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ABSTRACT

Objective: The study sought to describe the prevalence and nature of clinical expert involvement in the develop-

ment, evaluation, and implementation of clinical decision support systems (CDSSs) that utilize machine learn-

ing to analyze electronic health record data to assist nurses and physicians in prognostic and treatment decision

making (ie, predictive CDSSs) in the hospital.

Materials and Methods: A systematic search of PubMed, CINAHL, and IEEE Xplore and hand-searching of rele-

vant conference proceedings were conducted to identify eligible articles. Empirical studies of predictive CDSSs

using electronic health record data for nurses or physicians in the hospital setting published in the last 5 years

in peer-reviewed journals or conference proceedings were eligible for synthesis. Data from eligible studies re-

garding clinician involvement, stage in system design, predictive CDSS intention, and target clinician were

charted and summarized.

Results: Eighty studies met eligibility criteria. Clinical expert involvement was most prevalent at the beginning

and late stages of system design. Most articles (95%) described developing and evaluating machine learning

models, 28% of which described involving clinical experts, with nearly half functioning to verify the clinical cor-

rectness or relevance of the model (47%).

Discussion: Involvement of clinical experts in predictive CDSS design should be explicitly reported in publica-

tions and evaluated for the potential to overcome predictive CDSS adoption challenges.

Conclusions: If present, clinical expert involvement is most prevalent when predictive CDSS specifications are

made or when system implementations are evaluated. However, clinical experts are less prevalent in develop-

mental stages to verify clinical correctness, select model features, preprocess data, or serve as a gold standard.
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INTRODUCTION

Machine learning, a type of artificial intelligence that involves com-

puters initiating and executing learning from data without human

intervention,1 is being increasingly applied in the health care domain

for prognostication and treatment.2,3 Examples span specialties and

settings from predicting risk for poor glycemic control among

patients with diabetes,4 to forecasting likely interventions in the in-

tensive care unit (ICU).5 The pace of machine learning research in
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health care, for any purpose, is especially increased by the ubiquity

of electronic health records (EHRs), which store large volumes of

patient data.

Many machine learning models that make prognosis or treat-

ment predictions are intended to be used in clinical decision support

systems (CDSSs) to assist clinicians in making informed decisions

about patient care. Historically, CDSSs have used known relation-

ships between variables in patient data to provide clinicians with

evidence-based recommendations, alerts, or patient summaries to

support their decision making.6,7 Alternatively, machine-learning-

based CDSSs, which use relationships between patient variables and

target outputs learned by the machine learning model, face chal-

lenges to clinician adoption.8–10 Shortliffe and Sep�ulveda10 recently

outlined 6 challenges to CDSS in “the era of artificial intelligence”:

(1) complicated models lack transparency, which prohibits clini-

cians’ ability to understand and accept predictions or recommenda-

tions; (2) clinician time is scarce; (3) systems must be usable and

easily learnable; (4) recommendations must be relevant to the clini-

cians in the targeted domain; (5) delivery must respect clinician ex-

pertise; and (6) recommendations must be based on rigorous

science. Many of these challenges apply to CDSSs that do not use

machine learning (ie, expert systems). For example, all CDSSs must

be usable. However, machine learning offers unique technical capa-

bilities that exacerbate these challenges. For example, investigators

can engineer new features not present in the original dataset, creat-

ing a model likely more difficult to quickly understand as an end

user than a system using Boolean logic on original data. Addition-

ally, while all listed challenges apply to machine-learning-based

CDSS for any type of clinical decision (eg, diagnosis, prognosis,

treatment) in any setting (eg, outpatient, inpatient), they are espe-

cially difficult when systems are designed (1) to assist with prognosis

or treatment decision making (hereafter referred to as, predictive

CDSSs) and (2) for the hospital setting. This is because, unlike many

diagnostic decisions, prognosis and treatment decisions often cannot

be linked to a gold standard, such as a biopsy. Even expert clinicians

may disagree.10 Additionally, in the hospital setting, clinicians are

under increased time pressure and making decisions that impact the

patient in the immediate or near terms.11,12

Addressing each of the challenges outlined previously requires

interdisciplinary collaboration between experts in informatics, data

science, human factors, and the clinical domain that the system aims

to target. For example, to mitigate the issues of model transparency

and understandability, researchers have suggested using domain

knowledge to assess model complexity3 or to identify features likely

to prove reasonable to an end user.13 However, as machine learning

is increasingly researched (eg, PubMed articles tagged with the

“machine learning” MeSH [Medical Subject Heading] Major Topic

increased by nearly 10-fold from 2014 to 2019)14 and applied to

clinical decision making, it is unclear the frequency with and capac-

ity in which clinical experts are involved in predictive CDSS devel-

opment, evaluation, and implementation.

The process of building and testing a predictive CDSS for use in

a hospital setting can be situated within Stead et al’s15 framework

describing medical informatics system design. The framework has 5

sequential stages: (1) specification, (2) component development, (3)

combination of components into system, (4) integration of system

into environment, and (5) routine use. The specification stage

involves eliciting system needs and technical functionalities from

end users. The component development stage involves development

of an “isolatable subset of a system”15 with clear inputs and out-

puts. In predictive CDSS design, these components might include the

machine learning model, the CDSS interface, the database, etc.

Combination of components into a system involves integrating pre-

viously developed components. Integration of system into environ-

ment involves incorporating the system into the technical and

cultural ecosystem in the intended setting. Finally, routine use is

achieved when the system is a normal function of work in the envi-

ronment.15 Each successive stage depends on rigorous evaluation of

the previous.15,16

Though the routine use stage will inherently involve clinicians, it

is possible for developers and investigators of predictive CDSSs to

move through the other stages with or without engaging clinical

experts, potentially missing an opportunity to mitigate 1 or more

known challenges to adoption. The objective of this review is to de-

scribe the literature on predictive CDSS research for in-hospital deci-

sion making as it pertains to clinician involvement in Stead et al’s 5

stages of system design. A scoping review is best suited to this objec-

tive because the intent is both (1) to examine the range and nature

of research on this topic and (2) to inform future research and devel-

opment.17–19 Our ultimate goal is to inform the broader discourse

on rigorous methods for overcoming challenges to predictive CDSS

adoption.

MATERIALS AND METHODS

Information sources and search terms
This scoping review was conducted following the PRISMA-ScR

(Preferred Reporting Items for Systematic reviews and Meta-

Analyses extension for Scoping Reviews) guidelines (Supplementary

Table 1).20 Three scholarly databases were searched in October

2019: PubMed, CINAHL, and IEEE Xplore; proceedings from the

Machine Learning for Healthcare conference and CHI: Conference

on Human Factors in Computing Systems were hand searched in

May 2020. Our search strategy combined terms representing 3 ele-

ments of the topic of interest: machine learning, clinical decision

support, and clinicians. Keywords were identified to represent each

element as comprehensively as possible, searched using truncation

and standardized subject headings when appropriate, and combined

using Boolean operators (Supplementary Table 2).

Eligibility criteria
Inclusion and exclusion criteria are presented in Table 1. Publica-

tions describing predictive CDSS targeting nurses, physicians, or ad-

vanced practice providers for prognostic or treatment decision

making in the hospital using EHR data were included.

We focused on systems using EHR data because EHRs are the

primary health information system clinicians use in patient care and

thus, are rich with potential signals for predicting patient outcomes.

EHR data also present unique complexity (eg, varying temporal

granularity) and opportunity for clinical expertise. Publication year

was limited to the last 5 years given the rapid evolution of machine

learning science.21,22 For example, deep learning research in health

care has exponentially increased,22,23 reflecting a broader evolution

in technical methods and thus evolving opportunities for clinical ex-

pert involvement.

Imaging and pathology interpretation systems were excluded be-

cause they are not strictly hospital-based and represent computer-

assisted diagnosis. We determined if described models were for a

CDSS according to the article’s stated goal and its alignment with

patient care workflows. For example, modeling research database

searches were excluded.
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To operationalize our criteria, we defined machine learning a

priori by referencing Beam and Kohane,24 who defined machine

learning as a spectrum from minimal to maximal machine involve-

ment. Using their spectrum, we included machine learning models

with more machine involvement than linear and logistic regres-

sion.1,24 Though standard regression models are frequently used for

machine learning, because they are at the bottom of the machine in-

volvement spectrum, they are less computationally complex and

standardly require human involvement. Thus, clinical expert in-

volvement in regression model design is expected and challenges to

adoption (eg, model transparency) are less likely to apply. More

computationally complex models offer novel opportunities for

modeling complex relationships25 and for clinician involvement.

Data screening and charting
Two authors (J.M.S. and K.D.C.) screened titles and abstracts of

identified articles for eligibility criteria. A calibration exercise was

conducted between the 2 screening authors with approximately 50

titles or abstracts. A third author (A.J.M.) resolved any screening

disagreements and any disagreements between the 3 authors were

discussed until a consensus was reached. Two authors (J.M.S. and

K.D.C.) reviewed the full texts of remaining articles. Reference lists

of included articles were reviewed to identify additional articles

meeting criteria. Covidence software (Covidence, Melbourne, Aus-

tralia) was used to assist with screening.26

Data charting was completed by one author (J.M.S.) using

Microsoft Excel and Word (Microsoft Corporation, Redmond,

WA)27 and verified by a second author (K.D.C.). Data items

extracted include study characteristics such as country of origin,

clinical specialty, study design, method of machine learning model(s)

described, and size of cohort used to train and test the model or

number of clinicians who evaluated a system. Charted items related

to the review objective include the study objective, model outcomes,

target decision maker (eg, nurses or physicians), stage(s) in system

design,15 and clinician involvement. Author affiliation or licensure

was charted subsequently to provide perspective on the possibility

that authors may have served as clinical experts themselves.

Charting of particular data items involved our interpretation. If

the authors did not specify if the system was intended for nurses or

providers, the term “clinician” is used. Similarly, when the profes-

sion of clinicians involved was not explicitly stated, we used the

term “clinical experts.” General indicative language such as “based

on expert medical knowledge and opinion”28 was charted as clinical

expert involvement. Study objectives are not direct quotes, but one

author’s (J.M.S.) summary. The stage in system design was not ex-

plicitly stated in any of the articles. Stead et al’s framework15 and its

subsequent elaboration by Kaufman et al16 were used to identify the

aligned stage. Additionally, the charted study location is the country

where the majority of investigators are affiliated and does not neces-

sarily reflect the location of the data source. We have also described

the machine learning model method according to a larger class in

many cases. For example, “neural networks” is used to describe

studies that involved any type of neural network (eg, back-

propagation or convolutional). This serves 2 purposes: (1) synthesis

of model methods and (2) clarity for an audience not necessarily ex-

pert in machine learning.

RESULTS

The initial database search yielded 1621 articles (Figure 1). Seventy-

eight additional articles were identified from hand-searching confer-

ence proceedings and reference lists. After duplicates were removed,

1142 article titles or abstracts were screened. A total of 926 articles

were excluded in title or abstract screening, leaving 216 full-text

articles assessed for eligibility. A total of 136 articles were excluded

after full-text screening, leaving 80 articles eligible for synthesis.

Summary of study characteristics
Table 2 summarizes the characteristics of the 80 included studies

(further detailed in Supplementary Table 3). Studies were primarily

of retrospective cohort design (n¼66), were conducted in the

United States (n¼55), were published in 2019 (n¼23), were

designed for intensive care (n¼37), and used neural networks

(n¼34).

Predictive CDSSs and clinician involvement
Clinician involvement according to system design stage is summa-

rized in Table 3 and further detailed along with decision-support

objectives, machine learning model outcomes, target clinicians, and

author affiliation in Supplementary Table 4. Most study authors de-

scribed decision support for clinicians nonspecifically (n¼50).

Fewer targeted physicians only (n¼18), nurses only (n¼5), or ei-

ther nurses or physicians or providers (n¼4), with 1 including respi-

ratory therapists.101 Three studies specifically identified hospital

interprofessional rapid response teams as target end users.29–31

Table 1. Study eligibility criteria

Inclusion criteria Exclusion criteria

• Empirical studies published in peer-reviewed journals or

conference proceedings
• Published between 2015 and 2019
• Describe development, evaluation, or implementation of

predictive CDSS for decision making in the acute care, in-

tensive care, or ED settings
• Describe a predictive CDSS for use by nurses, physicians,

or advanced practice providers (ie, nurse practitioners or

physician assistants)
• Used or intend to use EHR data for model development

• Articles not available in English
• Systematic reviews
• Conference abstracts
• Used non-EHR health information system data (eg, ECG tracings)
• Used clinical trial data not reflective of real-world patient care and/or

documentation
• CDSS for patients
• CDSS in the outpatient setting
• Did not describe the intended setting of predictive CDSS and described a decision

that could occur outside the hospital (eg, long-term chemotherapy regimen)
• Computer-assisted diagnosis (ie, CDSS for diagnosis)
• Imaging or pathology interpretation

Note: CDSS: clinical decision support system; ECG: electrocardiogram; ED: emergency department; EHR: electronic health record.
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Studies investigated predicting a variety of target outcomes (Sup-

plementary Table 4). The most common were mortality (both after

discharge and in-hospital; n¼31), sepsis and septic shock (n¼16),

transfer to the ICU (n¼6), ICU or hospital readmission (n¼6), and

length of stay (n¼5).

Specification
Three studies investigated the specification stage of predictive

CDSS, each seeking to illuminate the needs of clinicians using pre-

dictive CDSS at varying levels of specificity—all of which involved

clinical experts. ICU clinicians were interviewed to specify their pre-

dictive CDSS needs for patient monitoring.101 Clinicians in the

emergency department and ICU were interviewed to understand

when and how explanations are needed to understand predictive

CDSSs.12 Finally, clinicians in cardiology co-designed a predictive

CDSS for ventricular assist device decision making and advised on

fit with clinical workflow.102

Component development
Of the 76 studies describing component development, 21 (28%) in-

volved clinical experts in this stage. All component development

studies described developing the machine learning model. Clinical

expert involvement in component development can be organized

into 5 categories: clinical relevance or correctness,28,31–38,93 feature

selection,35,38–41,93,94,98 data preprocessing,5,42–44 gold stan-

dard,35,37,45,99 and no clinician involvement described.29,30,46–

92,95,96,100,103–105

Clinical relevance or correctness

Of the 21 studies involving clinical experts in the component devel-

opment stage, nearly half (n¼10) involved clinical experts advising

on the clinical relevance or correctness of the model(s). Clinicians

set performance requirements such as sensitivity, specificity, and

false positive rates,33,93 and established alert trigger thresholds.93

Alternatively, clinicians advised on model outcomes – defining out-

comes31,34 or identifying their presence in the data.34–36 Clinicians

also helped to derive meaning from features.28,32,36,37 For example,

Jalali et al28 consulted clinical experts to group features by body or-

gan to improve their mortality model and its intuitiveness in the

ICU. More broadly, clinical experts advised on implications for clin-

ical practice34,36 and research design.38

Feature selection

Eight studies included clinical experts in determining which features

should be used as inputs in the machine learning model—something

that can be done according to domain knowledge or purely using

computational methods. Clinical experts functioned to both narrow

down the set of all possible features available from their datasets38–

40,94 and to identify candidate features from which to start work-

ing.35,41,93,98 Half of these studies additionally used computational

feature selection methods.39,40,93,98

Data preprocessing

Four studies involved clinical experts in data preprocessing. Clinical

experts advised on the periodicity of interventions in practice, from

which investigators established intervention gap thresholds for inter-

polation in their forecasting model.5 In 2 studies, clinicians identified

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of study eligibility screening. CDS: clinical decision sup-

port; EHR: electronic health record.
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Table 2. Summary of study characteristics

Characteristic Variable Results

Study Design Retrospective cohort 66 (82.5)5,28–92

Prospective cohort 5 (6.3)93–97

Case-control 3 (3.8)98–100

Qualitative 3 (3.8)12,101,102

Retrospective þ prospective cohort 3 (3.8)103–105

Locationa United States 55 (68.8)5,28,29,31,32,34,36,40–44,47–50,52,54–60,62,63,65–70,73–80,82,83,85,90–

93,95,97–100,102,104,105

United Kingdom 7 (8.8)39,53,55,61,63,67,77

Taiwan 5 (6.3)38,39,45,67,88

Canada 4 (5)12,33,81,87

China 4 (5)37,39,71,103

Australia 3 (3.8)86,94,96

Germany 2 (2.5)51,101

India 2 (2.5)64,89

Switzerland 2 (2.5)35,72

South Korea 1 (1.3)30

Saudi Arabia 1 (1.3)46

Spain 1 (1.3)84

France 1 (1.3)76

Portugal 1 (1.3)75

Year 2019 23 (28.8)12,42,43,60,64,65,67,68,70,72,79,82,83,92,95–99,101–103,105

2018 18 (22.5)30,36,39,41,46,61,63,66,69,71,74,78,81,88,89,91,94,104

2017 15 (18.8)5,29,31,44,51–53,57,58,75,77,80,85,87,100

2016 12 (15)28,32,37,40,47,49,50,62,73,84,86,93

2015 12 (15)33–35,38,45,48,54–56,59,76,90

Machine learning

methodsa

Neural networks 34 (42.5)28–33,35,39,41,43,45,47–51,54,60,66,68,70,72,76,79–84,89,94,96,99,100

Random forests 32 (40)30,35–38,40,42–44,49–51,54,57,63–66,71,76,79,83,88,90,91,94,95,97,98,103–105

Regressionb 27 (33.8)30,32,35,39–41,43,47,48,50,54,56,61,62,65,70,76,79,83,84,87,88,90–92,94,95

Support vector machines 24 (30)32,34,35,37–39,44,46–48,50,51,55–57,59,61,62,66,75,79,94,98,103

Boosting 17 (21.3)32,47,49,50,52,53,65–67,69,76,78,90,91,94,98,103

Decision trees 15 (18.8)32,35,38–40,47,48,50,52,53,56,62,76,78,88

Penalized regressionc 13 (16.3)5,35,37,44,55,57,65,66,91,95,98,100,103

Bayesian 13 (16.3)5,35,37,39,44,57,62,66,76,79,86,93,98

Topic modeling 9 (11.3)55,57,59,66,79,80,85,91,99

Ensemble 7 (8.8)52,53,62,76,78,81,95

Nearest neighbors 6 (7.5)35,50,54,72,98,103

Gaussian process 5 (6.3)5,29,31,55,98

Clustering 5 (6.3)51,61,87,89,92

Reinforcement learning 4 (5)34,63,73,77

Generalized additive models 3 (3.8)76,90,95

Bagging 3 (3.8)35,50,76

Discriminant analysis 2 (2.5)35,61

Word vectorization 2 (2.5)64,89

Other methodsd 10 (12.5)32,35,37,44,54,58,72,74–76

Sample size Qualitative 10-19 clinicians

Model development 127 patients to 296,724 hospital admissions

Clinical specialtya Intensive care (adult) 37 (46.3)5,12,28,30,34,43,44,51–53,55,56,58–61,63,64,66–69,71–

77,79,80,83,86,87,89,91,101

In-hospital, acute care/not further specified 14 (17.5)30,31,34,46,50,54,69,82,85,90,97,103–105

Emergency medicine 14 (17.5 )12,35,36,40,42,57,69,84,86,88,90,93,95,99

Cardiology 7 (8.8)37,71,81,86,88,92,102

Pediatric (acute and intensive care) 6 (7.5)32,58,70,78,81,100

Nephrology 5 (6.3)62,66,75,79,83

Neonatal intensive care 4 (5)33,94,96,98

Stroke 4 (5)47–49,86

Surgery 3 (3.8)38,41,86

Diabetes 2 (2.5)39,65

Pulmonology/respiratory 2 (2.5)42,90

Nursing 1 (1.3)45

Trauma 1 (1.3)95

(continued)
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invalid or outlier values in feature distributions.42,43 Finally, clinical

experts advised on correctly constructing features from ICU data.44

Gold standard

In 4 studies, clinicians established the gold standard against which

model performance was judged; models either learned from clinician

judgement data or were assessed based on clinician-determined

ground truth. In one example, physicians documented impressions

of patient severity of illness.35 Clinicians also annotated progress

notes for the presence of outcomes.37,99 In Liao et al45 experienced

nurses compared documented nursing diagnoses to an established

ontology used in model development.

No clinician involvement described

Fifty-five (72%) of the studies on component development did not

mention any involvement from clinical experts.25–28,30–34,36,50–

Table 2. continued

Characteristic Variable Results

In-hospital, specifically: emergency medicine, intensive

care, cardiothoracic surgery/transplant, neurology/

vascular/stroke, gastrointestinal, oncology/hematol-

ogy/immunology/pharmacology

1 (1.3)86

Values are n (%) or range.
aStudies may fall into more than 1 category.
bDoes not meet our definition of machine learning but included for purposes of reporting all methods authors compared.
cIncluding LASSO, Ridge, and Elastic Net.
dGeneralized linear models, conditional inference recursive partition, conditional random fields, Weibull-Cox proportional hazards, lazy learner, piecewise-

constant conditional intensity model, analysis of covariance (see footnote b), analysis of variance (see footnote b), fuzzy modeling (see footnote b), switching-state

autoregressive model, mimic learning, nearest shrunken centroids, J48 algorithm, PART rule.

Table 3. Summary of findings of clinician involvement by stage of system design

Clinician Involvement Category Clinician Involvement Details Results

Specification 3 (4)

Identified system needs and design Clinicians interviewed regarding:
• ICU monitoring needs101

• prediction explanations12

• design and fit with workflow102

3 (100)

Component development 76 (95)

Clinical relevance/correctness • Corroborated significance of partial dependence plots32

• Judged suitability of research design38

• Defined outcomes31,34

• Deemed features coherent and informative37

• Grouped features by body organ28

• Deemed outcomes present35

• Evaluated face validity of predictors and outcomes36

• Categorized predictors (chief complaints)36

• Advised on implications and relevance of system in practice34,36

• Determined sensitivity/specificity33 and false positivity rate requirements93

• Defined reinforcement learning reward/cost values34

• Set alert trigger threshold93

10 (13)

Feature selection • Narrowed feature set38–40,94

• Identified features35,41,93,98

8 (11)

Data preprocessing • Advised on periodicity of interventions in practice to inform interpolation thresholds5

• Identified invalid values in data distribution42

• Defined normal ranges for imputation and outlier removal43

• Advised on feature construction44

4 (5)

Gold standard • Annotated progress notes for description of outcome37,99

• Documented predictor (patient severity of illness)35

• Compared documented nursing diagnoses to standard ontology45

4 (5)

Combination of components into system 5 (6)

Integration of system into environment 5 (6)

Evaluation • Small group of experts developed survey45,97

• Larger sample of clinicians completed survey45,97

2 (40)

Routine use 0 (0)

Values are n (%). Some studies described more than 1 stage of design and/or method of clinician involvement. Stages based on framework outlined by Stead

et al.15

ICU: intensive care unit.
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88,100,103–105,9396 However, 4 of these studies discuss this as a future

improvement.56,65,74,82 For example, J.Y. Kwon et al.65 positioned

their paper as an argument for using nursing knowledge to improve

predictive CDSSs, describing how nurse experts may have improved

the performance and clinical relevance of their model.65

Additionally, in multiple articles, authors did not explicitly de-

scribe clinician involvement but indirectly imply using clinical ex-

pertise. For example, Kaji et al60 mentioned identifying model

features based on “known clinical relevance to [their] target end

points.” Each author was affiliated with a medical school.

Combination of components into system
All 5 studies that reported on combination of components into sys-

tem also reported on component development. These studies either

described or presented a predictive CDSS prototype or interface;

none of them described involving clinical experts in this

stage.29,33,34,84,93

Integration into environment
Five studies described integrating the system into its environ-

ment,45,93,97,104,105 with 4 also describing component develop-

ment.45,93,104,105 Two studies involved clinical experts in evaluating

the predictive CDSS after integration.45,97 In both studies, clinicians

responded to surveys evaluating their impressions of the predictive

CDSS and clinicians helped develop the surveys.45,97 For example,

in Ginestra et al,97 attending physicians, residents, and nurses helped

develop an evaluation survey that was completed by 252 clinicians.

Author affiliation or licensure
It is possible that clinically trained authors made clinically relevant

decisions in their predictive CDSS design process but did not de-

scribe it in their article. Of the 55 articles that did not mention any

clinician involvement, 39 (71%) were authored by at least 1 person

with a health-related affiliation (eg, MD in title, located at school of

nursing),29,30,46,50–54,56–58,60,62,63,65–71,74,76,78,79,81,82,84–86,90–

92,95,96,100,103–105 14 (25%) were not authored by investigators with

health-related affiliations,47–49,55,61,64,72,73,75,77,80,87–89 and 2 stud-

ies did not report affiliation.59,83

DISCUSSION

The results of this scoping review indicate that clinical expert in-

volvement is most prevalent in the specification and integration into

environment stages of predictive CDSS design for nurses and pro-

viders in the hospital. Clinical expert involvement was less prevalent

in the intermediary stages of predictive CDSS design (Table 3, Fig-

ure 2). This is not entirely surprising, especially for articles describ-

ing machine learning model development—as clinician involvement

in machine learning is likely not considered customary; clinicians

are not standardly trained in machine learning. However, recent lit-

erature on improving the understandability of machine learning

models describe involving domain experts in development, particu-

larly for verifying and increasing clinical relevance or correctness

and for feature selection.13,65,106,107 However, with only 21%

(n¼16) of studies on component development involving clinical

experts for verifying clinical relevance or correctness or for feature

selection, our findings indicate that this is not widespread practice.

We note that using clinical expertise for feature selection is not nec-

essarily state of the art. However, recent literature illustrates crea-

tive ways that expert knowledge can be integrated with

computational feature selection.106,108 For example, Boulet et al106

used a power prior to incorporate numerical clinical relevance

weights assigned by clinical experts with stochastic search variable

selection.

Notably, 17 studies described in this review used the publicly

available MIMIC (Medical Information Mart for Intensive Care)

datasets (Supplementary Table 3),109,110 which has implications for

clinical expert involvement, as the experts may be advising on EHR

data derived outside of the institution and workflows with which

they are most familiar.111 Alternatively, clinical experts may serve

to advise on public data generalizability.

By including studies across the stages of system design, our find-

ings highlight where in the process predictive CDSS research is pub-

lished. It is clear that evidence on implementations of predictive

CDSS for nurses and providers in the hospital are lacking, as 90%

of included studies are of, at most, the component development

stage and no studies are of the routine use stage. This dearth may be

a reflection of known adoption challenges,10 the extensive resource

and time investment required to implement predictive CDSS, or lack

of evaluation research being conducted or published. The low preva-

lence of studies from the specification stage may indicate that most

investigators evaluate the need for a predictive CDSS through litera-

ture review, rather than qualitative research, which is a valid ap-

proach.15,16 However, if investigators are conducting research on

component development in the absence of rigorous specification

evaluations, they may struggle overcoming the known challenge of

ensuring relevance to the clinical domain.10 The 3 studies of the

specification stage were published in the most recent year (2019),

which may indicate that investigators are considering adoption chal-

lenges by working to thoroughly understanding the needs and

desires of clinician end users from the outset, as has recently been

recommended.112

Beyond universal CDSS adoption challenges outlined in founda-

tional literature (eg, importance of human-computer interface)113

and those described by Shortliffe and Sep�ulveda,10 Lenert et al114 re-

cently detailed another specific challenge that predictive CDSSs may

face after implementation—model degradation if behavior change

occurs. The authors suggest modeling the intervention space (eg,

modeling antibiotic administration for sepsis CDSS) in development

so that likely changes to the outcome distribution are learned. This

is a unique challenge to predictive CDSS and certainly a potential

area for clinician involvement not described in our review findings.

Predictive CDSS adoption also has implications for clinician rea-

soning. Clinicians must consider the merit and consequence of a

data-driven prediction though they are accustomed to looking to

EHR data for documented observations.115,116 While we have

reviewed one approach to easing adoption—involving clinicians in

Figure 2. Prevalence of clinician involvement per stage of system design.
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system research and development—new training programs are likely

needed to equip clinicians with the skills needed to understand the

strengths and limitations of predictive CDSS.111

Work done outside the hospital setting demonstrates the poten-

tial promise of clinical expert involvement.106,108,117 Simon et al117

described and advocated for engaging clinical experts across the

stages of designing and implementing a predictive CDSS for oncol-

ogy treatment, attributing the success and veracity of their predictive

CDSS to this collaboration. Others have described clinician involve-

ment in the development of a machine learning–based diagnostic de-

cision support system, which clinicians co-designed by thinking

aloud as they interacted with a model explanation interface.118 Such

efforts have the potential to overcome known challenges namely, in-

creasing usability, clinical relevance, understandability, and deliver-

ing CDSS in a respectful manner.

Future directions
The structure and timing of this scoping review is optimal for

informing future predictive CDSS research and development. First,

the multitude of strategies for involving clinical experts in predictive

CDSS research found in this review should be empirically evaluated.

One approach may be to measure clinician end-user adoption of or

trust in implemented systems. Alternatively, researchers may com-

pare using clinical expertise in any of the ways described (eg, feature

selection, verifying clinical relevance or correctness) with taking a

purely computational approach or relying on nonclinical developers.

Outcomes may be simple comparisons of model accuracy or more

long-term evaluations of later stages of design. Aptly, informaticians

are calling for a shift in focus away from the mechanics of predictive

modeling toward the sustained benefit of predictive systems in prac-

tice.21 As such, clinician involvement in predictive CDSS research

should be evaluated according to the value added to patient care and

clinician workflows.

Second, the lack of studies reporting on implemented systems

indicates these findings may inform future implementations and that

this is an area of needed research. Those planning a predictive CDSS

implementation should review and consider the merit of using the

methods for clinician involvement described in this review. We also

suggest investigations of evidence-based implementation strategies,

such as Expert Recommendations for Implementing Change119 or

evaluating implementation success according to a validated frame-

work such as RE-AIM.120

Third, we advise that future publications of predictive CDSS re-

search standardly report clinician involvement explicitly. Interpreta-

tion of our findings should consider that this is not yet standard

practice and authors may have omitted detail on clinician involve-

ment. However, because machine learning is burgeoning in the

healthcare domain, there is an opportunity to institute standard

reporting guidelines, including description of clinical expert involve-

ment. There is a recent call to expand the TRIPOD (Transparent

Reporting of Multivariable Prediction Model for Individual Progno-

sis or Diagnosis) checklist (criteria for reporting findings from devel-

opment or validation of medical prediction models) to better suit

machine learning, as the original was created primarily for regres-

sion models.121 The panel convened to expand the TRIPOD check-

list may use these findings to consider the relevance of incorporating

guidelines on reporting clinician involvement.

Finally, these findings show that predictive CDSS for nurses and

for clinical specialties outside of intensive care are underrepresented.

Many of the included studies modeled outcomes that nursing care

certainly impacts (eg, sepsis, in-hospital mortality) but do not all

name nurses as target end users. Additionally, 46% of reviewed sys-

tems were developed for adult ICUs, pointing to opportunities for

research in less represented (eg, pediatrics) and unrepresented (eg,

orthopedics) specialties. We suggest a follow-up review in a few

years to illuminate the progression of research on predictive CDSS

with regard to methods, implementation, and variety of target users

and specialties.

LIMITATIONS

In consideration of feasibility, relevant journals were not hand-

searched and additional databases were not queried, potentially lim-

iting the number of eligible studies located. We attempted to miti-

gate this by strategically selecting popular databases and including

conference proceedings. Additionally, our analysis was restricted to

the scope of Stead et al’s15 framework of system design; thus, we

could not comment on clinician involvement in work outside of the

stages, for example, curation of datasets. Finally, our review search

did identify CDSSs that are further along in stage of development

but were excluded because they exclusively used logistic regres-

sion.122,123 While not covered here, lessons from their implementa-

tions should be considered in the discourse of mitigating challenges

to predictive CDSS adoption.

CONCLUSION

This scoping review found clinical expert involvement in predictive

CDSS research for the hospital most prevalent at the specification

and integration into environment stages. However, most published

research is of the component development stage, where clinician in-

volvement is less prevalent but has been proposed as a method for

mitigating challenges to adoption. Further empirical research is

needed to understand the impact of involving clinical experts

throughout the predictive CDSS design process.
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