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ABSTRACT

Objective: Simulating electronic health record data offers an opportunity to resolve the tension between data

sharing and patient privacy. Recent techniques based on generative adversarial networks have shown promise

but neglect the temporal aspect of healthcare. We introduce a generative framework for simulating the trajec-

tory of patients’ diagnoses and measures to evaluate utility and privacy.

Materials and Methods: The framework simulates date-stamped diagnosis sequences based on a 2-stage pro-

cess that 1) sequentially extracts temporal patterns from clinical visits and 2) generates synthetic data condi-

tioned on the learned patterns. We designed 3 utility measures to characterize the extent to which the frame-

work maintains feature correlations and temporal patterns in clinical events. We evaluated the framework with

billing codes, represented as phenome-wide association study codes (phecodes), from over 500 000 Vanderbilt

University Medical Center electronic health records. We further assessed the privacy risks based on member-

ship inference and attribute disclosure attacks.

Results: The simulated temporal sequences exhibited similar characteristics to real sequences on the utility

measures. Notably, diagnosis prediction models based on real versus synthetic temporal data exhibited an av-

erage relative difference in area under the ROC curve of 1.6% with standard deviation of 3.8% for 1276 pheco-

des. Additionally, the relative difference in the mean occurrence age and time between visits were 4.9% and

4.2%, respectively. The privacy risks in synthetic data, with respect to the membership and attribute inference

were negligible.

Conclusion: This investigation indicates that temporal diagnosis code sequences can be simulated in a manner

that provides utility and respects privacy.
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INTRODUCTION

The past decade has witnessed a dramatic rise in the adoption of

electronic health record (EHR) systems,1 as well as the secondary

use of data derived from such systems,2 for a wide variety of pur-

poses. EHR data assists in the development and evaluation of clini-

cal information systems, supports novel biomedical research, and

enables learning health systems within and beyond the healthcare

organization (HCO) that collected the information.3–6 Given its po-

tential, there is a growing push to make EHR data more broadly

available. However, such actions must be undertaken with care, as
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the sharing of such data without consent, an appropriate waiver, or

legal cause could violate various regulations, such as the Health In-

surance Portability and Accountability Act of 1996 (HIPAA)7 in the

United States or the General Data Protection Regulation8 in the Eu-

ropean Union.9–11

To ensure a certain level of privacy protection, various computa-

tional approaches have been proposed to maintain patients’ ano-

nymity and confidentiality.12 However, the majority edit the raw

data directly, which induces a direct tradeoff between privacy and

data utility,13,14 such that as the amount of amendments made to

EHR data grows, a greater degree of privacy is realized at the cost of

lower utility. As an alternative, EHR data can be synthesized and

shared instead of the raw records upon which they are based. Com-

putational and statistical researchers have investigated simulation-

based approaches for decades,15–17 but they have only recently be-

come plausible for large-scale projects due, in part, to advances in

deep learning.18,19 In particular, the latter makes it possible to ex-

tract complex signals, patterns, and correlations from a variety of

data types. In particular, approaches based on generative adversarial

networks (GANs) demonstrate a remarkable ability to simulate

realistic-looking data with high statistical generalizability, scalabil-

ity, and little reliance upon knowledge drawn from domain

experts.20 Though the machine learning community first introduced

GANs to simulate images, they have quickly emerged as the state of

the art in numerous domains, including text21 and audio,22 as well

as structured data generation,23 including insurance billing codes de-

rived from EHRs.24

However, the current generation of GAN-based simulation tech-

niques for coded event data (eg, insurance billing codes)24–27 is lim-

ited in that the techniques generate only static profiles of the data,

which neglects temporal features. This is problematic for several rea-

sons. First, current techniques do not accurately reflect how EHRs

are recorded, organized, and utilized in practice. If synthetic coded

data included timestamps for clinical events (eg, dates or duration

from a reference point), they would be better oriented for modeling

more complex phenotypes and supporting predictions about out-

comes that are time-aware. Second, current techniques lack the ca-

pacity to model temporal features. Though the machine learning

community explored this problem,28 the resulting approaches focus

on partially revising the original records (via GANs) for the pur-

poses of refining the prediction tasks, instead of generating entirely

new records.

To address these issues, we developed a simulation framework,

called Synthetic Temporal EHR Generator (SynTEG), to generate

timestamped diagnostic events. In this article, we introduce the Syn-

TEG architecture and illustrate its performance by training it with

data from over 500 000 patient records at Vanderbilt University

Medical Center. We show the system maintains temporal relation-

ships between diagnoses while thwarting 2 well-known attacks on

patient privacy.

MATERIALS AND METHODS

In an EHR system, clinical events are typically documented as se-

quential encounters (eg, visits to an HCO). As such, we structure

EHR data as illustrated in Figure 1. For each patient, we associate a

sequence of visits with the corresponding medical events (eg, diagno-

ses or procedures) as well as their timestamps. Given this representa-

tion, several factors need to be considered to ensure a meaningful

simulation of a sequence of visits.

First, HCO visits contain a variable number of clinical events

(eg, the number of billed diagnoses changes from visit to visit). As

such, it is necessary to design a compact representation for each visit

that compresses the space and preserves information in a comput-

able form.

Second, we need to learn the temporal correlations between visits

in EHRs. Researchers have successfully leveraged various recurrent

neural networks to model patient trajectories and, as an artifact,

make predictions about patient outcomes;29–33 however, they can-

not be directly applied to simulate sequences of visits. This is be-

cause there is often more than 1 event per visit (eg, a visit will likely

be associated with multiple diagnosis codes). In this setting, the re-

current unit needs to output the joint distribution of the feature

space, instead of the marginal distribution that is utilized by existing

models.

Third, generative models (eg, GANs) are often used in this set-

ting to approximate joint distributions, but they suffer from the

problems of mode collapse (ie, the generator maps different inputs

to the same output) and mode drop (ie, the generator only captures

certain regions of the underlying distribution of the real data).34,35

These problems are magnified when the distributions are character-

ized by high multimodality (ie, the probability density function has

multiple local maxima). In EHR data, this could happen, for in-

stance, when diagnosis codes exhibit a nonmonotonic probability

density (eg, multimodal distributions) over a sequence of visits. To

address such challenges, several simulation techniques incorporate

advanced divergence measures between the real and synthetic distri-

butions36–38 and reorient the optimization strategy.34,39,40 However,

there is little evidence that these techniques sufficiently address the

Figure 1. A depiction of a temporal EHR over 4 time points with a varying number of clinical events.
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mode collapse and mode drop problems in distributions with high

multimodality.

Temporal event modeling
To formalize the problem, we represent each record as a

sequence r ¼ ðv1; . . . ; vnÞ, where vi denotes the ith visit, including

diagnoses and a timestamp. Note that n may vary across patients.

We can achieve temporal simulation of clinical event data by es-

timating the probability of visit event vi given the set of prior visits

v1; . . . ; vi�1ð Þ:

p v1; . . . ; vnð Þ ¼ p
�
v1

�Yn

i¼2

pðvijv1; . . . ; vi�1Þ (1)

which can be decomposed into the following form:

p v1; . . . ; vnð Þ ¼ p
�
v1

�Yn

i¼2

pðvijf si�1; gðvi�1ð ÞÞÞ; (2)

where si represents the state of the system at the ith visit and function

f ðsi�1; gðvi�1ÞÞ represents the transition between states. Here, gðÞ
returns the compact representation of a visit.

In this article, we approximate p v1; . . . ; vnð Þ with a new genera-

tive framework, namely SynTEG, the architecture of which is illus-

trated in Figure 2. SynTEG uses 2 learning stages to model the

transition function and the probabilities of visits given states. We re-

fer to these as the dependency learning stage and the conditional

simulation stage. This design prevents the recurrent model from di-

rectly simulating a joint distribution. It further mitigates the prob-

lem of mode drop and collapse, which arises for GANs due to the

multimodality of temporal data in EHRs. Rather, in this framework,

the state si ¼ f ðsi�1; gðvi�1ÞÞ can be learned from a recurrent model

and then fed into the generative model as a recurrent prior. The goal

of the generative model is to learn the conditional distribution for

each visit.

We now provide a brief overview of the framework, but refer the

reader to Supplementary Appendix A for the complete implementa-

tion details.

Stage 1: Dependency learning

To ensure a compact representation of visits gðvi�1Þ, we adopt the

self-attention architecture of transformer encoders.41 We then repre-

sent f si�1; gðvi�1Þð Þ using a recurrent model, which is optimized

jointly with a set of auxiliary binary classifiers and a regressor. The

optimization (given the visit history) is performed through 2 self-

supervised learning tasks. The objectives of these tasks are to predict

1) whether a particular diagnosis will appear in the next visit and 2)

when the next visit will be for the patient. Specifically, each of the

classifiers is affiliated with a diagnosis code and the regressor corre-

sponds to the timestamp. In doing so, the model is forced to learn a

compact representation of state si given input vi�1 and its previous

state si�1.

In addition, we derive a sample dataset that represents the mar-

ginal distribution of s as an approximation of the p sð Þ distribution:

p� sð Þ ¼ f si�1; gðvi�1Þð Þji 2 2; 3; . . . ; nf gf g:

Stage 2: Conditional simulation

The goal of the second stage is to simulate a multivariate conditional

distribution pðvijsiÞ given the condition p� sð Þ that is derived in the

first stage. We accomplish this by applying a GAN-driven model, in-

Figure 2. A high-level overview of the SynTEG architecture. Each colored square box represents a function and each oval represents a variable. The parameters

of input integration model, recurrent model, and auxiliary classifiers/regressor are simultaneously optimized to minimize prediction loss, for Dependency Learn-

ing (Stage 1). Next, the hidden state s of the recurrent network is extracted as the conditional input of the GAN in the Conditional Simulation (Stage 2). Here the

objective is to minimize the Wasserstein divergence between the real and synthetic data.
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cluding the generator GðvijsiÞ and discriminator DðvijsiÞ, to approxi-

mate pðvijsiÞ. We use the conditional version of the Wasserstein

GAN to assist the GAN to converge.38 Specifically, we use the Was-

serstein divergence (or what is more commonly referred to as the

Earth-mover distance) to measure the difference between pðvijsiÞ
and vijsið Þ. With respect to temporal simulation, the Wasserstein di-

vergence is formalized as

W p;Gð Þ ¼ max
jDj2 �1

Ep� sð Þ Ev�p vjsð Þ D v; sð Þ½ � � Ev�G vjsð Þ D v; sð Þ½ �
� �

;

where D2 corresponds to the Lipschitz constant of D.

Utility evaluation
To the best of our knowledge, there are no standard utility functions

for synthetic temporal EHRs. Thus, we introduce several measures

that characterize the extent to which the simulated data retains 1)

correlations between temporal features and 2) a general representa-

tion capacity with respect to forecast future diagnosis. We further

measure the extent to which the trajectory of well-known chronic

diseases is represented in the synthetic data.

In addition, it should be noted that we confirmed the validity of

the synthetic data using basic measures of static marginal and condi-

tional distribution of diagnosis codes, as described in prior studies.24

Our empirical investigation with respect to these measures yielded

similar patterns to those observed in earlier research, suggesting that

the marginal and conditional distributions of the real and simulated

data were highly similar. Given that these measures are well-known,

we refer the reader to Supplementary Appendix B for the design of

these experiments and the results.

First-order temporal statistics
The first-order temporal statistics measure evaluates the extent to

which the synthetic data retains the time-related characteristics of

diagnosis features of the real data. Specifically, for each unique diag-

nosis code, we calculate the mean and standard deviation of 1) oc-

currence age (ie, the age associated with a visit containing the

diagnosis code) and 2) the time between the visit containing this di-

agnosis code and the following visit, which we refer to as the inter-

visit interval. We refer to these as the occurrence and recurrence sta-

tistics, respectively. The larger the difference in the statistics learned

from the real and synthetic data, the more biased the model is in the

time-related characteristics of the diagnoses.

Diagnosis forecast analysis

The diagnosis forecast analysis measure evaluates the extent to

which the synthetic data remains useful for the secondary uses (eg,

predictions about what will happen to a patient in the future). To do

so, we train 2 models—1 on real and 1 on synthetic data to predict

which diagnoses will be realized at a patient’s next visit, given the

history of previous visits. When the 2 models achieve sufficiently

similar prediction performance with respect to AUROC when tested

on another part of real data, we claim the synthetic data has the

same level of representation capacity as the real EHR data.

Latent temporal statistics

The latent temporal statistics measure evaluates how well the trajec-

tory of chronic disease is modeled in the synthetic data. Specifically,

this is done by comparing the distribution of real and synthetic data

over latent variables that were not explicitly modeled.

To perform this analysis, we select 4 common chronic diseases:

1) Type-2 diabetes (T2D), 2) heart failure, 3) hypertension, and 4)

chronic obstructive pulmonary disease (COPD), which exhibit more

prolonged patterns over time than acute diseases. For each disease

subpopulation, we draw uniformly at random without replacement

2 equal-sized matrices Mr and Ms, where each row represents a re-

cord and each group of columns represents the diagnoses over a

time window, from the real and synthetic data, respectively. The

definitions for each subpopulation, as well as the details for the con-

struction of the feature matrices, are provided in Supplementary Ap-

pendix C. To compare the temporal patterns for a disease of

interest, we decompose Mr into latent factors and assess how well

the distributions over those factors are retained in the synthetic

data.

To do so, we apply singular value decomposition on Mr to ob-

tain its right singular vectors and the corresponding singular values.

We then project Mr and Ms to the new (low-dimensional) space

whose bases correspond to the selected singular vectors to generate

a set of latent features. Finally, we compute the Kolmogorov-

Smirnov statistic42 (which is the maximum vertical distance between

the empirical cumulative distribution functions) between the 2 pro-

jections as a measure of the distance between the real and synthetic

distributions along each vector. We compute the weighted average

of the statistic across all latent features, weighted by their corre-

sponding singular values. We refer to this value as the weighted la-

tent difference. The closer the weighted latent difference is to zero,

the closer the distributions of the 2 datasets are. We compare the

weighted latent difference for real vs real subsets against real vs syn-

thetic subsets to understand how well the temporal patterns are pre-

served. To investigate the stability of this weighted latent difference,

we repeat this 100 times by randomly sampling both the real and

synthetic data.

Privacy evaluation
Privacy risk measures have been defined for structured billing codes

simulated in a static setting24–26 but not a temporal setting. As such,

we adapted privacy risk measures for 2 known adversarial scenarios:

membership inference and attribute disclosure attacks.

Membership inference

Though designed to generate synthetic clinical event data, a genera-

tive model may reveal membership information for real records.

More specifically, an attacker who has information about a set of

real patient records may leverage the synthetic records to infer

whether the corresponding records were in the training dataset of

the generative model. Once a patient’s membership is known, addi-

tional information associated with the dataset (which may be sensi-

tive) would be revealed. Thus, we investigate the extent to which an

attacker can leverage synthetic records to distinguish between

records used in the training set and those not in the set. Specifically,

we learn a model based on synthetic data to estimate the likelihood

for a given record, referred to as perplexity. We then assess the R2 of

the quantile-quantile regression and estimated KL-divergence be-

tween the perplexity distributions. We refer the reader to Supple-

mentary Appendix D for details about this attack and experimental

design.

Attribute disclosure

It is possible that a generative model, when poorly designed or

trained, can leak information about the patients’ records in the

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 3 599



training data. In this scenario, it is assumed that an attacker is aware

of the identities of certain real records, referred to as partially com-

promised records. The attacker then attempts to learn about attrib-

utes that they were not aware of (eg, a particular diagnosis). We

investigate the risk that an attacker can infer the unknown attributes

by leveraging the synthetic dataset.

Previous approaches to attribute disclosure make inferences

through a majority vote of the synthetic records that have shortest

distance to the partially compromised record.24–26 However, this

strategy is likely to underestimate the risk because it does not con-

sider the prior knowledge an adversary may have with respect to the

attribute. Thus, in this article, we assume the worst-case scenario,

whereby the attacker has prior knowledge about each of the diagno-

sis codes in this study (ie, the dependencies between diagnosis codes

derived from statistical inference on the real dataset).

To measure the attribute disclosure risk induced by a temporal

clinical event data simulation model, we assume that the attacker

determines an attribute is realized for a patient if the predicted likeli-

hood leveraging synthetic data is a threshold greater than the value

given by prior knowledge. Since the prior knowledge derived from

the real data has some natural level of variance due to sampling, this

could lead to a biased risk estimation (for both the true positive rate

and false positive rate of an attacker’s inference). To address this is-

sue, we add a Control group, which simulates risk estimation in the

situation where no information is leaked. We refer the reader to

Supplementary Appendix D for further details.

Materials
The clinical event data for this study were collected from the Syn-

thetic Derivative (SD) at Vanderbilt University Medical Center,

which contains over 2.1 million deidentified EHRs.

We extracted all diagnosis codes (initially encoded as International

Classification of Diseases (ICD) billing codes), their timestamps, and

the demographics of the corresponding patients from 2 187 629

records. The ICD codes were mapped to Phenome-wide Association

Studies (PheWAS) codes, or phecodes, which aggregate billing codes

into clinically meaningful phenotypes.43,44 The phecodes for each re-

cord were then grouped into visits according to the corresponding

timestamp at billing (ie, each group contains all phecodes billed on the

same day). In doing so, each record was represented as a sequence of

visits, each of which was represented by 1) a binary vector over the at-

tribute space, indicating the presence/absence of diagnoses, and 2) the

corresponding timestamp. We refer to this as the SD dataset.

To mitigate noise in the data, we refined SD in several ways, as

detailed in Supplementary Appendix E, to obtain a subset that we

refer to as the clean SD (or CSD). The summary statistics for the SD

and CSD datasets are shown in Table 1.

EXPERIMENTAL DESIGN

We randomly split CSD into 85% for training and 15% for testing

sets, referred to as D1 and D2, respectively. We applied the former

to train the SynTEG model, which generates a synthetic dataset. We

assess the utility and privacy using 3 sets, including the testing set

and random samplings of training and synthetic set with the same

number of records as the testing set. We use the similarity between

the synthetic and testing set as indication of synthetic data quality

and the similarity between the training and testing set as the upper

bound of our measurements.

First-order temporal statistics
The first-order temporal statistics results are shown in Figure 3,

where each point corresponds to a phecode. As can be seen in the 4

subfigures in the top row, both the occurrence age and the time until

the next visit are stable (with respect to the mean and standard devi-

ation), indicating a lack of bias in the real vs real setting. By compar-

ing Figure 3e–h with Figure 3a–d, it can be seen that the real vs

synthetic setting exhibits a similar pattern though with a slightly

higher variance (the mean absolute relative difference weighted by

the log of number of cases in Figure 3a–d and 3e–h are 3.7% vs

4.9%, 11.9% vs 14.2%, 2.5% vs 4.2%, and 10.3% vs 15.2%, re-

spectively). This suggests that SynTEG can capture the distribution

of occurrence age and inter-visit interval of each phecode with little

bias. It further suggests that the temporal characteristics of the syn-

thetic data are highly similar to the real data.

Diagnosis forecast analysis
The diagnosis forecast analysis results are shown in Figure 4, where

each point corresponds to a phecode. It can be seen that most points

are close to the 45-degree diagonal line (which is where a perfect sta-

tistical replication would present). As can be seen by the size of the

dots, the phecodes that diverge from this line correspond to those

lacking a sufficient number of training instances.

The mean and standard deviation of absolute relative difference

(weighted by the log of the number of patient records affiliated with

a phecode) for the real vs synthetic setting are 1.6% and 3.8%, com-

pared to 0.7% and 0.9% for the real vs real setting, indicating that

the model trained on synthetic data achieves a similar prediction

performance on most of phecodes as the model trained on real data.

This result suggests that the synthetic data generated by SynTEG has

close capability to real data on predicting future diagnoses.

Latent temporal statistics
The latent temporal statistics results are shown in Figure 5, where

the histograms represent the results of 100 independent samplings.

For the real vs real setting, Mr is drawn from D2, while Ms is drawn

from D1. For the real vs synthetic setting, Mr is drawn from syn-

thetic data, while Ms is drawn from D1. There are several notable

findings to highlight. First, the real vs real histograms show that the

weighted latent differences fall in a narrow distribution centered be-

low 0.1 but above zero (medians of 0.027, 0.024, 0.043, 0.084 for

each subpopulation, respectively). This indicates that the latent fea-

tures discovered in each of the real data samples are relatively stable

Table 1. Summary statistics for the clinical event datasets used in this study

Dataset

Patient

Records Phecodes

Age Distribution

(0-17, 18-44, 45-64, >64) Gender

Unique Phecodes

Per Patient

Patients Per

Phecodes

Visits Per

Record

Phecodes

Per Visit

SD 2 187 629 1797 (31%, 30%, 23%, 16%) M: 47%, F: 53% 9.79 12 031 12.12 2.27

CSD 580 054 1276 (21%, 27%, 28%, 24%) M: 46%, F: 54% 23.17 16 575 32.56 2.26
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and gives an idea of how much of a difference we should expect due

to sampling variation alone.

Second, we observed that there is more variation in the

COPD subpopulation (Figure 5d) than the in other disease sub-

populations. One possible reason is that there are not a sufficient

number of records for the COPD subpopulation to sufficiently

represent the latent space (there are only 611 records in the se-

lected subpopulation of COPD, while T2D, heart failure, and hy-

pertension were affiliated with 4969, 4161, and 8836 records

respectively).

Figure 4. Disease forecast results in the a) real vs real setting and b) real vs synthetic setting. The size of each dot represents the number of records containing

the corresponding code.

Figure 3. First-order temporal statistics for 1276 phecodes in the real vs real setting (a–d) and the real vs synthetic setting (e–h). The size of each dot represents

the number of records with the corresponding code.

Journal of the American Medical Informatics Association, 2021, Vol. 28, No. 3 601



Third, as can be observed from the real vs synthetic histograms

in all subfigures, the distribution of latent features in synthetic data

has a modest difference from the real data (the medians of the

weighted latent difference are 0.037, 0.033, 0.054, 0.117 for each

subpopulation, respectively), usually less than twice the difference

expected from random sampling alone. These results suggest that

our model can capture reasonably well the long-term dependencies

in clinical event data and simulate temporal patterns of diseases.

Privacy analysis
The membership inference results are shown in Figure 6a. It can be

seen that the perplexity distributions for datasets D1(used for train-

ing SynTEG) and D2 (not used for training) are almost the same. An

r2 of the quantile–quantile regression is 0.9997, while the estimated

KL-divergence, based on 1000 samples, is 0.0093. This indicates

that the model learned from the synthetic dataset provides similar

likelihoods for the real data used in training the generative model

and the real data held out of training. As a consequence, it is highly

unlikely that an attacker could determine if a certain real record was

in the SynTEG training cohort.

Figure 6b illustrates the results of the attribute inference attack.

It can be seen that when the threshold is small (less than 0.6), Syn-

TEG has a higher true positive rate (TPR) and lower false positive

rate (FPR) than Control. However, the differences are both less than

0.05. With a threshold larger than 0.6, SynTEG still exhibits a

higher TPR, but the differences are never greater than 0.07, while its

FPR is also higher. The difference between SynTEG and Control in

FPR and TPR are both not statistically significant, which suggests

the potential risk of attribute inference leveraging synthetic data

generated by SynTEG is at a low level.

DISCUSSION

This study has several notable implications with respect to the simu-

lation of temporal coded health data. First, the experimental find-

ings suggest that a 2-stage learning process, based on deep learning,

and GANs in particular, can support the generation of realistic diag-

nosis trajectories with temporal dependencies. Specifically, the pa-

tient status representation from each recurrent unit of the long

short-term memory model is informative, such that it can serve as

the condition of the temporal generation process. The utility analysis

demonstrates that synthetic data enables the prediction of future di-

agnosis in a highly similar manner to the real data. Moreover, a gen-

erative model trained using the entire population can retain

temporal relationships for specific subpopulations of patients with

chronic diseases. This suggests that the synthetic data may be useful

for various applications, such as future disease forecast and clinical

phenotyping.

Second, this study indicates that, though real temporal EHRs

have more complicated structures and individual-specific features,

the proposed generative model, when applied to simulate synthetic

sequences of coded diagnoses, leads to negligible privacy risks with

Figure 5. Histograms for the latent temporal statistics from the experimental results of 100 independent samplings.

Figure 6. The privacy risk results for the (a) membership inference attack and (b) attribute inference attack.
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respect to membership and attribute inference attacks. Even though

we assumed a worst-case scenario for an attribute inference attack

(that is, when the attacker has prior statistical knowledge about all

diagnosis codes), the privacy risk remains at a very low level. Still, it

should be recognized that these results are specific unto SynTEG,

and it should not be assumed that all generative models will be de-

void of privacy risks.

Given these findings, we believe there are several opportunities to

build on this research. First, we focused on the simulation of diagnosis

codes events only. However, there is a need to simulate EHRs with

various types of medical data, including the combination of discrete

(eg, procedure and diagnosis codes) and continuous features (eg, labo-

ratory test results, vital signs, and medication dosages). Further investi-

gation will be required to capture the inherent dependency between

feature types. Second, the scalability of the proposed generative model

to a larger feature space necessitates further investigation in terms of

utility and privacy. On the 1 hand, simulating phecodes, though bene-

ficial to phenotype related tasks, may overgeneralize certain disease

groups (eg, infectious diseases), leading to reduced utility in the syn-

thetic data. On the other hand, when representing diagnoses using a

larger feature space, such as ICD-9 or ICD-10 (which are approxi-

mately 7 and 37 times larger than the phecode space, respectively), the

data become quite sparse, such that the patterns within, as well as be-

tween, features could be washed out. We believe that an appropriate

granularity of the diagnosis feature space is important for both data

utility and learning effect but is outside the scope of this specific inves-

tigation. Third, as noted earlier, the primary goal of this study is to de-

velop and evaluate a simulation framework for sequences of diagnosis

codes, as opposed to the actual health status of patients. To achieve

the latter, we suspect that the framework will need to be augmented to

account for uncertainty in a patient’s condition. For instance, such a

representation should, at the very least, allow for attribution in the

form of 1) “definitely (not) have,” and 2) “might (not) have” a certain

diagnosis. We suspect that this can be accomplished by expanding the

feature space, such that each diagnosis is represented as multiple varia-

bles (eg, 1 variable to represent the definite presence of a diagnosis and

another variable to represent the potential presence of the diagnosis).

Given that these variables would be mutually exclusive, the framework

would need to incorporate constraint-based training27 to ensure that

conflicting representations are not simulated. Finally, in measuring the

utility of synthetic records, we only investigated their statistical validity

in comparison with real data than the clinical reasonableness. It is pos-

sible that in a synthetic record the order of 2 events may conflict with

medical knowledge. It is important for the synthetic data to be evalu-

ated by clinical specialists for the purpose of discovering the wrongly

generated combination of features.

CONCLUSION

This article introduced a generative framework for simulating tem-

poral clinical event data. The framework consists of 2 primary com-

ponents: dependency extraction and conditional generation. We

designed utility measures focused on temporal statistics and diagno-

sis forecasting capacity as well as privacy risk measures for member-

ship and attribute inference in the temporal setting. We illustrated

that this framework retains data utility while mitigating known pri-

vacy threats by training models using approximately half a million

patient records. We believe this investigation sets the stage for fur-

ther investigation with clinical event simulation, with near term op-

portunities to extend this model to account for multiple types of

clinical events (eg, diagnoses and procedures) in a scalable fashion

(eg, thousands of variables).
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