Skip to main content
. 2020 Nov 5;100(3):100779. doi: 10.1016/j.psj.2020.10.033

Table 12.

Dose response regressions for Chinese Yellow broiler breeder hens fed diets with different copper content.

Variable Model Regression equation1 Optimal dietary Cu level, mg/kg Optimal daily Cu fed allowance, mg P-value R2
MDA2 in plasma, nmol/mL QP2 Y = 5.65 − 0.128 × X − 1.77 × 10−3 × X2 36.2 4.16 0.002 0.438
Two-slope BL3 Y = 6.77 − 0.261 × X (X ≤ 17.2)
Y = 1.06 + 0.071 × X (X > 17.2)
17.2 1.98 <0.001 0.561
Copper in liver, mg/kg DM BL with plateau4 Y = 15.0 (X ≤ 21.2)
Y = 11.2 + 0.180 × X (X > 21.2)
21.2 2.44 <0.001 0.636
Cu-ATPase in liver, μmolPi/mg protein/hour BL with plateau4 Y = 5.66 (X ≤ 15.7)
Y = 5.16 + 0.032 × X (X > 15.7)
15.7 1.81 <0.001 0.706
Shell thickness, mm QP2 Y = 0.344 + 9.04 × 10−4 × X − 1.17 × 10−5 × X2 38.6 4.44 0.001 0.458
Two-slope BL3 Y = 0.348 + 4.20 × 10−4 × X (X ≤ 41.1)
Y = 0.390 – 6.20 × 10−4 × X (X > 41.1)
41.1 4.73 <0.001 0.453

Abbreviation: MDA, malondialdehyde.

1

Regression equations obtained using the analyzed Cu in the trial diets (3.5, 8.5, 13.5, 23.5, 43.5 and 83.5 mg/kg).

2

QP: Quadratic polynomial; QP model: Y = α + β × X + γ × X2, where Y is the response variable, X is the dietary Cu, α is the intercept; β and γ are the linear and quadratic coefficients respectively. The optimal response was obtained by–β/(2 × γ).

3

BL: Broken line; 2-slope BL model: Y = α + β × Cu, Cu ≤ γ; Y = δ + ε × Cu, Cu > γ, where Y is the response variable, X is the dietary Cu, both α and δ are intercepts, both β and ε are slopes of lines. The Cu level at the break point (γ) was considered as the one providing the optimal response.

4

BL with plateau model: Y = α + β × γ, Cu ≤ γ; Y = α + β × Cu, Cu > γ, where Y is the response variable, X is the dietary Cu, α is the intercept, β is the slope of line, the value (α + β × γ) is the plateau. The Cu level at the break point (γ) was considered to be that providing the optimal response.