k-nearest neighbour (k-NN) |
Distance (DD) |
{Cityblock, chebychev, correlation, cosine, euclidean, hamming, jaccard, mahalanobis, minkowski, seuclidean, spearman} |
DistanceWeight (DW) |
{Equal, inverse, squaredinverse} |
Exponent (E) |
[0.5, 3] |
NumNeighbors (NN) |
[1, 5] |
Support Vector Machine (SVM) |
BoxConstraint (BC) |
Log-scaled in the range [1e−3, 1e3] |
KernelFunction (KF) |
{Gaussian, linear, polynomial} |
KernelScale (KS) |
Log-scaled in the range [1e−3, 1e3] |
PolynomialOrder (PO) |
{1,2,3,4} |
Artificial Neural Network (ANN) |
Activation Function (AF) |
{relu, sigmoid, tanh} |
Hidden Layer nr. of Neurons (HLN) |
[25, 200] |
Linear Discriminant Analysis (LDA) |
Gamma (G) |
[0,1] |
Delta (D) |
Log-scaled in the range [1e−6, 1e3] |
DiscrimType (DT) |
{Linear, quadratic, diagLinear} |
{diagQuadratic, pseudoLinear, pseudoQuadratic} |
Naive Bayes (NB) |
DistributionName (DN) |
{Normal, kernel} |
Width (W) |
Log-scaled in the range [1e−4, 1e14] |
Kernel (K) |
{Normal, box, epanechnikov, triangle} |