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Despite tremendous success of the stochastic gradient descent
(SGD) algorithm in deep learning, little is known about how SGD
finds generalizable solutions at flat minima of the loss function
in high-dimensional weight space. Here, we investigate the con-
nection between SGD learning dynamics and the loss function
landscape. A principal component analysis (PCA) shows that SGD
dynamics follow a low-dimensional drift–diffusion motion in the
weight space. Around a solution found by SGD, the loss func-
tion landscape can be characterized by its flatness in each PCA
direction. Remarkably, our study reveals a robust inverse rela-
tion between the weight variance and the landscape flatness
in all PCA directions, which is the opposite to the fluctuation–
response relation (aka Einstein relation) in equilibrium statistical
physics. To understand the inverse variance–flatness relation, we
develop a phenomenological theory of SGD based on statistical
properties of the ensemble of minibatch loss functions. We find
that both the anisotropic SGD noise strength (temperature) and
its correlation time depend inversely on the landscape flatness
in each PCA direction. Our results suggest that SGD serves as
a landscape-dependent annealing algorithm. The effective tem-
perature decreases with the landscape flatness so the system
seeks out (prefers) flat minima over sharp ones. Based on these
insights, an algorithm with landscape-dependent constraints is
developed to mitigate catastrophic forgetting efficiently when
learning multiple tasks sequentially. In general, our work provides
a theoretical framework to understand learning dynamics, which
may eventually lead to better algorithms for different learning
tasks.

statistical physics | machine learning | stochastic gradient descent |
loss landscape | generalization

One key ingredient for the powerful deep neural network
(DNN)-based machine-learning paradigm—deep learning

(1)—is a relatively simple iterative method called stochastic gra-
dient descent (SGD) (2, 3). However, despite the tremendous
successes of deep learning, the reason why SGD is so effective in
learning in a high-dimensional nonconvex loss function (energy)
landscape remains poorly understood. The random element
seems key for SGD, yet makes it harder to understand. Fortu-
nately, many physical systems include such a random element,
e.g., Brownian motion, and powerful tools have been developed
for understanding collective behaviors in stochastic systems with
many degrees of freedom. Here, we use concepts and methods
from statistical physics to investigate the SGD dynamics, the loss
function landscape, and more importantly their relationship.

We start by introducing the SGD-based learning process as a
stochastic dynamical system. A learning system such as a neu-
ral network (NN), especially a DNN, has a large number (N )
of weight parameters wi (i = 1, 2, . . . ,N ). For supervised learn-
ing, there is a set of M training samples each with an input ~Xk

and a correct output ~Zk for k = 1, 2, . . . ,M . For each input ~Xk ,
the learning system predicts an output ~Yk =G(~Xk , ~w), where
the output function G depends on the architecture of the NN as
well as its weights ~w . The goal of learning is to find the weight
parameters to minimize the difference between the predicted

and correct output characterized by an overall loss function (or
energy function)

L(~w) =M−1
M∑

k=1

d(~Yk , ~Zk ), [1]

where d(~Yk , ~Zk ) is a measure of distance between ~Yk and ~Zk . In
our study, a cross-entropy loss for d is used.

One learning strategy is to update the weights by following the
gradient of L directly. However, this batch learning scheme is
computationally prohibitive for large datasets and it also has the
obvious shortfall of being trapped by local minima. SGD was first
introduced to circumvent the large dataset problem by updating
the weights according to a subset (minibatch) of samples ran-
domly chosen at each iteration (2). Specifically, the change of
weight wi (i = 1, 2, . . . ,N ) for iteration t in SGD is given by

∆wi(t) =−α∂L
µ(t)(~w)

∂wi
, [2]

where α is the learning rate and µ(t) represents the random
minibatch used for iteration t . The minibatch loss function
(MLF) for minibatch µ of size B is defined as

Lµ(~w) =B−1
B∑

l=1

d(~Yµl ,
~Zµl ), [3]

where µl (l = 1, 2, ..,B) labels the B randomly chosen samples.
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Here, we introduce the key concept of a MLF ensemble
{Lµ(~w)}, i.e., an ensemble of energy landscapes each from a
random minibatch. The overall loss function L(~w) is just the
ensemble average of the MLF: L≡〈Lµ〉µ. The SGD noise comes
from the variation between a MLF and its ensemble average:
δLµ≡Lµ−L.

By taking the continuous-time approximation and keeping the
first-order time derivative term in Eq. 2, we obtain the following
stochastic partial differential equation for SGD,

∂~w

∂t
=−α ∂L

∂~w
+ ~η(~w), [4]

where time t and all timescales in this study are measured in
the unit of minibatch iteration time ∆t = 1. The continuous-time
limit amounts to considering time scales that are much larger
than ∆t ; e.g., one epoch time is M /B(� 1). Eq. 4 is analogous to
the Langevin equation in statistical physics. The first term−α ∂L

∂~w
is the deterministic gradient descent governed by the overall loss
function L analogous to the energy function in physics. The sec-
ond term is the SGD noise term ~η≡−α∇~wδLµ(~w) with zero
mean 〈~η〉= 0 and equal time correlation Cij (~w)≡〈ηiηj 〉=α2×
〈 ∂δL

µ

∂wi

∂δLµ

∂wj
〉µ, which depends explicitly on ~w .

Recently, there has been increasing evidence in support of
the notion that “good” (generalizable) solutions exist at the flat
(shallow) minima of the loss function (4–10); however, there is
still little understanding of how SGD-based algorithms can find
these flat minima in the high-dimensional weight space. The orig-
inal gradient descent algorithm searches for loss function minima
independent of their flatness and it also has the significant dis-
advantage of being easily trapped by local minima and saddle
points in the high-dimensional weight space. Adding isotropic
noise to gradient descent (GD) leads to a Langevin equation
analogous to those used to describe stochastic dynamics in equi-
librium physical systems. However, although the added noise can
help GD escape local traps, it does not seem to improve general-
ization (11). The intuitive reason is that a “useful noise” should
depend on the loss landscape. In particular, a useful noise should
be larger in directions where the landscape is rougher to help
escape from local traps and smaller in directions where the land-
scape is flatter to find and stay at good solutions. As first pointed
out by Chaudhari and Soatto (12), unlike equilibrium physical
systems where the noise has a constant strength given by the ther-
mal temperature, the SGD dynamics are highly nonequilibrium
as the SGD noise is anisotropic and varies in the weight space.
Our working hypothesis is that SGD may serve as an efficient
annealing strategy for varying the noise (or effective tempera-
ture) “intelligently” according to the loss function landscape to
find the shallow (flat) minima. In this paper, we focus on studying
the relation between stochastic learning dynamics and the loss
landscape by adopting the nonequilibrium stochastic dynamics
framework and using key concepts from statistical physics such
as the fluctuation–dissipation relation to test this hypothesis.

Learning via Low-Dimensional Drift–Diffusion Dynamics
in SGD
In general, SGD-based DNN learning dynamics can be roughly
divided into an initial fast learning phase where both the train-
ing error and the training loss L decrease rapidly, followed by
an “exploration” phase where the training error becomes almost
0 but the loss L still decreases albeit much slower. The weight
vectors sampled in the exploration phase can all be considered
solutions to the problem given their vanishing training error and
small testing error; see SI Appendix for details of the two learning
phases in SGD.

The original weights are highly coupled in neural networks,
which makes them an inconvenient and unnatural basis for study-

ing the high-dimensional learning dynamics. To circumvent this
problem, we first use principal component analysis (PCA) to
study weight variations in the exploration phase of SGD (see
Methods for details of PCA). We then analyze the learning
dynamics in the principal component basis because to the leading
order the principal components can be considered as indepen-
dent collective variables of the system around the minima of its
loss function.

Within a large time window t ∈ [t0, t0 +Tw ] where t0 is a time
in the exploration phase and Tw (=10 epochs used here) is a
large time window,* the weight dynamics can be decomposed into
its variations in different principal components

~w(t) = 〈~w〉T +

N∑
i=1

θi(t)~pi , [5]

where 〈~w〉T =T−1
∫ t0+T

t0
~w(t)dt is the average weight vector in

the time window T , and ~pi is the i th principal component base
vector with ~pi ·~pj = δij . The projection of the weight vector along
the PCA direction ~pi is given by θi(t), which is a linear combina-
tion of the individual weights, and ~θ is the weight vector in the
PCA coordinate.

The results reported here are for a simple NN with two
hidden layers each with 50 neurons for classification tasks
using the Modified National Institute of Standards and Tech-
nology (MNIST) database (see Methods for details and other
NN architectures used). The PCA was done for the N = 2,500
weights between the two hidden layers (results for other NN
architectures and databases are included in SI Appendix). In
Fig. 1A, we show the PCA spectrum, i.e., the variance σ2

i ≡
T−1

∫ t0+T

t0
θ2i (t)dt versus its rank i in descending order (σi+1<

σi). We found that the variance in the first PCA direction (~p1)
is much larger than variances in other directions because the
motion along ~p1 has a net drift velocity (see discussion below
and Fig. 1C). For other PCA directions, after a small number
of leading PCA directions (2≤ i ≤ 20), the variance σ2

i decays
rapidly with its rank: σ2

i ∼ i−γ for 20< i < 200 with a large expo-
nent γ∼ 2.6 before an even faster decay for higher i(> 200).
This means that most of the variations (dynamics) of the weights
are concentrated in a relatively small number of PCA direc-
tions (dimensions). Quantitatively, as shown in Fig. 1B, even
excluding σ2

1 , more than 90% of the total variance occurs in
the first 35 PCA modes much smaller than the total number of
weights N = 2, 500, which suggests that the SGD dynamics are
embedded in a low-dimensional space (13).

Next, we studied the network dynamics along different PCA
directions. We found that along the first PCA direction ~p1,
there is a net drift velocity dθ1/dt with a persistence time
much longer than 1 epoch as clearly shown in Fig. 1C where
SGD dynamics projected onto the (θ1, θ2) space are shown.
For all other PCA directions, the dynamics are random walks
with a short velocity correlation time (shorter than 1 epoch) as
clearly demonstrated in Fig. 2C where the SGD dynamics pro-
jected onto a randomly chosen pair of PCA directions (θ49, θ50)
are shown.

The persistent drift in the first PCA direction ~p1 can be under-
stood by moving a solution ~w0 found by SGD along ~p1 by θ1
to a new weight vector ~w = ~w0 + θ1~p1. We find that ~p1 is highly
aligned with ~w0. Therefore, moving along ~p1 results roughly in an
overall amplification of the weights and the difference between
the outputs for the right class and the wrong classes, which leads
to a change in the cross-entropy loss function L(~w)≈L(~w0)×
exp(βθ1) with β a constant parameter. Even though the training

*Each epoch has M
B iterations which covers all training samples once.
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Fig. 1. The PCA results and the drift–diffusion motion in SGD. (A) The rank-ordered variance σ2
i in different principal component (PC) directions i. For

i≥ 20, σ2
i decreases with i as a power law i−γ with γ∼ 2− 3. (B) The normalized accumulative variance of the top (n− 1) PCs excluding i = 1. It reaches

∼90% at n = 35 much smaller than the total number of weights N = 2,500 between the two hidden layers. (C) The SGD weight trajectory projected onto
the (θ1, θ2) plane. The persistent drift motion in θ1 and the diffusive random motion in θ2 are clearly shown. (D) The diffusive motion in the (θi , θj) plane
with j> i(6= 1) randomly chosen (i = 49 and j = 50 shown here). Unless otherwise stated, hyperparameters used are B = 50, α= 0.1.

error at ~w0 is already 0 (or close to 0), this dependence of L on θ1
leads to the persistent motion along the ~p1 direction with a low
speed proportional to L which slowly decreases with time itself
(see SI Appendix, section S2 for details). The slow net drift along
~p1 does not improve the training error (it is already zero), but
it may improve the robustness of the solution by increasing the
margin around the decision boundary and thus enhance gener-
alization. This result is consistent with a previous study (14) in
a simpler setting (using gradient descent to find homogeneous
linear predictors on linearly separable datasets). Specifically, it
was shown in ref. 14 that the predictor converges to the direction
of the max-margin solution, which corresponds to the first PCA
direction in our study.

In the rest of this paper, we study the majority of the PCA
modes (i ≥ 2), which are diffusive. Our focus is to understand
the relation between fluctuations in these diffusive modes and
the loss function landscape.

The Loss Function Landscape and the Inverse
Variance–Flatness Relation
In the exploration phase, the loss function is small and all of
the weight vectors along the SGD trajectory can be considered
as valid solutions. However, the solutions found by a SGD tra-
jectory represent only a small subset of valid solutions. To gain
insights on the full solution space, we study the loss function
landscape around a specific solution ~w0 reached by SGD. Specif-
ically, we compute the loss function profile Li along the i th PCA
direction ~pi determined from PCA of the SGD dynamics:

Li(δθ)≡L(~w0 + δθ~pi). [6]

In Fig. 2A, we show the loss function landscape profiles Li(δθ)
for several diffusive PCA directions i = 10, 20, 50, 100. To char-

acterize the one-dimensional loss function landscape Li along a
given PCA direction i near its minimum, we define a flatness
parameter Fi as the width of the region within which Li ≤ e ×L0

where e is the Euler’s number (other constant; e.g., 2 can be used
without affecting the results) and L0≡L(~w0) is the minimum
loss at ~w0. As shown in Fig. 2B, we determine Fi by finding the
two closest points θli < 0 and θri > 0 on each side of the minimum
that satisfy Li(θ

l
i) =Li(θ

r
i ) = e ×L0. The flatness parameter is

simply defined as their difference:

Fi ≡ θri − θli . [7]

A larger value of Fi means a flatter landscape in the i th PCA
direction.

The loss landscape has been studied by computing the Hes-
sian matrix of the loss function (15–17). Even though the flatness
parameter Fi defined here is related to the Hessian, they are not
the same. Fi is a more robust measure of the landscape flatness
as it contains nonlocal information of the landscape in a finite
neighborhood of the minimum. In particular, even when the local
curvature vanishes or becomes slightly negative, Fi is still well
defined (see SI Appendix, section S3 for a detailed comparison).
As shown in Fig. 2B, for the MNIST data, ln(Li(δθ)) can be fitted
well by a quadratic function in a finite region near its minimum:
ln(Li(δθ))≈ ln(L0) + 4δθ2

F2
i

. Of course, this simple quadratic fit

for ln(Li) (or equivalently an inverse Gaussian fit for Li) may
not apply to all networks. Nevertheless, the “nonlocal” flatness
parameter Fi is well defined regardless of the exact fit and it is
used to characterize the loss landscape around its minima in the
rest of this paper.

We computed the flatness Fi in each PCA direction i and
found that the flatness Fi increases with i as shown in Fig. 2C.
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Fig. 2. The loss function landscape and the inverse variance–flatness relation. (A) The loss function profile Li along the ith PCA direction. (B) The loss
landscape (in log-scale). Li can be fitted better by an inverse Gaussian (the red dashed line) than a quadratic function (the green dashed line). The definition
of the flatness Fi(≡ θr

i − θ
l
i ) is also shown (see text for details). (C and D) The flatness Fi for different PCA directions i (C) and the inverse relation between

the variance σ2
i and the flatness Fi for different choices of minibatch size B and learning rate α (D).

Given that the SGD variance σ2
i decreases with i as shown

in Fig. 1A, this immediately suggests an inverse relationship
between the loss function landscape flatness and the SGD
variance. Indeed, as shown in Fig. 2D for the MNIST data,
the inverse variance–flatness relation follows approximately a
power law

σ2
i ∼F−ψi , [8]

where the exponent ψ∼ 4 for different choices of B and α.
Although the power law dependence may be specific to MNIST,
the inverse dependence of σ2

i on Fi holds generally true in all
other NN architectures and datasets we studied (see SI Appendix,
section S6 for details).

The inverse variance–flatness relation is the key finding of
our study. Previous work has studied either variations of the
weights (13) or the landscape of the loss function (7, 17) but
not the strong relation between the two that is discovered here.
The inverse variance–flatness relation is highly unusual; it goes
against physics intuition. In particular, according to equilibrium
statistical physics, the fluctuation of a variable around its equi-
librium value is proportional to the change of the variable in
response to an external perturbation, which is known as the
fluctuation–response (or fluctuation–dissipation) relation aka
the Einstein relation (18). A generalized fluctuation–response
relation also holds true even for nonequilibrium systems lin-
earized near a fixed point (19). However, for SGD-based learn-
ing dynamics, the fluctuation–response relation would imply that
the variance of a variable (PCA weight) should be larger for a
flatter landscape, which is the opposite to the observed inverse
relation shown in Fig. 2D. Therefore, the inverse variance–
flatness relation in SGD can also be called the “inverse Einstein
relation.”

What is the reason for the inverse Einstein relation in SGD?
Unlike generic stochastic systems where the noise strength (e.g.,
temperature) is a constant, the SGD noise comes from the dif-
ference between the gradient of a random MLF and that of the
overall (mean) loss function. Therefore, the noise is anisotropic
and it varies in the weight space and in time. In the next sec-
tion, we explain the inverse variance–flatness relation based on
the dependence of the SGD noise on statistical properties of the
MLF ensemble.

The Random Landscape Theory and Origin of the Inverse
Variance–Flatness Relation
The most distinctive feature of SGD is that at any given iteration
(time) the learning dynamics are driven by a random minibatch
out of an ensemble of minibatches each with its own random
MLF. To understand the SGD dynamics, we develop a random
landscape theory to describe the statistical properties of the MLF
ensemble near a solution ~w0 (we set ~w0 = 0 for convenience).

As shown in Fig. 3A, ln(Lµ) can be approximated by a
quadratic function near its minimum or equivalently Lµ can be
approximated by an inverse Gaussian function

Lµ(~θ)≈Lµmin exp

[
N∑

i,j=1

M µ
ij

2
(θi − θµi )(θj − θµj )

]
, [9]

where θi = ~θ ·~pi is the weight parameter vector projected onto
the i th PCA direction. The MLF Lµ for minibatch µ is char-
acterized by its minimum Lµmin, its minimum location ~θµ, and
the symmetric Hessian matrix Mµ = {M µ

ij } for ln(Lµ) at the
minimum.

Within the quadratic approximation (Eq. 9), statistical prop-
erties of the MLF ensemble are determined by the joint

4 of 10 | PNAS
https://doi.org/10.1073/pnas.2015617118

Feng and Tu
The inverse variance–flatness relation in stochastic gradient descent is critical for finding flat minima

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015617118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015617118/-/DCSupplemental
https://doi.org/10.1073/pnas.2015617118


CO
M

PU
TE

R
SC

IE
N

CE
S

A B

Fig. 3. Statistical properties of the MLF ensemble. (A) Profiles of the overall
loss function ln(Li) (red line) and a set of randomly chosen MLFs ln(Lµi ) (blue
dashed lines) in a given PCA direction i. (B) The inverse dependence of Di

and τi on the flatness Fi .

distribution of the parameters M µ
ij , M µ

ii , θµi , and Lµmin. Based
on our simulation results and as the first-order approximation,
we treat these parameters as independent random variables with
normal distributions. By using this mean-field approximation, we
can obtain the overall loss function

L≡〈Lµ(~θ)〉µ≈L0 exp

(
βθ1 +

N∑
i=1

Mii

2
θ2i

)
, [10]

where L0≡〈Lµ0 〉µ is the minimum loss with Lµ0 ≡Lµ(~θ= 0) =

Lµmin exp[
∑N

i,j=1 M
µ
ij θ

µ
i θ

µ
j /2], and β and Mii(> 0) are constants

that depend on statistical properties of the MLF ensemble. The
overall loss function, Eq. 10, has an inverse Gaussian form that
is consistent with the empirical results shown in Fig. 2 A and B,
and the flatness parameter can be expressed as Fi ≈ (8/Mii)

1/2.
Details of derivation of Eq. 10 (including expressions of β and
Mii) and empirical justification of the approximations can be
found in SI Appendix, section S4.

From Eq. 9, we can now study the SGD dynamics analytically.
By keeping only up to the linear order in θi , the SGD Langevin
equation for θi becomes

dθi
dt

= vi ≡−α
∂Lµ

∂θi
≈−αLµ0

∑
j

M µ
ij (θj − θµj ), [11]

where vi(t) is the velocity for θi at time t . The equation above
has an intuitive interpretation: At time t , the weight vector ~θ is
pulled by a random minibatch µ(t), whose MLF acts as a spring
with a spring tensor Mµ and its force center positioned at ~θµ.

For the diffusive PCA directions (i ≥ 2), dynamics of θi are
driven by a random velocity with zero mean 〈vi〉µ = 0. The
autocorrelation function of vi can be written as Ci(t)≡〈vi(t +
t ′)vi(t

′)〉=Dici(t), where ci(t) =Ci(t)/Di is the normalized
correlation function, and Di is the velocity variance,

Di = 〈v2
i 〉≈AD〈(M µ

ii )2〉µσ̃2
θ,i , [12]

where AD =α2〈(Lµ0 )2〉µ is a constant and σ̃2
θ,i ≡〈(θ̃µi )2〉µ is the

variance of the minimum location θ̃µi of MLF Lµ projected onto
the i th PCA direction.

From the velocity–velocity correlation Ci(t) and the variance
σ2
i of the weight variable θi(t) =

∫ t

0
vi(t

′)dt ′ within the PCA
time window, we can define a time scale τi that characterizes the
velocity (or gradient) autocorrelation

τi ≡σ2
i /(Di∆t) =T−1

w ∆t−1

∫ Tw

0

[∫ t

0

∫ t

0

ci(t
′− t ′′)dt ′dt ′′

]
dt ,

[13]

where Tw is the PCA window size. Note that the minibatch time
step ∆t(=1) is included explicitly in the definition above to make
τi a time scale.

In generic stochastic dynamical systems (19), the noise is inde-
pendent of the loss landscape. In SGD, however, the noise
strength characterized by Di depends on the landscape flatness.
According to Eq. 12, a flatter landscape has a smaller value
of M µ

ii , which leads to a smaller Di . Both 〈(M µ
ii )2〉µ∝ (M

(0)
ii )2

and σ̃2
θ,i can be determined from the MLF ensemble statistics.

As shown in SI Appendix, Fig. S7, σ̃θ,i ∼Fi and M
(0)
ii ∼F−2

i ,
and therefore Di ∼F−ψD

i with an exponent ψD ≈ 2 as shown in
Fig. 3B.

The time scale τi can be determined by Eq. 13 from the nor-
malized velocity correlation function ci(t). In the absence of
velocity correlation, i.e., ci(t) = ∆tδ(t), τi = Tw

2
is a constant

(isotropic) time scale determined by the PCA time window.
However, we find that there are significant velocity correlations
in the SGD dynamics, which leads to a much smaller τi�Tw .
Remarkably, the correlation time τi also depends inversely on
the flatness Fi (see SI Appendix, section S5 for details of calcu-
lating τi). As shown in Fig. 3B, this inverse dependence follows
approximately a power law τi ∼F−ψτ

i with the exponent ψτ ≈
1.8. The exact reason for the inverse dependence of τi on Fi is
not yet clear. However, since τi can be interpreted as the number
of minibatches needed to estimate the gradient ∂L

∂θi
, our results

indicate that less minibatch subsampling is needed to infer gra-
dients in flatter directions. This result may explain the reason
why the Markov chain Monte Carlo (MCMC) method with a
relatively small number of updates can be used to accurately esti-
mate the local gradients in algorithms such as stochastic gradient
Langevin dynamics in Bayesian learning (20) and entropy-SGD
in deep learning (7).

Put all together, the inverse power-law dependence of Di and
τi on the landscape flatness Fi leads to the inverse power-law
σ2
i =Diτi ∼F−ψi with an exponent ψ=ψD +ψτ ≈ 3.8, which is

in quantitative agreement with the direct simulation result shown
in Fig. 2D. Although the power law dependence may not be uni-
versal, the inverse dependence of Di , τi , and σ2

i on Fi holds true
in general for all NN architectures and datasets we studied (see
SI Appendix, section S6 for details).

Preventing Catastrophic Forgetting by Using
Landscape-Dependent Constraints
To demonstrate the utility of the theoretical insights gained so
far, we tackle a long-lasting challenge in machine learning, i.e.,
how to prevent catastrophic forgetting (CF) (21, 22). After a
DNN learns to perform a particular task, it is trained for another
task. Although the DNN can readjust its weights to perform well
for the new task, it may forget the previous task and thus fail
catastrophically for the previous task. To prevent forgetting, a
recent study by Kirkpatrick et al. (23) proposed the elastic weight
constraint (EWC) algorithm to train a new task by enforcing
constraints on individual weights based on their effects on the
performance of the previous task.

Here, by following the same general strategy but using the new
insights on the geometry of loss landscape near a solution, we
propose a landscape-dependent constraints (LDC) algorithm to
train for the new task with constraints applied to the collective
PCA coordinates. More specifically, when we find a solution ~w1

in the weight space for the first task (task 1) by SGD, we can
characterize the loss function landscape around ~w1 in the PCA
coordinate system by the flatness parameter F1i along the i th
PCA direction ~p1i for task 1. Based on the inverse variance–
flatness relationship (Eq. 8), the flatness parameter Fi can be
obtained directly (cheaply) from the weight variance instead
of computing and diagonalizing the Hessian matrix, which is
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computationally expensive. When learning the new task, we use
a modified loss function for the second task (task 2) by introduc-
ing an additional cost term that penalizes the network for going
out of the attraction basin of the task-1 solution (~w1) for a small
number of PCA directions with the lowest values of flatness:

L̃2(~w) =L2(~w) +λ

Nc∑
i=1

((~w − ~w1) ·~p1i)2

F 2
1i

, [14]

where L2 is the original loss function for task 2, λ is the over-
all strength of the constraints, and Nc(�N ) is the number of
constrained PCA modes from task 1.

Based on the large attraction basin for a given task as evi-
denced by the large flatness parameters shown in Fig. 2, we
expect that solutions for task 2 exist within the basin of solutions
for task 1, so the performance for task 1 should not degrade sig-
nificantly after learning task 2. We first tested this idea in the

simplest case by using the MNIST database with task 1 and task
2 corresponding to classifying two disjoint subsets of digits, e.g.,
(0,1) for task 1 and (2,3) for task 2 (see Methods for details). To
speed up our analysis, we first train the network on all tasks and
fix the output layer and input layer; only the hidden layer(s) is
initialized and trained for sequential learning with different algo-
rithms. As shown in Fig. 4A in the absence of the constraints (λ=
0), starting with a task-1 solution ~w1, the weights evolve quickly
to a solution for task-2 ~w2 with a small task-2 test error ε2 (red
line). However, the performance of task 1 deteriorates quickly
with a fast increasing task-1 test error ε1 (blue line). The rea-
son can be understood in Fig. 4B, where qi = ‖(~w2− ~w1) ·~p1i‖,
the projections of the weight displacement vector onto different
PCA directions of task 1, are shown. Without constraints, the
displacement becomes unbounded for many high-ranking PCA
modes (smaller i), which leads to the large task-1 test error after
learning task 2, i.e., catastrophic forgetting.

A B

C D

E F

Fig. 4. The landscape-dependent constraints for avoiding catastrophic forgetting. (A) The test errors for task 1 (ε1) and task 2 (ε2) versus training time for
task 2 in the absence of the constraints (λ= 0). (B) The weight displacements qi in different PCA directions ~p1i from task 1 in the absence of the constraints
(λ= 0). C and D are the same as A and B but in the presence of the constraints with λ= 10 and Nc = 200. The red dashed line in D shows the upper bound
qi . 0.008Fi1 for the modes (i≤Nc) that are under constraint. (E) The tradeoff between the saturated test errors (ε1 and ε2) when varying λ for LDC (blue
circles) and EWC (red squares) algorithms. (F) The overall performance (ε1 + ε2) versus the number of constrains Nc for LDC (blue circles) and EWC (red
squares) algorithms. The two tasks are for classifying two separate digit pairs [(0, 1) for task 1 and (2, 3) for task 2] in MNIST.
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The performance improves significantly when task 2 is learned
with the modified loss function L̃2 given in Eq. 14. As shown in
Fig. 4C, with constraints (λ= 10) for the top Nc = 200 modes,
although the learning process for task 2 is slightly slower, the sys-
tem is able to learn a solution for task 2 with a comparable error
ε2 as before (λ= 0). The significant advantage here is that the
performance for task 1 (blue line) remains roughly the same as
before; i.e., the system has avoided catastrophic forgetting. As
shown in Fig. 4D, qi now has an upper bound ξi (dashed red
line) for all of the top modes (i ≤Nc) due to the constraints.
The upper bound is found to be proportional to the flatness F1i

(ξi ≈ 0.008F1i), which means that the task-2 solution ~w2 remains
within the basin of task-1 solutions.

There is a tradeoff between the two testing errors (ε1, ε2) when
varying λ. As shown in Fig. 4E, the performance of LDC is bet-
ter than that of EWC. This is not surprising as LDC uses the
full landscape information whereas EWC uses only the diagonal
elements of the Fisher information matrix (effectively the Hes-
sian matrix). More interestingly, as shown in Fig. 4F, the overall
performance (ε1 + ε2) of LDC reaches its optimal level when
a relatively small number (N ∗c ≈ 200) of the top PCA modes
are constrained. For EWC, however, all individual weights con-
tribute to the performance, and thus its optimal performance is
reached when all N = 2, 500 individual weights are constrained.
The results from the LDC algorithm suggest that memory of the
previous task is encoded in the top N ∗c PCA modes and N ∗c can
be used to estimate the capacity of the network for sequential
learning of multiple tasks.

In LDC, the landscape flatness, which is used in the con-
straints, can be estimated efficiently from the weight variance
by using the variance–flatness relationship Fi ∼σ2/ψ

i . To test
whether LDC is sensitive to the accuracy of this estimate, we
used different values of ψ= 3, 4, 5 to estimate Fi . We find that
the results do not seem to depend on the exact choice of ψ (see
SI Appendix, section S7 for details), which suggests that LDC is
robust as long as the constraints are added to the top PCA modes
of the previous tasks.

We verified the advantage of the LDC algorithm by consider-
ing more complex sequential learning tasks such as more digits (5
instead of 2) in each task from the MNIST dataset and sequen-
tial learning of all of the animals and all man-made objects
in the Canadian Institute For Advanced Research (CIFAR)10
dataset. The results are consistent with the simple case shown in
Fig. 4 and confirm the advantage of using LDC for preventing
catastrophic forgetting (see SI Appendix, section S8 for details).

SGD as a Self-Tuned Landscape-Dependent Annealing
Strategy for Learning
In the final section of this paper, we go back to evaluate our
initial working hypothesis on the learning strategy deployed in
SGD. In an equilibrium system with state variables ~θ and a free
energy function L(~θ), the statistics of ~θ follow the Boltzmann
distribution P(~θ) = exp [−L(~θ)/T ] where T is the constant tem-
perature that characterizes the strength of the thermal fluctua-
tions (we set the Boltzmann constant kB = 1 here). By expanding
the loss function to the second order, L=Lmin(1 +

∑
i
4(~θ·~pi )2

F2
i

)

around a minimum ~w0 = 0, it is easy to show that the variance
of θi would be proportional to the squared flatness F 2

i and
temperature T : σ2

i ∝T ×F 2
i , which is a direct consequence of

the fluctuation–response (aka fluctuation–dissipation) relation
in equilibrium statistical physics.

Remarkably, for the SGD-based learning dynamics, we found
an inverse relation between fluctuations of the variables and the
flatness of the loss function landscape, Eq. 8, which is the oppo-
site to the fluctuation–response relation in equilibrium systems.
We have tested it with different variants of the SGD algorithms

such as adaptive moment estimation (Adam) and momentum-
based algorithms, different databases (MNIST and CIFAR10),
and different DNN architectures (see SI Appendix, Fig. S3 for
details). In all cases we studied, the inverse variance–flatness
relation holds, suggesting that it is a universal property of the
SGD-based learning algorithms.

Unlike thermal noise in equilibrium systems, which represents
a passive random driving force with a constant strength (temper-
ature), the SGD “noise” ~η=α ∂δL

µ

∂~θ
represents an active learn-

ing/searching process that varies in “space” (~θ). The intensity of
this learning (searching) activity along the i th PCA direction ~pi
can be characterized by an active local temperature Ti(δθ, t):

Ti(δθ, t)≡
α

2

〈∥∥∥∥∂δLµ(~w0 + δθ~pi)

∂δθ

∥∥∥∥2
〉
µ

, [15]

where δθ is the displacement from ~w0 along the ~pi direction.
As shown in Fig. 5A, the active temperature Ti(δθ, t) has

a similar spatial profile to that of the loss function with the
active temperature higher away from the minimum. In weight
space where the overall loss function is high, the active temper-
ature is also high, which drives the system away from regions
in the weight space with high losses. The learning intensity is
anisotropic, and it differs in different PCA directions as shown
in Fig. 5B. For a flatter direction with a larger value of Fi , Ti

is lower (Fig. 5 B, Inset) as the basin of solutions is wide and
thus no strong active learning is needed. However, for a steeper
direction with a smaller value of Fi , the solutions exist only
in smaller regions and thus more intensive learning (or higher
active temperature) is required. Therefore, the MLF ensemble
can sense both the local loss and nonlocal flatness of the land-
scape in different directions and use this information to drive
active learning.

The active temperature also varies with time. As learning pro-
gresses, the active temperature profile decreases with time, as
shown in Fig. 5C. In Fig. 5D, dynamics of the active tempera-
ture and the overall loss function along a SGD trajectory are
shown together. It is clear that the active temperature and the
overall loss function are highly correlated as shown directly in
Fig. 5 D, Inset, which means that the SGD system cools down as
it learns. This reminds us of the well-known simulated annealing
algorithm for optimization (24), where temperature is decreased
from a high value to zero with some prescribed cooling schedule.
However, the SGD algorithm seems to deploy a more intelli-
gent landscape-dependent annealing strategy where the active
temperature (learning intensity), driven by the MLF ensem-
ble, is self-tuned according to the local and nonlocal properties
of the loss landscape that are sensed by the MLF ensemble.
This landscape-dependent annealing strategy drives the system
toward the flat minima of the loss function landscape and stays
at the flat minima by lowering the active temperature once there.

To verify the effects of landscape-dependent noise for gen-
eralization, we studied a simple algorithm where landscape-
dependent or “flatness-detecting” noise is introduced to the
deterministic GD dynamics. In particular, we have added an
anisotropic noise term whose strength depends explicitly on the
flatness of the landscape. We find that only with this flatness-
detecting noise, the system can enter the exploration phase with
flat minima and low generalization error (see SI Appendix, section
S9 for details). These results (see also ref. 25 for similar results)
support the conclusion that the anisotropic landscape-dependent
noise in SGD is responsible for finding generalizable solutions.

Discussion
Modern DNNs often contain more parameters than training
samples, which allow it to interpolate (memorize) all of the
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A B

C D

Fig. 5. Profiles and dynamics of the anisotropic active temperature. (A) The active temperature profile Ti(δθ, t) in the ith PCA direction at t = 200. (B) The
minimum active temperature Ti(0) in different PCA directions i. Inset shows the inverse dependence of Ti on the flatness Fi . (C) The active temperature
profiles Ti(δθ, t) at different times for i = 10. (D) The active temperature Ti for all directions decreases with time in sync with the loss function (red line)
dynamics. The shaded region highlights the transition between the fast-learning phase and the exploration phase. Inset shows the correlation between Ti

and L.

training samples, even if their labels are replaced by pure noise
(26). Remarkably, despite their huge capacity, DNNs can achieve
small generalization error on real data. This phenomenon has
been formalized in the so-called “double-descent” curve (27). As
the model capacity (complexity) increases, the test error follows
the usual U-shaped curve at the beginning, first decreasing and
then peaking near the interpolation threshold when the model
achieves vanishing training error. However, it descends again as
model capacity exceeds this interpolation threshold with the test
error reaching its (global) minimum in the overparameterization
regime where the number of parameters is much larger than the
number of samples. Rapid progress has been made to under-
stand this double-descent behavior by using simple models. For
example, both optimization and generalization guarantees for
overparameterized simple two-layer networks are proved with
leaky rectified linear activation function (ReLU) on linearly sep-
arable data (28). This result has subsequently been extended
to two-layer networks with ReLU activation (29) and two- and
three-layer networks with smooth activation functions (30). In
a different approach by using the neural tangent kernel (31),
which connects large (wide) neural nets to kernel methods, it
was shown that the generalization error decreases toward to
a plateau value in a power-law fashion as N

−1/2
p with Np the

number of parameters in the overparameterized regime (32). In
simple synthetic learning models such as the random features
model with ridge regression loss function, the double-descent
behavior has been shown analytically (33) and this analytical
result has been extended to other synthetic learning models (e.g.,
the random manifold model) and for more general loss functions
by using the replica method (34).

However, despite this recent progress, how to characterize the
complexity of the solutions in DNNs and how SGD seeks out
simple and more generalizable solutions for more realistic learn-

ing tasks remain not well understood. The results in this paper
shed some light on both of these questions. We found that in the
overparameterized regime, starting with different random initial-
izations SGD reaches different solutions with the same statistical
properties. Around each solution, the loss landscape is flat in
most PCA directions with only a small number of relevant direc-
tions where the loss landscape is sharp. The complexity of the
solution can thus be characterized by an effective dimension of
the solution, which can be defined by the number of sharp direc-
tions (Ds) in the loss landscape around this solution. In Fig. 6A,
the rank-ordered flatness spectra of the loss landscape are shown
for solutions found by networks with different sizes. It is clear
that as the network size (width H ) increases, the number of sharp

A B

Fig. 6. The flatness spectrum and the effective dimension (Ds) of solution.
(A) The flatness spectra (rank-ordered flatness) for networks with different
width (H). (B) The effective dimension of the solution Ds, which is defined
as the number of directions whose flatness is below a threshold set to be
roughly half of the L2 norm of the weights (the dashed line in A), increases
weakly as the number of parameters (weights) Np(≡H2) increases. The error
bars are obtained by using 10 different solutions obtained by 10 random
initializations with the same norm for each network size.
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directions (small flatness) does not change, and the landscapes
along the additional degrees of freedom are flat with large val-
ues of flatness. As shown in Fig. 6B, the effective dimension Ds ,
which is defined with a threshold set by the norm of the solution,
is much smaller than the number of parameters Np(≡H 2). Most
importantly, Ds remains roughly a constant as Np increases. This
means that the complexity of the solution found by SGD does
not increase with the number of parameters, and the solution
remains “simple” with good generalization performance in the
overparameterized regime.

Our study also provides evidence on how SGD finds these
low-dimensional simple solutions. In particular, we found that
the SGD learning activity (temperature) is high only for those
directions where the loss landscape is sharp while learning activ-
ity along other flat directions becomes quickly frozen during the
SGD learning process. An effective learning (searching) dimen-
sion Dl can be defined as the number of PCA directions that
contain most (e.g., 99% or 99.9%) of the total weight variance.
Due to the inverse variance–flatness relation, Dl is found to have
a similar dependence on the network size to that of Ds . Our
results show that SGD searches only in a small subspace for solu-
tions after the initial transient and the dimension of the search
space (Dl) has only weak dependence on the network size in the
overparameterized regime (see SI Appendix, Fig. S17 for details).

In summary, a careful study of the SGD dynamics and the
loss function landscape in this paper reveals a robust inverse
relation between fluctuations in SGD and flatness of the loss
landscape, which is critical for deciphering the learning strategy
in deep learning and for designing more efficient algorithms. Our
study demonstrates that ideas and techniques based on statistical
physics provide an additional theoretical framework (alterna-
tive to the traditional theorem-proving approach) for studying
machine learning. It would be interesting to use this framework
to address other fundamental questions in machine learning such
as generalization (35, 36), relation between task complexity and
network architecture, information flow in DNN (37, 38), transfer
learning (39), and continuous learning (40–42).

Methods
Neural Network Architecture and Simulations. Two types of DNNs are stud-
ied: 1) Two fully connected neural networks were used for classifying digits
in the MNIST database, one with two hidden layers (784× 50× 50× 10,

main text) and the other with four hidden layers (784× 50× 50× 50×
50× 10; SI Appendix, Fig. S10A). The response of the hidden layer neurons
is ReLU, activation of the output neurons is Softmax, and no bias neuron
is used for convenience. We also studied the convolution neural network
(CNN). 2) Two convolutional neural networks were used in our experiments.
One is trained on the MNIST dataset, which has two convolution layers with
size 1× 3× 3× 16 and 16× 5× 5× 32 and one fully connected layer with
size 1,568× 10. (Here we represent the convolution layer using input neural
number × kernel size × kernel size × output neural number.) The stride
of convolution is 1 and there is a zero padding to keep the data dimension
unchanged. After each convolution layer, there is a 2× 2 max pooling layer.
Another CNN is trained on the CIFAR10 dataset (SI Appendix, Fig. S10C). It
has two convolution layers with size 3× 5× 5× 6 and 6× 5× 5× 16 and
three fully connected layers with size 400× 120, 120× 84, 84× 10. The
stride of convolution is 1 and the size of max pooling is 2× 2. We do not
use zero padding in this network. All numerical experiments are done on a
neural network simulation framework torch.

Principal Component Analysis in Exploration Phase. For a given time in the
exploration phase, we extract the weight matrix between two hidden lay-
ers and reshape (flatten) the weight matrix into a weight vector; e.g., a
50× 50 weight matrix is flattened to a 2,500-dimensional vector. Then we
stack these row vectors from different times horizontally and do PCA on
this matrix. The time step is each minibatch and the total window size
is T = 10 epochs. The PCA is applied using the sklearn package provided
by Python 3.7.

Multitask Learning. We divided the MNIST into five groups. Each group con-
tains only two numbers. Here we call each group task 1, task 2, etc. We
use the fully connected neural networks with two hidden layers (784×
50× 50× 10). The size of the output layer is 10 so it works for all tasks.
In the main text, we choose the group containing (0,1) as task 1 and the
group containing (2,3) as task 2; see SI Appendix, section S8 for two more
complex cases. The LDC learning algorithm follows the following steps:
1) Train the network on task 1; 2) when the learning dynamics for task
1 reach the exploration phase, do PCA to obtain ~p1i and σ2

i from which
F1i is determined from Eq. 8; 3) train task 2 by using the modified loss
function Eq. 14.

Data Availability. There are no data underlying this work.
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