c) or ICA-
TC-based (d) gene set prediction scores and the gene set collection multifunctionality score (y-axis) for each gene set collection (x-axis). Predictions are
calculated using microarray and RNA-seq input datasets. The magnitude of correlation varies across gene set collections and between gene sets in a
collection. The PCA-TC and ICA-TC-based methods have comparable multifunctionality association when using RNA-seq and microarray input data for
most gene set collections. Predictions obtained using the ICA-TC-based method have a lower association to multifunctionality for the microRNA Targets
and Cancer Gene Neighborhoods gene set collections when using RNA-seq data as input. Hinges of boxes represent second and third quartiles and
whiskers extend by half that interquartile range. Center of box corresponds to median.
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which duplicate CEL files were removed. Aggregation of raw expression data was
performed according to the robust multi-array average algorithm with RMAExpress
(version 1.1.0). As a quality control measure, PCA was applied on the sample cor-
relation matrix. The first PC nearly always discriminates a platform-specific signature.
Low-quality samples that did not strongly correlate with this component were dis-
carded (Pearson R < 0.8). As multiple probe sets can target a single gene on Affy-
metrix gene expression microarrays, we utilized The R package “jetset” (version 3.4.0)
to obtain one-to-one mapping between genes and the “best” probe sets for expression
data generated with Affymetrix HG-U133 Plus 2.0 platform.

PC analysis. We performed PCA on the covariance matrix using the princomp
function (R version 3.4.3) between the genes to whiten the observed variables (gene
expression patterns) and reduce the dimensionality of the input data used for the c-
ICA analysis. After whitening, the dimensionality was reduced from 19,635 genes
to 817 whitened variables (referred in this manuscript as PCA-TCs) that explained
90% of the original variance observed in our original input dataset.

Consensus-independent component analysis. The FastICA algorithm utilized
the whitened variables obtained by PCA to calculate independent components
using the FastICA R package (version 1.2.0). The number of expected components
to extract was the same as the number of withered variables (n= 817). To ensure
that we would capture reproducible independent components, we performed 25
runs of FastICA and only retained independent components that have an
equivalent component in at least 13 runs of FastICA (Pearson R > 0.98). A total of
523 consensus-independent components (referred in this manuscript as ICA-TCs)
met this requirement. A mixing matrix was recalculated using these 523 ICA-TCs
by performing a matrix multiplication against the inverse of the input dataset.

Gene prediction scores. The likelihood for an individual gene to be part of a
biological pathway (e.g., gene set) is described by a prediction score. This will result
in a vector of n prediction scores (e.g., functional likelihood vector) for each
individual gene for each of the n gene sets in a collection. The absolute Pearson
correlation between the vectors of prediction scores of two genes represents their
co-functionality. A high co-functionality correlation indicates that two individual
genes have similar predicted biological functions. Prediction scores were calculated
using the mixing matrix and each of the 16 gene set collections was used as input
using the AnalyzerTool desktop app (version 5.0).

Co-functionality network. Genes are plotted as nodes and their co-functionality
correlation as edges in the network visualization. Only nodes with at least one cor-
relation higher than the threshold will be shown. Selecting a group of nodes shows
their average prediction scores for gene sets of the selected gene set collection.

Gene multifunctionality score calculation. We calculate gene multifunctionality
scores for each gene set collection as described in ref. 14. A gene multifunctionality
score is a weighted sum of the number of gene sets that have that gene as a member.
The weight of each membership is corrected by the size of each gene set as follows:

Score ðGAÞ ¼
X

ijGA2Ci

1
N ini

´Nouti

Where GA is a gene, Ci is a gene set in the collection that has GA as a member, N ini
is

the number of genes that belong to Ci and Nouti
is the complementary set of genes

that do not belong to Ci. Distance correlations were calculated using the dcor2d
function from the energy R package (version 1.7).

Hierarchical clustering of regulatory barcodes. Using the “hclust” function, we
performed a hierarchical clustering using the “ward.D2” method over an input
distance matrix generated from the c-ICA mixing matrix using dcor2d (1− cor-
relation) (R version 3.4.3, hclust version 3.4.3, energy 1.7). Note that the mixing
matrix is an output of the c-ICA and is not generated using gene sets. Clusters were
generated by cutting the dendrogram at a height (h= 2.5), which guaranteed the
size of every cluster to be within the range 10–500 genes, which is the same size
range used for gene sets. This resulted in 173 clusters of sizes 13 to 389 with a mean
of 115.

Uncharacterized genes were defined as genes with the “C*orf*” or the “LOC*”
glob pattern in their gene symbol. For these 835 genes, the ICA-TC-based
prediction scores were selected for all 50 Hallmark gene sets. The resulting data
frame was clustered hierarchically, both for genes and gene sets, using the “ward.
D2” method and (1− correlation) as the distance measurement (R version 3.4.3,
hclust version 3.4.3). To obtain clusters of uncharacterized genes, the gene
dendrogram resulting from clustering was cut off at a height of 0.8.

RNA-seq-based prediction scores. The sample subset processed in the manu-
script by Deelen et al.13 was downloaded and quality controlled. Pseudocounts
were obtained using kallisto and gene-level counts were calculated using
DESeq233,34. After quality control, 58,433 genes and 29,138 samples remained
(see Supplementary Notes). In total, 85% of the variance of this dataset was

explained by 2711 PCs, which were used for calculating PCA-TC-based prediction
scores. These same 2711 PCs were used as input for the consensus ICA method
that generated 1373 ICs (with credibility index of 0.5), which were used to generate
the ICA-TC-based prediction scores.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Prediction score tables, and corresponding input matrices for ICA- and PCA-based
prediction scores for all 16 gene set collections are available on the Support data section
of www.genetica-network.com. Data associated with the main figures and mouse–human
prediction score correlations are available at figshare35: https://doi.org/10.6084/m9.
figshare.13265159.

Code availability
The software used to generate the prediction scores (Analyzertool5) can be found at
https://bitbucket.org/groupfehrmann/analyzertool/src/master/ a readme with installation
and usage instructions can be found in the about section of www.genetica-network.com.
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