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A simple method to analyze microbiome beta-diversity computes mean beta-diversity distances from a test
sample to standard reference samples. We used reference stool and nasal samples from the Human Microbiome
Project and regressed an outcome on mean distances (2 degrees-of-freedom (df) test) or additionally on squares
and cross-product of mean distances (5-df test).We compared the power of 2-df and 5-df tests with the microbiome
regression-based kernel association test (MiRKAT). In simulations, MiRKAT had moderately greater power than
the 2-df test for discriminating skin versus saliva and skin versus nasal samples, but differences were negligible
for skin versus stool and stool versus nasal samples. The 2-df test had slightly greater power than MiRKAT
for Dirichlet multinomial samples. In associating body mass index with beta-diversity in stool samples from the
American Gut Project, the 5-df test yielded smaller P values than MiRKAT for most taxonomic levels and beta-
diversity measures. Unlike procedures like MiRKAT that are based on the beta-diversity matrix, mean distances
to reference samples can be analyzed with standard statistical tools and shared or meta-analyzed without sharing
primary DNA data. Our data indicate that standard reference tests have power comparable to MiRKAT’s (and to
permutational multivariate analysis of variance), but more simulations and applications are needed to confirm
this.

beta-diversity; microbiome; MiRKAT; PERMANOVA; power; standard reference samples; standard reference
tests

Abbreviations: AGP, American Gut Project; BMI, body mass index; df, degrees of freedom; DM, Dirichlet multinomial; HMP,
Human Microbiome Project; MiRKAT, microbiome regression-based kernel association test; OTU, operational taxonomic unit;
PERMANOVA, permutational multivariate analysis of variance; UniFrac, unique fraction.

Microbiome studies are often based on the relative abun-
dance of various microbiologic taxa in a study sample. These
relative abundances, which are represented by a composition
vector whose components sum to 1 across taxa, are estimated
by the ratio of DNA reads in a given taxon divided by the
total DNA reads in the sample. An aim of epidemiologic
studies is to determine whether the composition vectors
in cases differ from those in noncases. One approach is
based on measures of beta-diversity, such as Bray-Curtis
dissimilarity (1). Beta-diversity measures how dissimilar 2
composition vectors are overall, rather than with respect to a
single taxon. For n cases and m noncases, one computes the
(n+m)× (n+m) symmetric matrix whose off-diagonal ele-
ments are the pairwise dissimilarities between microbiome

samples. To see whether the between-group dissimilari-
ties are significantly greater than the within-group dissim-
ilarities, a permutational multivariate analysis of variance
(PERMANOVA) (2) can be performed. Another commonly
used procedure is the microbiome regression-based kernel
association test (MiRKAT) (3). The powers of these tests to
detect significant group differences have been evaluated (3,
4). Hereafter we use the term “distance” instead of “dissim-
ilarity,” even though some measures of beta-diversity like
Bray-Curtis, are not metrics.

Maziarz et al. (5) proposed another approach. For each of
the n + m samples, one computes the mean distance to fixed
reference samples—for example, 92 stool samples from the
Human Microbiome Project (HMP) and 74 nasal samples
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from HMP. Thus, one attaches to each of the n + m samples
a vector of 2 mean distances to reference samples. This
approach has several advantages. First, standard statistical
methods can be used to analyze the mean distance vectors,
because the vectors are associated with a sample, not with
a pair of samples. For example, we use regressions to test
whether the mean distances to reference samples are the
same in cases and controls. Second, the approach promotes
transparency and the ability to share information across
studies, because several investigators can compute mean
distances to the same reference samples. One does not need
to compute a new and enlarged distance matrix to analyze
samples combined across studies by different investigators;
results can easily be combined across studies in a meta-
analytical fashion or by using the individual mean distance
vectors.

Although the approach based on reference groups is
attractive, it is important to assess its power compared with
PERMANOVA and MiRKAT. Here we present evidence
that the regression tests based on the use of HMP stool
and nasal reference samples have power comparable to
PERMANOVA or MiRKAT for discriminating between 2
groups, and we also illustrate the flexibility and power
advantage of the reference group method for assessing the
association of body mass index (BMI, calculated as weight
(kg)/height (m)2) with microbiome samples.

METHODS

Data for groups to be discriminated

As previously described (5), we used 16S V3–V5 region
sequencing data from the HMP, which contains informa-
tion from healthy participants. The HMP mapping file (6)
included information from 195 individuals. We randomly
selected 97 of these individuals to be the reference group.
The reference set for stool included 92 samples from 92
distinct members of the reference group. The reference set
for nasal included 74 samples from 74 distinct members
of the reference group. The remaining 195 − 97 = 98 in-
dividuals in the “test” (or “nonreference”) group were used
to define the discrimination groups.

We considered 4 groups to be discriminated: skin, nasal,
saliva, and stool. In the 98 test individuals, we eliminated
samples with fewer than 500 reads and rarefied all remaining
samples to 500 reads. There remained 28 skin samples,
70 nasal samples, 82 saliva samples, and 85 stool samples
from those 98 test individuals. For discriminating skin from
saliva samples, we resampled the 28 people with skin sam-
ples with replacement. To obtain saliva samples that were
independent of the skin samples, we removed the 22 test
individuals who provided skin samples from the 82 individ-
uals with saliva samples and resampled saliva samples with
replacement from the remaining 60 individuals. Likewise,
for discriminating skin from nasal samples, we resampled
skin samples with replacement from the 28 skin samples but
resampled nasal samples with replacement from the 51 indi-
viduals with nasal samples who did not have skin samples.
For discriminating skin from stool samples, we resampled

skin samples with replacement from the 28 skin samples
and resampled stool samples with replacement from the 64
individuals with stool samples who did not provide skin
samples. For discriminating nasal from stool samples, we
combined 20 individuals who provided stool but not nasal
samples with a random sample of 33 of the 65 individuals
who provided both nasal and stool samples, leading to 53
individuals with stool samples. This split also yielded 37
individuals with nasal samples, including 5 who had nasal
but not stool samples. We resampled with replacement from
the 53 individuals with stool samples and the 37 individuals
with nasal samples in simulations.

Definition of null and alternative hypotheses for
simulations

In simulations described below, we resampled with re-
placement from these test groups to generate new samples.
Under the null hypothesis for testing skin (“cases”) versus
saliva (“controls”), we created 2 groups of size n = 25
each by resampling from the saliva group with replacement.
Thus, the case and control groups were really 2 independent
saliva groups. At the extreme alternative, we sampled 25
skin samples (cases) from the skin test group with replace-
ment and compared these with 25 saliva samples (controls)
from the saliva test group. For less extreme alternatives, we
compared the saliva control group against a mixture of skin
and saliva samples (cases). For example, an 80% mixing
proportion means that 20 of the cases are skin samples,
chosen at random with replacement from the skin test group
and 5 of the cases are saliva samples, chosen at random
with replacement from the saliva test group. Formation of
cases and controls under the null and alternative hypotheses
were performed similarly for discriminating skin from nasal
samples, skin from stool samples, and stool from nasal
samples. We present data for case and control samples of
size n = 25, 50, and 100, and we used mixing proportions
1.0, 0.8, 0.6, 0.4, 0.2, and 0.0 (the null hypothesis).

Dirichlet multinomial sampling

As an alternative approach for generating samples for
power studies, we resampled from Dirichlet multinomial
(DM) distributions, as for example in Koh et al. (7). We used
skin samples from the 18 HMP test individuals who had at
least 1,000 reads to estimate DM parameters for phyla. We
excluded 9 phyla with no reads, leaving K = 18 phyla. These
count data are presented in Web Table 1 (available at https://
academic.oup.com/aje), together with estimated DM param-
eters, which were estimated by the R program “dirmult,”
available in the Comprehensive R Archive Network (https://
cran.r-project.org/). The 18 parameters γk estimated by “dir-
mult” are the Dirichlet parameters (8). These are mapped

into an overdispersion parameter θ = (
1 + ∑K

k=1γk
)−1

and

multinomial probabilities πk = γk/
∑K

k=1γk (mistakenly
indicated as πk = γk/θ in “dirmult” documentation but
not in the program). We resampled “controls” from DM
using the program “simPop” in the package “dirmult,” with
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parameters θ and πk; the marginal read counts n are sampled
with replacement from the column of 18 counts labeled
“Total reads” in Web Table 1. To generate cases, we modified
the DM parameters as follows. We randomly picked 5 phyla
and multiplied each of the corresponding γk parameters by
a fixed hk = ψ for the first 3 values of k, and by hk = 1/ψ
for the last 2 values of k. Here ψ is 1, 1.2, 1.3, or 1.5, and
ψ = 1 corresponds to the null hypothesis. Large values of
ψ yield large perturbations of the original γk. With these
fixed modified γk parameters, we recomputed θ and πk to
generate “cases” from “simPop.” The DM parameters used
to generate controls and cases from “simPop” are given in
Web Table 1.

Bioinformatics

As in Maziarz et al. (5), we used a closed reference oper-
ational taxonomic unit (OTU)-picking method. We used the
OTU table from the Human Microbiome Project Consor-
tium (6), which was derived from Quantitative Insights Into
Microbial Ecology (QIIME; http://qiime.org/) (9), version
1.3.0, “using the Ribosomal Data Project (10) classifier
version 2.2, retrained” with the February 4, 2011, Green-
genes (11) (https://greengenes.secondgenome.com/) taxon-
omy. We mapped the OTU tables to phylum, class, order,
family, and genus using the summarize_taxa command in
QIIME, version 1.9.1 (9). The proportions of 16S sequences
in the various taxa measured the relative abundances of
taxa for each sample. The same 92 HMP reference stool
samples and 74 HMP reference nasal samples were used
as in Maziarz et al. (5) without rarefaction to estimate rel-
ative abundance. These relative abundances are regarded as
fixed.

Because HMP samples have comparatively few reads, test
samples were preprocessed by excluding those with fewer
than 500 reads and otherwise selecting 500 reads at random
without replacement (rarefaction) for calculation of relative
abundance. These relative abundance vectors are regarded as
fixed.

The HMP public data just described was categorized
based on an early version of the Greengenes closed refer-
ence library. To use these methods for non-HMP samples,
we reanalyzed the HMP reference samples using the latest
reference library, Greengenes 13.8, which is used in other
projects, such as the American Gut Project. Otherwise, we
treated HMP reference samples and test samples as above.

We studied the association of BMI with measures of
beta-diversity using stool sample data from the American
Gut Project (AGP) (12) (http://americangut.org). 16S V4
region sequences were identified through the Greengenes
13.8 reference library. All HMP reference samples were used
except for one nasal sample with a missing identifier. The
1,582 AGP samples with complete data on BMI, age, and
sex and at least 1,000 reads were rarefied to 1,000 reads for
analysis.

Bray-Curtis distances between samples i and j at a
taxonomic level with K taxa were computed from dij =
1

K∑

k=1
min(zik, zjk), where zik is the relative abundance of

taxon k in sample i. We use the term “composition vector” to
denote either the vector of K relative abundances for a given
sample or the corresponding K DNA read counts, depending
on context. To compute weighted and unweighted unique
fraction (UniFrac) distances (13), we used the package
GUniFrac (14), but we made some modifications (15) to
calculate unweighted UniFrac and weighted UniFrac dis-
tances. We provide a function RefDistance (16) to compute
Bray-Curtis, unweighted UniFrac, and weighted UniFrac
distance to HMP reference stool samples and HMP reference
nasal samples. Distances are provided at the phylum, class,
order, family, and genus levels. RefDistance has an option
to use the 2011 Greengenes and its associated phylogenetic
trees for HMP samples or to use Greengenes 13.8 and
its associated phylogenetic trees for non-HMP samples.
The input to RefDistance includes the required taxonomic
level, its corresponding table of relative abundances, and the
option for 2011 Greengenes or Greengenes 13.8. The output
is three n × 2 matrices of mean distances to the 2 HMP
reference samples, one for each distance measure, and n is
the number of samples. This work used the computational
resources of the National Institutes of Health High Perfor-
mance Computing Biowulf cluster (http://hpc.nih.gov/).

Test statistics

PERMANOVA P values were computed using the
micropower package (4), which loads the vegan package; we
used 1,000 random permutations. MiRKAT P values were
computed using the MiRKAT package at the Comprehensive
R Archive Network, version 1.0.1 (3), and were based on the
null permutational distribution of residuals with 1,000 ran-
dom permutations. We regressed an indicator Y = 1 for case
and 0 for control on Xstool and Xnasal, the mean distances to
the stool and nasal reference samples, using the linear model
function lm in R (R Foundation for Statistical Computing,
Vienna, Austria). A 2 degrees-of-freedom (df) test of the
hypothesis βstool = βnasal = 0 is equivalent to a Hotelling’s
T2 test. We also created a 5-df test based on a model that
additionally included X2

stool, X2
nasal, and Xstool × Xnasal in

order to detect quadratic as well as linear associations.
These tests are likelihood ratio tests based on Fdf ,n−1−df =
{(SSnull model − SSfull model)/df }/{SSfull model/(n − 1 − df )}
statistics, where SS is the squared sum of residuals from
the model and n is the sample size (number of cases
plus controls). This method was extended for the example
to include p other covariates in the model to adjust for
confounding, leading to Fdf ,n−1−df −p. Tests for statistical
significance were at the 0.05 level.

Simulation procedures

For each simulated sample, cases and controls were ob-
tained by sampling with replacement from test individuals
as described in the previous subsection on data for groups
to be discriminated. Then each of the 4 test statistics was
computed on the simulated sample. Power and size were
estimated by the proportion of statistically significant results
in 3,000 independent simulated samples.
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Figure 1. Power to discriminate skin (cases) from saliva (control) samples using Bray-Curtis distance at the phylum, order, and genus levels
with sample sizes 25, 50, or 100 in each group. Columns in these figures correspond to phylum, order, and genus from left to right, and rows
to sample sizes 25, 50, and 100 from top to bottom. The solid locus refers to the standard reference method 2-degrees-of-freedom (df) test (or
Hotelling T2 test); the dot-dashed locus refers to the 5-df test; the dashed locus refers to microbiome regression-based kernel association test
(MiRKAT). The mixing proportion is the proportion of cases that are skin samples. Power estimates are based on 3,000 independent simulations
for each combination of taxonomy and mixing proportion (0, 0.2, 0.4, 0.6, 0.8, 1.0).

RESULTS FROM SIMULATIONS

Discriminating skin from saliva samples

Figure 1 plots the power to discriminate skin from saliva
samples against the skin mixing proportion for Bray-Curtis
dissimilarity. Columns in these figures correspond to phy-
lum, order, and genus from left to right, and rows to sample
sizes 25, 50, and 100 from top to bottom. A sample size
of n = 25 refers to 25 cases and 25 controls, for example.
Data for PERMANOVA were almost superimposable with
those for MiRKAT and are not shown. MiRKAT had slightly
greater power than the 2-df test for n = 25, but the differences
were very small for n = 50 and vanished for n = 100. Power
was lower for the 5-df test. All tests had power 1.00 for
n = 100 and for mixing proportion 0.6 or greater. Color-
coded power curves for discriminating skin from saliva

samples for Bray-Curtis, unweighted UniFrac, and weighted
UniFrac are presented in Web Figures 1–3.

Additional details for discriminating saliva samples from
a mixture of 20% skin and 80% saliva samples are in
Table 1. We chose this mixture because higher proportions
of skin samples led to similar high powers for both the 2-
df test and MiRKAT (Figure 1). The differences in power
between MiRKAT and the 2-df test were usually modest,
for both Bray-Curtis and weighted UniFrac, for which the
5-df test had lower power. The power of all tests was less
with unweighted UniFrac, for which the power advantage
of MiRKAT compared with the 2-df test and 5-df test was
greater (see also Web Figure 2).

We recalculated the data in Figure 1 with an independent
rarefaction of the test data. Very similar results to Figure 1
were obtained (data not shown).
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Table 1. Power to Discriminate Saliva Samples From a Mixture of 20% Skin and 80% Saliva Samplesa

Phylogenetic Level
and Sample Size in

Each Group

Bray-Curtis

UniFrac

Unweighted Weighted

2 dfb 5 dfb MiRKAT 2 df 5 df MiRKAT 2 df 5 df MiRKAT

Phylum

25 0.22 0.07 0.33c 0.05 0.05 0.10c 0.25 0.08 0.28c

50 0.74 0.38 0.85c 0.06 0.10 0.17c 0.78c 0.39 0.73

100 01.00 0.99 1.00 0.08 0.31 0.38c 1.00c 0.99 0.99

Order

25 0.22 0.08 0.50c 0.07 0.04 0.29c 0.25 0.08 0.36c

50 0.86 0.37 0.99c 0.08 0.08 0.81c 0.82 0.44 0.92c

100 1.00 0.99 1.00 0.14 0.20 1.00c 1.00 1.00 1.00

Genus

25 0.12 0.04 0.75c 0.08 0.07 0.41c 0.32 0.09 0.40c

50 1.00 0.51 1.00 0.12 0.17 0.93c 0.89 0.57 0.96c

100 1.00 1.00 1.00 0.20 0.52 1.00c 1.00 1.00 1.00

Abbreviations: df, degrees of freedom; MiRKAT, microbiome regression-based kernel association test; UniFrac, unique
fraction.

a Based on 3,000 simulations and rounded to 2 places.
b The 2-df test is equivalent to a Hotelling T2 test and is computed by testing for no main associations in a linear

regression of group indicator on the mean distances to the 2 reference samples. The 5-df test tests that there are no main
associations and no associations with the 2 squared mean distances and with the product of the distances. See Methods
for details.

c The test with highest power.

Discriminating skin from nasal and stool samples and
stool samples from nasal samples

Neither skin nor saliva samples are HMP reference
samples. Because we used stool and nasal HMP reference
samples, we compared the power of tests to discriminate skin
from nasal, skin from stool, and stool from nasal samples
(Web Figures 4–12 and Web Tables 2–4). MiRKAT had
modestly greater power than the 2-df test for discriminating
skin from nasal samples with Bray-Curtis and weighted
UniFrac (Web Figures 4 and 6); the MiRKAT power
advantage was greater with unweighted UniFrac (Web
Figure 5). For discriminating skin from stool samples, the
power of MiRKAT and the 2-df test were very similar, even
with unweighted UniFrac (Web Figures 7–9). Likewise, the
power of MiRKAT was very similar to the 2-df test for
discriminating stool from nasal samples (Web Figures 10–
12); in fact, all tests had power 1.00 for mixing proportion
0.4 or more. In these examples, the 5-df test usually had
less power than the 2-df test, indicating that the mixture
alternatives studied shifted the mean distances to reference
samples more than altering the variances and covariance of
the mean distances. An exception was that in discriminating
stool from nasal samples with unweighted UniFrac, the 5-
df test had slightly greater power than the 2-df test (Web
Figure 11 and Web Table 4). Additional numerical details
are in Web Tables 2–4.

To summarize, MiRKAT was modestly more powerful
than the 2-df test for discriminating saliva from a mixture of

skin and saliva samples and nasal from a mixture of skin and
nasal samples, but the powers were nearly the same for dis-
criminating stool from a mixture of skin and stool samples,
and nasal from a mixture of stool and nasal samples. The
5-df test usually had lower power. These data suggest that it
might be advantageous for the standard reference samples to
include groups to be discriminated.

Power to discriminate between samples from 2 different
Dirichlet multinomial distributions

To compare the power of these tests with other methods
of generating microbiome-like data, we generated case and
control samples from a Dirichlet multinomial model based
on nonreference HMP skin samples, as described in Meth-
ods. Using Bray-Curtis dissimilarity, we found that the 2-df
test had slightly greater power than MiRKAT and that the
5-df test had slightly less power than MiRKAT for n = 25,
50, and 100 (Figure 2). The power of PERMANOVA was
almost identical to that of MiRKAT (data not shown).

EXAMPLES

Association of BMI with beta-diversity

We studied the association of BMI with measures of beta-
diversity using 1,582 stool samples from AGP as described
in Methods. The standard reference analysis regressed BMI
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Figure 2. Power to discriminate Dirichlet multinomial samples as a function of the multiplier, ψ, that perturbs the parameters for 5 randomly
selected phyla, as described in Methods. Results are shown for n = 25 (A), 50 (B), and 100 (C) samples in each group based on Bray-Curtis
dissimilarity. The solid locus represents the 2-degrees-of-freedom (df) test (or Hotelling T2 test) based on standard reference samples; the dot-
dashed locus represents the 5-df test; and the dashed locus represents microbiome regression-based kernel association test (MiRKAT). Power
estimates are based on 3,000 independent simulations for each multiplier, 1.0, 1.2, 1.3, and 1.5.

on mean distance to stool reference samples (Xstool), mean
distance to nasal reference samples (Xnasal), age, and sex; the
2-df test was a likelihood ratio test compared with the model
with age and sex alone. A 5-df test was based on a model that
also included X2

stool, X2
nasal, and Xstool×Xnasal. In the notation

in Methods, the Fdf ,n−1−df −p statistics for the 2-df and 5-df
tests were F2,1582−1−2−2 = F2,1577 and F5,1582−1−5−2 =
F5,1574 respectively. MiRKAT also adjusted for age and sex.

Table 2 summarizes an analysis at taxonomic level 6
(genus). MiRKAT and the 5-df test yielded statistically
significant P values for all 3 distance measures. The 2-df
test was only statistically significant for Bray-Curtis dissim-
ilarity. Examination of the regression coefficients in com-
parison with their standard errors reveals that Xstool was
positively associated with BMI; no other main associations
of Xstool or Xnasal were statistically significant. The only
statistically significant quadratic association was for X2

nasal
with weighted UniFrac. The 5-df test P values were much
smaller than the 2-df test P values. Thus, the 5-df test P
values are driven by quadratic as well as linear components.
The 5-df tests had smaller P values than MiRKAT for Bray-
Curtis and weighted UniFrac distances. The 5-df test yielded
smaller P values than MiRKAT for most combinations of
distance measure and taxonomic level (Web Table 5). This
tendency was especially pronounced at the order, class, and

phylum levels. For example, at the phylum level, the P
values for Bray-Curtis, unweighted UniFrac and weighted
UniFrac were, respectively, 2.14−4, 0.0257, and 2.36−4 for
the 5-df test compared with 0.0570, 0.1600, and 0.0474 for
MiRKAT. Thus, the 5-df test provided stronger evidence
of an association with BMI. We found very similar results
to Web Table 5 with rarefaction at 10,000 reads (data not
shown).

We also discriminated men from women in AGP with
adjustment for age. For Bray-Curtis, unweighted, and
weighted UniFrac distances, respectively, MiRKAT with
10,000 permutations yielded P values of 10–4, 10–4, and
10–4, and the 2-df reference test yielded 2.14×10−5, 0.0550,
and 0.00708.

Intraclass correlation

We examined paired saliva data from 26 nonreference
HMP individuals who had 2 samples. The intraclass corre-
lation for Xstool was 0.37 (95% confidence interval: –0.021,
0.658) at the phylum level and −0.104 (95% confidence
interval: −0.488, 0.295) at the genus level. Corresponding
estimates for Xnasal were 0.122 (95% confidence interval:
−0.287, 0.482) at the phylum level and 0.289 (95% confi-
dence interval: −0.114, 0.603) at the genus level. The low
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Table 2. Analyses of Associations of Body Mass Index With Beta-Diversity at Taxonomic Level 6 (Genus)a

Dissimilarity

Standard Reference Method MiRKAT

β̂stool(se) β̂nasal(se) β̂
(stool)2 (se) β̂

(nasal)2 (se) β̂stool×nasal(se)
2-df

P Value
5-df

P Value
P Value

Bray-Curtis

Mainb 2.27(0.98)c 7.96(5.12) 0.0406c

Quadraticd 1.62(1.14) 4.15(10.67) 6.84(5.89) −38.98(73.08) −16.06(47.87) 0.0012c 0.0102c

Unweighted UniFrac

Mainb 2.67(3.37) −1.43(3.88) 0.6696

Quadraticd −1.41(3.90) 0.83(4.12) 62.72(41.06) 132.7(85.71) −41.99(94.86) 0.0116c 0.0020c

Weighted UniFrac

Mainb 2.89(2.25) 1.90(6.49) 0.1924

Quadraticd −3.19(3.34) −13.41(9.53) 12.55(20.93) −223.3(113.60)c −131.6(102.90) 2.03 ×10–5c 0.0347c

Abbreviations: df, degrees of freedom; MiRKAT, microbiome regression-based kernel association test; se, standard error; UniFrac, unique
fraction.

a Analysis of data from the American Gut Project (12). Regression coefficient estimates and their standard errors (se) are denoted, for
example, by β̂stool(se). All analyses include age and sex in the models to adjust for potential confounding by these factors.

b Main effects for distance to stool and distance to nasal samples (Xstool and Xnasal; see Methods).
c Statistically significant association at 0.05 level.
d Model also includes (Xstool)2, (Xnasal)2 , and (Xstool) (Xnasal).

intraclass correlations for Xstool at the genus level and Xnasal
at the phylum level indicate low power for detecting associ-
ations with a single microbiome measurement. Partitioning
of dissimilarity matrix variability has been used (17, 18), but
its relationship to effective sample size and power remains
to be investigated.

DISCUSSION

This study showed that using HMP stool and nasal refer-
ence samples can simplify beta-diversity analyses with little
loss of power compared with more complex procedures,
such as MiRKAT. MiRKAT had slightly greater power
than simple regression tests (2-df test and 5-df test) based
on mean distances to reference samples for discriminating
saliva samples from mixtures of skin and saliva samples and
for discriminating nasal samples from mixtures of skin and
nasal samples. However, power differences were negligible
for discriminating stool samples from mixtures of skin and
stool samples and for discriminating nasal samples from
mixtures of stool and nasal samples. Moreover, the 2-df
test had slightly greater power than MiRKAT in simulations
from a Dirichlet multinomial model. In an example to detect
an association of BMI with beta-diversity in data from the
American Gut Project, the 5-df test yielded smaller P values
than MiRKAT for most combinations of taxonomic level
and distance measure. Thus, simple statistical tests based on
distances to standard reference samples were competitive
with more complex procedures such as MiRKAT.

A challenge for estimating power is defining realistic
simulations under the null and alternative hypotheses. We
resampled with replacement from real data to generate 2-

sample comparisons under the null hypothesis and under
a sequence of alternatives created by mixing cases with
controls and comparing these mixtures with controls. To
evaluate whether similar results held for other types of
samples, we used a Dirichlet multinomial model for which
the 2-df test was a little more powerful than MiRKAT (and
PERMANOVA). Further experience with different simula-
tion models and real data sets is needed to compare the power
of standard reference tests and other procedures.

We used the same HMP reference stool and nasal samples
as proposed previously (5). An important issue is whether
and how the choice of reference samples affects the power
of these procedures. The 2-df test had good power for dis-
criminating between skin and saliva samples, which are not
reference sites. However, the 2-df test performed even better,
compared with MiRKAT, for discriminating skin from stool
samples. This suggests that it is useful to include a reference
sample like the samples being discriminated.

The following heuristic argument supports using refer-
ence samples similar to groups being discriminated. To dis-
criminate between 2 vectors, X1 and X2, we seek a reference
vector R such that D2 = (|X1 − R| − |X2 − R|)2 is as large
as possible, where |A| denotes the magnitude of a vector
A. Let A = R − X1 and B = R − X2. For arbitrary A
and B, (A − B)2 = A2 + B2 − 2A · B ≥ A2 + B2 −
2 | A‖B |= (|A| − |B|)2, where A · B is the dot product.
Therefore (X2 − X1)

2 ≥ (|R − X1| − |R − X2|)2 = D2.
If either R = X1 or R = X2 then D2 = (X2 − X1)

2.
Hence D2 is maximized by choosing R = X1 or R = X2.
This argument suggests that to discriminate 2 groups with
different means, like X1 and X2, one should choose reference
samples with these means. This argument might explain why
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HMP reference nasal and stool samples worked especially
well for discriminating skin from stool and nasal from stool.
This argument does not pertain to discrimination based on
variances and covariances, as in the 5-df test, because it
focuses only on distances to the mean. This argument is
heuristic because many beta-diversity dissimilarities are not
Euclidean metrics.

Further work is needed to define the best reference sam-
ples for particular applications. For example, for investi-
gating various diseases of the colon, it might be important
to include normal colon reference samples. In some appli-
cations it might be useful to have more than 2 reference
samples. It might be helpful to have reference samples
that were analyzed with the same technology (e.g., same
sequencing regions and platforms) as the study samples.
(However, the BMI example showed that HMP reference
samples, which used 16S V3–V5 sequencing, performed
well for AGP data, which used 16S V4 sequencing.) It might
be useful to establish a curated database with a range of
reference samples that could be used for various applica-
tions. Data in Maziarz et al. (5) indicated that the number
of samples in a reference set could be smaller than in the
HMP reference sets we used, and that the performance
was not much diminished by using just the centroid of the
reference set. Indeed, Heller and Heller (19) showed that
univariate tests based on distances to a single multivariate
reference point were consistent for discriminating between
2 distributions of multivariate vectors.

Although the literature on associations of BMI or obesity
with microbiota is not consistent (20), investigators have
noted associations with increased abundance of Firmicutes
in stool samples (21) and with T-cell regulated changes
in microbiota (22). Our analyses of AGP data revealed
strong evidence of beta-diversity associations with BMI.
Such associations pertain to the entire microbial community,
not to particular taxa. MiRKAT is a global test with power
for various alternatives. For the standard reference method,
regression of BMI on the mean distances to reference sam-
ples (i.e., 2-df test or Hotelling T2 test) had less power than
regression on main and quadratic factors (i.e., 5-df test). The
5-df test produced smaller P values than MiRKAT in the
AGP example. Other types of multivariate tests on vectors of
mean distances to reference sample might have more power
to discriminate between groups than the 2-df test, which is
powerful against location alternatives but not some other
alternatives (19).

In the BMI example, we used a single beta-diversity mea-
sure, Bray-Curtis dissimilarity. Just as MiRKAT can produce
an omnibus test (3) based on the minimum P value from
several diversity measures, the standard reference method
can produce an omnibus test. The null distribution of the
minimum P value can be obtained by bootstrapping residuals
from the null standard reference regression model.

There are other advantages to using distances to reference
samples for beta-diversity analyses (5). Standard statistical
methods can be applied to the vector of mean distances,
just as for any other covariate measured with an individual
sample. For example, the mean distances can be used as
baseline covariates in survival analyses or as covariates in
logistic analyses of cohort or case-control studies. Standard

methods for analyzing repeated measures can be used to
analyze serial mean distance vectors, as in our example of
intraclass correlations. Another advantage is transparency
and ease in combining data from various investigators. Each
investigator can compute mean distances to standard refer-
ences for his or her own microbiome samples. Then these
mean distance vectors can be combined across studies, either
by analyzing individual vectors or by meta-analyzing esti-
mates of parameters, such as regression coefficients, derived
from mean distance vectors. In contrast, methods such as
PERMANOVA and MiRKAT require access to primary
DNA data to compute a distance matrix containing distances
between all pairs of composition vectors from all studies.

Despite these attractive features, one would not want to
use the standard reference method if it were much less
powerful than procedures like MiRKAT. Our data indi-
cate that the standard reference method is competitive with
MiRKAT and PERMANOVA and has more power in some
settings. Further simulations and experience in applications
are needed to confirm this impression. There might also be a
need to establish reference samples for specific applications,
such as reference colon cancer stool samples for discriminat-
ing normal colon from colon cancer.

To facilitate use of HMP stool and nasal reference
samples, we have provided a function RefDistance (16) to
compute Bray-Curtis, unweighted UniFrac, and weighted
UniFrac distances at the phylum, class, order, family, and
genus levels.
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