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Abstract

The ability of antibodies to recognize their target antigens with high specificity is fundamental to 

their natural function. Nevertheless, therapeutic antibodies display variable and difficult-to-predict 

levels of non-specific and self-interactions that can lead to various drug development challenges, 

including antibody aggregation, abnormally high viscosity and rapid antibody clearance. Here we 

report a method for predicting the overall specificity of antibodies in terms of their relative risk for 

displaying high levels of non-specific and/or self-interactions at physiological conditions. We find 

that individual and combined sets of chemical rules that limit the maximum and minimum 

numbers of certain solvent-exposed residues in antibody variable regions are strong predictors of 

specificity for large panels of preclinical and clinical-stage antibodies. We also demonstrate how 

the chemical rules can be used to identify sites that mediate non-specific interactions in suboptimal 

antibodies and guide the design of targeted sub-libraries that yield variants with high antibody 

specificity. These findings can be readily used to improve the selection and engineering of 

antibodies with drug-like specificity.
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INTRODUCTION

Monoclonal antibodies (mAbs) are one of the most promising classes of therapeutics 

because of their many attractive properties, including their high affinity and specificity for 

target molecules and their ability to recruit potent effector functions after target recognition.1 

The generation and affinity maturation of mAbs involve introducing significant sequence 

variation in their six binding loops (complementarity-determining regions, CDRs) and, to a 

lesser extent, in their framework regions. Although maximal antibody sequence diversity is 

unimaginably large, the fraction of antibody sequences that give rise to mAbs with drug-like 

properties is expected to be dramatically lower. Natural filtering mechanisms used by the 

immune system eliminate many undesirable mAb sequences during antibody generation.2 

However, antibodies generated by the immune system (as well as those discovered using in 
vitro display methods) are not optimized for the extreme requirements of many therapeutic 

applications.3, 4 Indeed, several examples of poor physicochemical properties of mAbs have 

been reported that are linked to specific antibody sequences.5–13
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Recent work suggests that high specificity is a key indicator of drug-like antibodies.14 Out 

of twelve biophysical assays of non-specific interactions, self-association, hydrophobicity 

and aggregation that were used to profile 137 clinical-stage antibodies, only assays that 

measured antibody non-specific interactions (three assays) and self-interactions (two assays) 

were able to identify approved antibody drugs as having superior biophysical properties 

relative to antibodies in phase 2 and 3 clinical trials. Nevertheless, it remains extremely 

challenging to identify the molecular determinants of antibody specificity for multiple 

reasons. First, antibody specificity is a relative concept that is dependent on the type of 

methods used to measure non-specific and self-interactions. Therefore, analysis of the 

molecular determinants of antibody specificity based on data obtained using a single type of 

assay may lead to conclusions that are not generally applicable to other types of antibody 

specificity measurements. Second, there has not been sufficient data available until 

recently14,15 for detailed statistical analysis of the molecular determinants of antibody 

specificity. These new comprehensive data sets provide several different types of specificity 

measurements for diverse panels of antibodies, which could enable a more holistic analysis 

of the molecular determinants of antibody specificity than has been previously possible.

In this work, we have sought to develop chemical (amino acid composition) rules that are 

able to identify mAbs with high, drug-like specificity and reduced risk of displaying high 

levels of non-specific and self-interactions at physiological conditions. Our approach is to 

first segregate clinical-stage mAbs into two groups – namely those with low and high 

specificity – based on several different types of specificity measurements. Next, we have 

sought to develop chemical rules based on physicochemical properties of different regions in 

antibody variable fragments that are able to selectively identify mAbs with low specificity. 

This approach seeks to identify the most important chemical properties of the variable 

regions of antibodies linked to specificity in order to improve the identification and 

engineering of drug-like antibodies. Here we report individual and combined sets of 

chemical rules that selectively identify mAbs with high specificity based only on antibody 

sequences and predicted site-specific solvent accessibilities, and we apply these rules to 

guide the re-engineering of a suboptimal mAb to identify mutations that increase antibody 

specificity.

EXPERIMENTAL SECTION

Antibody sequence and biophysical data.

The amino acid sequences of the variable (VH and VL) regions of 137 clinical-stage 

antibodies and their corresponding measurements of non-specific and self-interactions 

(Table S1) were obtained from a previous publication.14 The amino acid sequences of a 

panel of preclinical antibodies were provided by Adimab (Table S2).15 The relative solvent 

accessibilities of the clinical (Table S3) and preclinical (Table S4) antibodies were calculated 

using a Random Forest Regression method that was trained on over 900 antibodies in the 

Protein Data Bank.16 The maximum and minimum counts for each type of amino acid 

present in the CDRs and different regions of antibody variable regions (Tables S1 and S2) 

weighted by their solvent accessible surface areas (Tables S3 and S4) for the clinical-stage 

antibodies are reported in Table S5. The similarities of mAbs relative to those in the training 
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sets are reported as the difference between 100% and the percentage of the 286 specified 

amino acid limits that are violated (Table S5). The preclinical mAbs (Table S2) have greater 

than 99% similarity relative to the clinical-stage mAbs (Table S1). The CDRs were defined 

using a combination of Chothia and Kabat numbering, and heavy chain CDR3 was defined 

to also include two additional N-terminal residues (as reported, for example, in Tables S1 

and S2). The theoretical net charges of various antibody regions were calculated at pH 7.4 

by assigning charges of +1 for Lys and Arg, +0.1 for His, and −1 for Asp and Glu.

Chemical rules for identifying antibodies with low specificity.

Rules for describing antibody specificity were calculated in MATLAB using the procedure 

described below and in the Supplemental Methods. First, the specificities of clinical-stage 

mAbs were experimentally evaluated using five specificity tests that set maximum limits on 

the levels of non-specific interactions [>4.3 signal/background for baculovirus particle 

(BVP) binding, >0.27 for polyspecificity reagent (PSR) binding and >1.9 signal/background 

for ELISA] and self-interactions [>11.8 nm for affinity-capture self-interaction nanoparticle 

spectroscopy (AC-SINS) and >0.01 response units for clone self-interaction by biolayer 

interferometry (CSI)].14 Second, each antibody was assigned to one of two groups based on 

its number of physical flags, as defined by the number of times an antibody exceeded the 

five maximum limits for non-specific and self-interactions. One group with <2 physical flags 

is defined as the high specificity group and a second group with ≥2 physical flags is defined 

as the low specificity group. The clinical-stage mAbs were assigned to the two groups based 

on their value of each individual biophysical measurement (BVP, PSR, ELISA, AC-SINS, 

and CSI) relative to the limits described above. The preclinical mAbs15 were also assigned 

to two groups with high specificity (≤0.27 for PSR) or low specificity (>0.27 for PSR). 

Third, rules for the counts of amino acids in the CDRs and variable regions, weighted by 

their relative solvent exposures, were evaluated using the summed values (increments of 0.1) 

for various combinations of specific residues that spanned the values observed in the 

clinical-stage antibodies (as described in the Results section). An amino acid was considered 

solvent accessible if its relative solvent exposure was ≥10% (otherwise it was excluded from 

analysis), and glycine was assumed to be fully exposed.

The chemical rules were generated using threefold cross-validation methods and were 

required to meet a number of constraints (as described in detail in the Supplemental 

Methods). Briefly, the clinical-stage mAbs (137) were split into training (80%) and test 

(20%) sets in ten different ways using stratified sampling (Table S6). The training sets were 

further divided into three partitions (folds), two of which were used for training and the 

other for validation. Individual rules were required to satisfy the constraints summarized in 

Table S7. Finally, the rules were required to be observed in each of the ten 80/20% splits, 

although different values for the rules were allowed for each split.

The significance of each rule for selectively flagging antibodies with low specificity was 

assessed using adjusted accuracies and 2×2 contingency tables (Fisher’s exact test) for 

evaluating p-values. Adjusted accuracy was calculated by equally weighting the true and 

false positives with the true and false negatives.
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Combined rules for enhancing the identification of mAbs with low specificity.

Sets of rules were generated by combining single rules together (up to six single rules per 

combined set were evaluated), as explained in the Results section. Each mAb was 

considered to have low specificity if flagged by four or five rules (as defined on a case-by-

case basis). Sets of rules in the first round of analysis were only accepted if they met the 

constraints summarized in Table S7. Finally, the combined rules (with the same values for 

each rule) were required to be observed in each of the ten 80/20% splits. The best sets of 

combined rules in the first round of analysis were identified as those with the lowest 

coefficients of variation for the average validation accuracy (ten 80/20% splits). This process 

was repeated again for mAbs that were not flagged as polyspecific in the first round of 

analysis, as described in the Supplemental Methods. Briefly, single rules were first generated 

using similar constraints as those used in the first round of analysis (Table S7). Next, 

combined sets of rules using the best set of rules from the first round of analysis and up to 

six additional rules were required to satisfy the constraints summarized in Table S7. Finally, 

the combined rules (with the same values for each rule) were required to be observed in each 

of the ten 80/20% splits. The best sets of combined rules (from the first and second rounds) 

were identified as those with the lowest coefficients of variation for the average validation 

accuracy (ten 80/20% splits).

Measurements of antibody non-specific and colloidal interactions.

mAb variants (39 IgGs) with sequence differences in their frameworks and CDRs were 

expressed as IgG1 antibodies in CHO-3E7 cells (L-11992, National Research Council 

Canada) and purified via Protein A chromatography. Preparative size-exclusion 

chromatography was also performed (when necessary) to reduce the aggregate content 

below 10%.

The levels of antibody non-specific binding were evaluated using an ELISA method reported 

previously14 with minor modifications. Immulon 2HB plates (3655TS, Thermo Fisher 

Scientific) were coated separately with six non-antigens as reported previously except that 

insulin was immobilized at 0.2 mg/mL (1 h at 37 °C). The plates were washed three times 

(0.2 mL/well) using PBST (PBS with 0.05% Tween 20) and were not blocked. Next, each 

mAb (1 μM in PBST) was added to the wells for 1 h. After washing the wells three times 

(0.2 mL/well of PBST per wash), the secondary antibody (HRP conjugated goat anti-human 

IgG antibody, 10 ng/mL; 109-035-008, Jackson Immuno Research) was added (1 h). Finally, 

after removal of unbound secondary antibody, TMB substrate (TMBS-1000-01, Surmodics) 

was added and the plates were developed (5 min) before quenching with 2 M sulfuric acid. 

The volume of the solutions added to the wells was 50 μL/well unless otherwise specified. 

The absorbance values were evaluated at 450 nm using a Biotek Synergy 2 plate reader, and 

the signal over background was calculated using background values evaluated without mAb 

and with all other reagents.

The levels of antibody self-interactions were measured for the mAbs using affinity-capture 

self-interaction nanoparticle spectroscopy (AC-SINS), as reported previously.17 Briefly, the 

nanoparticle conjugates were prepared by first adsorbing goat anti-human Fc polyclonal 

antibody and then co-adsorbing human mAbs and human polyclonal antibodies at different 
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ratios (fixed total concentration of 20 μg/mL of human antibody). The reported plasmon 

shifts are averages of those evaluated at three different percentages of human mAbs (5, 15 

and 25%). The control values used to calculate the plasmon shifts were those for 0% human 

mAb (100% human polyclonal antibody). The absorbance spectra used to evaluate the 

plasmon shifts were measured using a Biotek Synergy 2 plate reader.

Antibody sub-library design and sorting.

Sites for mutation in the variable heavy (VH) region of emibetuzumab were identified using 

the combined chemical rules. In particular, sites in the CDRs were targeted if they were i) 

flagged by the maximum limits (rules 1–6 in the combined rules), ii) hydrophobic or 

positively charged, iii) solvent exposed (>10% SASA) and iv) relatively uncommon at a 

given antibody site (<50%) in tens of thousands of human antibodies.18 The last requirement 

that the wild-type residue must not be highly conserved aims to avoid mutations at sites that 

are critical to antibody folding and/or stability. The resulting antibody library was generated 

with mutations at eight sites in VH (Y33, R50, R54, R55, G56, A95, W97 and Y102) with 

the goal of reducing the number of chemical flags in the variable regions of emibetuzumab. 

For each mutation site, degenerate codons were designed to sample the wild-type residue as 

well as at least one negatively charged residue and one polar residue, as well as up to three 

additional residues with similar properties relative to the wild-type. For example, a 

degenerate codon at Y33 in VH was used to sample Tyr (wild type), Phe (aromatic and 

hydrophobic), Val and Ala (hydrophobic), Ser (polar) and Asp (negatively charged). The 

total library size was 106 variants, the library design is summarized in Figure S1, and the 

single-chain Fab (scFab) library was constructed and displayed on the surface of yeast, as 

described previously.19

The initial rounds of library sorting were conducted by incubating 109 (round 1) or 107 

(round 2) surface-displaying yeast with 107 Dynabeads (Protein A, 10002D; Thermo Fisher 

Scientific) saturated with antigen (hepatocyte growth factor receptor as an Fc fusion protein, 

HGFR-Fc; MET-H5256, Acro Biosciences) in PBSB (PBS with 1 mg/mL BSA) and 1% 

milk for 3 h at room temperature. The final round of sorting (round 3) was completed via 

FACS (MoFlo Astrios, Beckman-Coulter) using 107 cells following incubation with soluble 

antigen or polyspecificity reagents. Ovalbumin (Sigma, A5503) and soluble membrane 

proteins isolated from CHO cells (polyspecificity reagent or PSR) were biotinylated using 

Sulfo-NHS-LC-Biotin (Pierce, P121335; Thermo Fisher Scientific) and HGFR-Fc was used 

as purchased. Cells were incubated with ovalbumin (260 μg/mL), PSR (130 μg/mL), or 

HGFR-Fc (1 nM with 1% milk) for 3 h at room temperature (ovalbumin, HGFR-Fc) or 20 

min on ice (PSR) in PBSB with an anti-myc tag mouse mAb (1:1000 dilution; 2276S, Cell 

Signaling Technologies). After one wash with PBSB, cells were incubated with secondary 

reagents to detect scFab display (1:100 goat anti-mouse Alexa Fluor 488; A11001, Life 

Technologies) and binding (1:1000 streptavidin Alexa Fluor 647, S32357, Life Technologies 

for ovalbumin and PSR; 1:300 goat anti-human Fc Alexa Fluor 647, 109605098, Jackson 

Immuno Research Labs for HGFR-Fc). Finally, the cells were washed with PBSB and sorted 

for positive display and non-binding to ovalbumin and PSR or binding to HGFR-Fc.
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Deep sequencing and data analysis.

The sorted antibody library samples were evaluated using deep sequencing by extracting the 

scFab plasmids from yeast using the Zymoprep Yeast Plasmid Miniprep II Kit (D2004; 

Zymo Research). The VH region of the scFab gene was amplified via two-step PCR using 

Q5 polymerase (M0491; New England Biolabs). The first reaction was performed using 

primers that were complementary to the VH domain in addition to Illumina adapter 

sequences and barcodes (see Supplemental Methods for more detail). The PCR product was 

gel purified (1% agarose) and isolated using a QIAquick Gel Extraction Kit (28704; Qiagen, 

Germantown, MD). The second reaction used 2 μL of the purified PCR product with primers 

identical to the Illumina adapter sequences, and was also gel purified following the 

manufacturer’s recommendations. Concentrations of each sample were determined using a 

Qubit 4 Fluorometer (Q33240; Waltham, MA) and pooled together at an equimolar ratio. 

The pooled samples were evaluated using deep sequencing (Illumina MiSeq in a 300 bp 

paired-end sequencing reaction). The detailed data analysis is summarized in the 

Supplemental Methods.

Next, the deep sequencing data were analyzed to identify antibody variants observed in four 

library samples in two different biological repeats for the third round of sorting, namely the 

i) input library and the samples sorted for ii) negative ovalbumin binding (OVA-), iii) 

negative PSR binding (PSR-), and iv) positive HGFR-Fc binding. From these two repeats, 

3,465 unique scFabs were identified that were present in all of the eight analyzed samples. 

To identify the mutations that are most strongly linked to high specificity, sets of one to four 

mutations were evaluated in the 3,465 scFabs that were most strongly correlated with 

enrichment in the samples sorted for low non-specific binding. First, all possible 

combinations of mutations for the eight mutated sites were evaluated. Because the statistical 

significance of the sets with four mutations was found to be highest, we focused on these 

43,750 mutational sets. Each mutational set [e.g. Y33F, R54T, G56D, and Y102A in VH] 

was evaluated by first identifying clones that contain such mutations (regardless of whether 

they have wild-type or mutant residues at other sites), which are referred to as the four 

mutant (4MT) group. Similarly, the clones with wild-type residues at the same four sites 

(regardless of whether they have wild-type or mutant residues at the other sites) were 

identified, which are referred to as the four wild-type residue (4WT) group. Only the 

4MT/4WT sets that contain more than ten clones in each group were further evaluated to 

maximize statistical significance. Next, a Spearman’s rank correlation coefficient was 

evaluated for each set of clones in the 4WT/4MT sets of antibodies based on whether they 

have the mutations (0 or 100%) relative to their enrichment ratios for PSR- and OVA- 

samples. Mutational sets were identified as significant if they have Spearman correlation 

coefficients ≥0.6 and p-values <0.05.

RESULTS

Chemical rules for identifying antibodies with high specificity

Our approach to identify the molecular determinants of antibody specificity is outlined in 

Fig. 1. We applied five tests of antibody specificity to 137 clinical-stage mAbs that are either 

approved drugs or are (or were) in phase 2 and 3 clinical trials using previously reported 
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specificity measurements.14 The specificity measurements were obtained using different 

variable (VH and VL) regions for each clinical-stage mAb and the same constant regions 

(IgG1) regardless of the actual isotype. The five assays included three non-specific binding 

assays that evaluate antibody interactions with various types of proteins, DNA and virus 

particles [ELISA14, BVP20 and PSR21] and two assays that evaluate antibody self-

association [AC-SINS22 and CSI23]. We assigned each mAb up to five physical flags if they 

exceeded previously reported upper limits for non-specific and self-interactions that 

segregate the top 90% of approved antibody drugs from the bottom 10%.14 We define 

antibodies with high specificity as those with few (<2) physical flags. Therefore, we 

segregated the clinical-stage mAbs (Table S1) into two groups, namely those with high 

specificity (<2 physical flags, 97 mAbs) and low specificity (≥2 physical flags, 40 mAbs), 

and evaluated chemical rules that selectively identify mAbs with low specificity.

Our approach to identify such chemical rules involved first evaluating maximum limits on 

the combined numbers of specified residues (weighted by their solvent exposure) for all 

possible combinations of 19 amino acids (excluding cysteine due to its rarity) for rules 

composed of as few as one and as many as 10 residues. This process was performed for the 

entire antibody variable fragment and 66 subregions of Fv, including the Fv framework 

(without the CDRs), VH, VL, individual CDRs (heavy chain CDRs 1, 2 and 3 and light chain 

CDRs 1, 2 and 3), and all possible combinations of CDRs that include as few as two and as 

many as six CDRs (e.g., heavy chain CDRs 1 and 3 and light chain CDR2). These rules 

sampled values that spanned the minimum and maximum values observed in the clinical-

stage antibodies in increments of 0.1. In total, we evaluated >107 maximum rules based on 

the antibody Fv.

We required that the rules meet a number of constraints (see Supplemental Methods and 

Table S7 for full details), including that they selectively flag clinical-stage mAbs with low 

specificity relative to mAbs with high specificity. We also required that each rule flag mAbs 

with low specificity (as judged by the PSR assay) in a selective manner for a second training 

set of 424 human (preclinical) mAbs. The amino acid sequences and non-specific binding 

(PSR) values for the preclinical mAbs used are given in Table S2,15 the relative solvent 

accessibilities are given in Tables S3 (clinical-stage antibodies) and S4 (preclinical 

antibodies), and the amino acid composition limits that define the clinical-stage and 

preclinical mAbs are given in Table S5.

Our findings for chemical rules that identify mAbs with poor specificity based on maximum 

limits on the number of solvent-exposed amino acids in antibody variable regions are 

summarized in Figure 2 and Table S8. Despite evaluating >107 different chemical rules, only 

16 ultimately met our constraints and passed our statistical analyses. Our most significant 

rule flags mAbs with a sum of >5.0 solvent-exposed Gln, Arg, His, Pro, Met, Leu, Tyr and 

Trp residues in heavy chain CDRs 1, 2 and 3 (H123) and light chain CDRs 2 and 3 (L23; 

Fig. 2A). This single rule flagged more than half (55%) of mAbs with low specificity while 

only flagging relatively few (14%) mAbs with high specificity (p-value of 2.6×10−6). While 

eight residues contributed to the rule, we evaluated how each residue contributed to the 

differences in the observed values for low specific mAbs relative to high specific mAbs for 

the entire panel of clinical-stage mAbs and not only for the subset of mAbs flagged by each 
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rule. Notably, the most important residues were Gln (accounts for >30% of the difference 

observed between low and high specific mAbs), and Arg and His (each of which contribute 

10–30%). Conversely, Pro, Met, Leu and Tyr contributed modestly (0–10%) and Trp 

contributed negatively (<0%). The last finding is due to the fact that mAbs with low 

specificity actually have less Trp (heavy chain CDRs 1, 2 and 3 and light chain CDRs 2 and 

3) when considering the entire panel of clinical-stage mAbs but they have more Trp when 

considering the subset of mAbs flagged by this particular rule. The distribution of values for 

this chemical rule reveals that most mAbs with values >5.0 possess low specificity and those 

with values <5.0 have high specificity. Finally, the accuracy of the training (71%) and test 

(69%) sets of mAbs are similar, suggesting that our cross-validation procedures prevent 

overfitting of the training data.

It is notable that Arg is the most important contributor to the maximum chemical rules (Fig. 

2B). Of the top ten maximum rules, Arg is one of the most significant contributors (>30% 

contribution) in half of the rules and a significant contributor (10–30%) in all of the other 

rules. Moreover, His and Gln are also key contributors to the maximum rules (e.g., both 

contribute >30% in at least one of the rules), suggesting that certain positively charged and 

polar residues may be particularly important in mediating polyspecificity. Finally, although 

we considered many different subregions in the antibody variable regions, most (85%) of the 

chemical rules involve various combinations of heavy and light CDRs.

A key hypothesis in our preceding analysis is that over-enrichment of specific types of 

solvent-accessible residues in antibody variable regions is linked to poor specificity. We also 

sought to test the converse hypothesis by evaluating if underrepresentation of other types of 

residues may also be predictive of antibody specificity. Therefore, we evaluated minimum 

limits on the number of the residues weighted by their solvent exposure in antibody variable 

regions for all possible combinations of as many as ten residues (19 amino acids excluding 

cysteine; a total of >107 rules).

We identified a small subset of minimum rules (24) that met our constraints (Fig. 3 and 

Table S8). For example, the most significant minimum rule was a sum <11.6 Asn, Asp, Leu, 

Ala, Pro, Met, His, Glu and Gln residues in the variable heavy domain (VH; Fig. 3A). This 

single rule flagged half of the mAbs with low specificity while flagging few (13%) of mAbs 

with high specificity (p-value of 1.5×10−5). The most significant contributors were 

negatively charged (Asp) and polar (Asn) residues. Of the top ten minimum chemical rules, 

it is notable that Asp is the single most important contributor, and Asn and Glu are also key 

contributors. These findings suggest that the presence of negatively-charged and certain 

polar residues in antibody variable regions are linked to high specificity, which is consistent 

with previous work.5, 7, 8, 19, 24–30

Combinations of rules are highly selective for identifying mAbs with high specificity

The selectivity of these rules led us to evaluate whether greater discrimination between 

antibodies with high and low specificity could be achieved using combinations of these rules 

(Fig. 4 and Table S9). Therefore, we tested all possible combinations of 40 individual rules 

(Table S8) that passed our constraints to generate the best sets of rules that selectively 

identify mAbs with low specificity. We evaluated sets of rules with as few as four and as 
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many as six (a total of >106 sets of rules), and identified antibodies with low specificity as 

those with ≥4–6 chemical flags (as defined on a case-by-case basis). We eliminated the vast 

majority of the sets of rules by requiring that they satisfy a number of constraints (see 

Supplemental Methods and Table S7 for details), resulting in only 16 sets of rules that met 

these constraints.

The best set of chemical rules we identified comprised six chemical rules and displayed a 

significant improvement in performance relative to the individual rules (Table S9). This set 

of rules (Set A in Table S9) includes three maximum limits and three minimum limits, five 

of which are CDR-specific and the other is VH-specific. This set of rules was able to flag 

35% of clinical-stage mAbs with low specificity while flagging only 2% of mAbs with high 

specificity (≥4 chemical flags corresponds to low antibody specificity). Similar to the 

individual rules, this set of rules displays similar average validation (66%) and test (67%) 

accuracies.

We reasoned that the specificity predictions could be further improved by eliminating mAbs 

flagged by the first set of six rules (Set A in Table S9) and generating additional rules for 

selectively flagging liabilities that were not identified in the first round of analysis (Fig. 4 

and Tables S10–S12). Therefore, we eliminated mAbs from our training sets that were 

flagged by the first set of rules (Table S10), and identified individual maximum and 

minimum chemical rules that were best at selectively identifying the remaining mAbs with 

low specificity in our training sets (Table S11). We applied similar constraints and statistical 

methods in generating the individual rules for the second specificity test as we used for the 

first test (see Supplemental Methods for details).

Interestingly, we identified several (45) chemical rules (Table S11) that were markedly 

different than those generated in the first round of analysis (Figs. 2, 3 and Table S8). For 

example, Lys was the most significant contributor (>30% contribution) in most (61%) of the 

maximum rules in the second round of analysis, while Arg was rarely observed as one the 

most significant contributors (19% of the maximum rules). Moreover, most (73%) of the 

maximum and minimum rules in the second round of analysis were specific for one of the 

variable regions (VH or VL), the entire Fv or the variable framework (Fv without the CDRs), 

which was markedly different than the findings in the first round of analysis (27%).

We next evaluated whether the best set of rules in the first round of analysis could be 

combined with rules generated in the second round of analysis to further improve the 

selectivity of identifying mAbs with low specificity (Fig. 4 and Table S12). Therefore, we 

tested all possible combinations of the 45 individual rules (Table S11) with the six rules 

generated in the first round of analysis (Set A in Table S9) for a total of 8 to 14 chemical 

rules per set. As for the first round of analysis, we required that the sets of rules meet a 

number of constraints and statistical measures (see Supplemental Methods and Table S7 for 

details), and we identified mAbs with low antibody specificity as those with ≥4–12 chemical 

flags (as defined on a case-by-case basis).

Our best combined set of chemical rules is reported in Fig. 4A, and additional details are 

given in Table S9 (Set A) and Table S12 (Set F). The expanded set of 12 rules significantly 
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improves the overall identification of clinical-stage mAbs with high specificity, as defined as 

those with <8 of 12 chemical flags. This set of rules flags most (78%) of clinical-stage mAbs 

with low specificity while flagging few (8%) mAbs with high specificity (p-value of 

1.6×10−15 and area under curve of 0.85; Fig. 4B). Importantly, the average accuracy for our 

training (83%) and test (90%) sets of antibodies are similar.

The distribution of the number of chemical flags for the mAbs with high and low specificity 

reveals that most mAbs with <8 chemical flags have high specificity, while those with ≥8 

chemical flags have low specificity (Fig. 5). It is also notable that the predictions of antibody 

specificity can be further refined. Antibodies with <4 chemical flags are all predicted 

correctly to have high specificity (accuracy of 100%). Likewise, antibodies with ≥8 flags are 

mostly predicted correctly to have low specificity (accuracy of 90%). Antibodies with 4–7 

flags – which were considered in our original analysis as those with high specificity (<8 of 

12 chemical flags) – are predicted correctly with more modest accuracy (75%). This 

suggests that a useful application of our chemical rules is to define three regions of 

specificity predictions, two with higher confidence (0–3 chemical flags for high specificity 

and 8–12 flags for low specificity), and a third with modest confidence in predicting high 

antibody specificity (4–7 flags).

We also sought to test the performance of our chemical rules if we eliminated the use of 

specific experimental limits to define antibody specificity (e.g., mAbs with PSR values 

>0.27 have low specificity) and instead simply ranked the antibodies from the most specific 

to the least specific based on experimental measurements (Fig. 6). To do this, we ranked the 

137 clinical-stage mAbs from best (lowest levels of non-specific or self-interactions) to 

worst (highest levels of non-specific interactions or self-interactions) for each of the five 

biophysical assays and used the average rank percentile of the five assays to define the most 

specific mAbs (lowest rank). Given that there are 97 of 137 mAbs with <2 physical flags in 

our original definition of high specificity, we would expect that these antibodies would be 

ranked mostly in the top 71% (97 of 137 mAbs). Indeed, we find that most (94%, 91 of 97 

mAbs) of the antibodies ranked in the top 71% of the mAbs have <2 physical flags (Fig. 

6A), suggesting that our original definition of antibody specificity is weakly influenced by 

the use of experimental limits to determine poor specificity. Moreover, we find that our 

chemical rules segregate the best and worst antibodies in a similar manner as the physical 

rules (Fig. 6B). We also observe that mAbs with 0–3 chemical flags are mostly (79%, 19 of 

24 mAbs) ranked in the top half of the antibodies, while mAbs with 8–12 chemical flags are 

all (100%) ranked in the bottom half of the antibodies and those with 4–7 chemical flags 

show intermediate average ranks (Fig. 6C). These findings further suggest that our chemical 

rules provide the strongest predictions of high specificity for mAbs with 0–3 chemical flags 

and low specificity for mAbs with 8–12 chemical flags.

Our goal in developing the chemical rules in this work was to broadly describe antibody 

specificity and not rely on any single type of experimental specificity measurement. 

Nevertheless, we next evaluated how the rules that emerged from our analysis would 

perform in the context of each individual specificity assay (three non-specific binding assays 

and two self-interaction assays). For each biophysical assay, the antibodies were segregated 

into two groups based on previously established limits for high levels of non-specific and 
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self-interactions.14 Next, the specificity test in Fig. 4 was applied to each group of antibodies 

defined by single non-specific and self-interaction measurements (Figs. S2–S6). 

Encouragingly, the performance of the chemical rules was both strong and relatively similar 

for the five individual assays (p-values <10−5 and accuracy of ≥75% for each assay). 

Moreover, we observed that the accuracies for the PSR (Fig. S2) and AC-SINS (Fig. S3) 

assays were particularly strong for predicting high specificity of mAbs with <4 chemical 

flags (100% accuracy). More generally, we also observed strong performance for the PSR 

(Fig. S2), AC-SINS (Fig. S3), ELISA (Fig. S5) and BVP (Fig. S6) assays for predicting 

mAbs with high specificity (>80% accuracy, <4 chemical flags) and low specificity (>80% 

accuracy, 8–12 chemical flags).

Evaluation of combinations of chemical rules using independent sets of antibodies

We also evaluated our chemical rules using independent sets of antibodies not included in 

our training or test sets. We first evaluated an independent set of non-specific interaction 

(PSR) measurements for an additional 359 preclinical mAbs (Tables S13 and S14) that 

largely fall within the amino acid compositions that we evaluated previously in this work 

(≥98% and <99% similarity based on the maximum and minimum limits in Table S5). 

Importantly, the combined specificity rules correctly identified more than half (55%) of 

these preclinical mAbs with low specificity while flagging few mAbs (16%) with high 

specificity (p-value of 1.6×10−4 and accuracy of 69%; Fig. S7). It is also notable that the 

accuracies for the training (70%) and test (69%) sets of preclinical antibodies were similar.

We also tested our predictions using a second independent set of mAbs (39 IgGs) that we 

generated and characterized using non-specific binding (ELISA14) and self-association (AC-

SINS17) assays (Fig. 7). Importantly, the mAbs predicted by our specificity rules to have 

poor specificity (≥8 chemical flags) displayed significantly higher levels of non-specific 

binding than those that pass our test (<8 flags, p-value of 6.3×10−4; Fig. 7A). Moreover, we 

find that the same specificity test is also able to identify mAbs with high levels of self-

association (Fig. 7B). The mAbs identified by our specificity test (≥8 flags) displayed 

markedly higher levels of self-association relative to mAbs that were not flagged (<8 flags, 

p-value of 1.2×10−9). Moreover, we observed that mAbs with <4 chemical flags generally 

had lower levels of non-specific binding and self-association than those with 4–7 flags, 

although the difference for non-specific binding is not significant. These results demonstrate 

the generality of our methodology for identifying antibodies with drug-like specificity.

The strong performance of our chemical rules for identifying antibodies with high specificity 

using multiple independent sets of data (Figs. 7 and S7) suggest that our rules identify some 

of the most important determinants of antibody specificity. However, we sought to evaluate 

our predictions using much larger data sets to better evaluate their utility in identifying 

antibodies with high specificity. Therefore, we sought to mutagenize a clinical-stage 

antibody (emibetuzumab) that is flagged by all 5 biophysical assays (ELISA, PSR, BVP, 

AC-SINS and CSI)14 and 8 out of 12 of the chemical rules. Our strategy was to identify sites 

in the variable regions that were flagged by our maximum rules and mutate them to residues 

that reduced the number of chemical flags, including those that are most important in the 

minimum rules (e.g., D and T). We identified eight sites in the heavy chain CDRs to 
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mutagenize, and sampled five mutations per site in addition to the wild-type residue using 

degenerate codons (Fig. S1), which resulted in >106 variants. This library was then 

displayed on yeast as single-chain Fab fragments, sorted for low non-specific binding 

against two reagents (PSR and ovalbumin) or high (specific) binding to the target antigen, 

and the selected antibody variants with high specificity were identified using deep 

sequencing (see Methods for more details).

Our findings are summarized in Figure 8. Of the 3,465 antibodies that we identified in two 

independent experiments, we first sought to identify sets of mutations that were most 

strongly correlated with significant enrichment for high specificity during selection. Our 

initial analysis led us to focus on sets of four mutations to maximize statistical significance. 

For example, we identified a set of four mutations (Y33F, R54T, G56D and Y102A in VH) 

that shows strong correlation between antibody variants with such mutations and their 

enrichment ratios during selection for low polyspecificity (Spearman’s correlation 

coefficients of 0.81 for PSR and 0.83 for ovalbumin; Fig. 8A). Of the top ten sets of four 

mutations we identified, all of them included a mutation that introduces negative charge, 

further suggesting that negative charge is linked to increased antibody specificity (Fig. 8B 

and Table S15). It is also notable that most (80%) of top sets of mutations involved 

eliminating at least one Arg in the CDRs. In total, we identified 13 sets of four mutations 

and 161 antibodies with such mutations that are expected to possess high specificity (see 

Methods for more details).

We next sought to test the ability of our chemical rules to correctly predict antibodies with 

high specificity (Fig. 8C). Strikingly, despite observing thousands of antibodies with 0–7 

chemical flags (2,370 antibodies) and 8–12 flags (1,095 antibodies with 8 chemical flags) in 

our input library, our rules correctly identified almost all selected antibodies with high 

specificity (160 of 161 antibodies with <8 chemical flags, p-value of 10−26). Moreover, we 

find that antibodies with 0–3 flags were much more strongly enriched than even those with 

4–7 flags (p-value <10−38), which further suggests that our predictions of specificity are 

strongest for antibodies with 0–3 chemical flags. More generally, we find that the 

distributions of the number chemical flags for the selected mAbs with high specificity 

relative to the input library are significantly different (p-value of 10−8; Fig. 8D). These 

findings demonstrate how our chemical rules can be used to guide the design of antibody 

libraries that target sites involved in polyspecificity and facilitate the identification of 

antibody mutants with significant improvements in specificity.

DISCUSSION

Our findings provide a relatively simple yet powerful description of the overall specificity of 

monoclonal antibodies at physiological conditions. To the best of our knowledge, there are 

no prior methods for predicting the overall propensity of antibodies to interact non-

specifically with various types of molecules or themselves based simply on their primary 

structures and their corresponding sequence-based solvent accessibilities. Importantly, the 

conceptual framework that we have developed is able to explain many previous disparate 

findings and observations. Our finding that antibodies with high specificity have low levels 

of positively charged CDR residues is consistent with previous findings that increased levels 
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of positive charge in the CDRs and variable (VH and VL) regions are linked to poor antibody 

specificity2, 10, 19, 31–35 and pharmacokinetics10, 12, 34–38 as well as high viscosity in 

concentrated antibody solutions.39 Conversely, our finding that antibodies with high 

specificity have increased levels of negative charge in the CDRs is consistent with previous 

findings that increased levels of negative charge in antibody CDRs and variable regions are 

linked to high solubility and low aggregation propensity,5, 7, 8, 24, 25, 30, 40–42 low self-

association17 (although exceptions have been noted for mAbs with abnormal levels of 

negative charge41, 42) and favorable pharmacokinetics.12, 37, 38, 43 Moreover, our finding that 

antibodies with high specificity also have increased levels of polar CDR residues (e.g., Asn) 

is consistent with the fact that increased levels of polar residues in the CDRs are linked to 

increased antibody specificity31, 32 and improved pharmacokinetics.9 Our specificity rules 

capture multiple factors that govern the physicochemical properties of antibodies and 

simplify them into powerful guidelines for rapidly identifying mAbs that are expected to 

display favorable specificity, solubility and biodistribution.

What are implications of our chemical rules for generating and engineering antibodies with 

high affinity? Interestingly, the theoretical net charge of the CDRs (pH 7.4) of the mAbs 

with high specificity is near zero (−0.1±2.4) and more than half of them (61%) have 

positively charged CDRs. While mAbs with low specificity do have more positively charged 

CDRs on average than those with high specificity (1.8±2.7 for mAbs with low specificity vs. 

−0.1±2.4 for mAbs with high specificity), we do not expect that antigen-binding sites that 

are strongly negatively charged are likely to be generally compatible with high affinity 

binding. It is plausible that antibodies with CDR net charges near zero (pH 7.4) – and with 

appropriate amounts of non-charged hydrophilic and hydrophobic residues as predicted by 

our rules – may be most attractive for achieving both high affinity and specificity. 

Nevertheless, these speculative ideas await additional experimental and computational 

analysis.

Although our findings generally suggest that increased negative charge in antibody variable 

regions is linked to reduced non-specific and self-interactions, it is well established that 

over-enrichment in negative charge in antibody variable regions is also linked to increased 

self-association and viscous solution behavior at high antibody concentrations.41, 44–48 One 

obvious difference between this work and previous studies related to viscous antibodies are 

the solution conditions, as we analyzed antibody self-interaction measurements at 

physiological conditions (PBS at pH 7.4) and previous studies have evaluated antibody 

viscosity measurements in typical formulation conditions (e.g., pH 5–6 without salt or with 

low salt concentrations). Another notable difference is that the antibodies with high 

specificity in our analysis have modest amounts of negative charge – based on their 

theoretical net charge calculated at pH 7.4 – in their VH (0.8±1.9), VL (0.8±2.0), Fv 

(1.5±2.5), heavy chain CDRs (−0.6±1.7), light chain CDRs (0.6±1.9) and overall CDRs 

(−0.1±2.4; Table S16). Moreover, the isoelectric points of the variable regions of the 

antibodies with high specificity in our analysis are relatively typical of antibodies in general, 

as evidenced by the values for VH (7.4±1.4), VL (7.5±1.4) and Fv (7.7±1.3; Table S16).

Caution should be used when interpreting our predictions of specificity for antibodies with 

variable region charges and isoelectric points that fall beyond the range of values represented 
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in our study. For example, omalizumab is viscous at high antibody concentrations (e.g., ~40 

cP at ~120 mg/mL in histidine buffer at pH 6.0).41, 42, 49 Notably, this mAb has abnormal 

charge properties relative to those for the high specific antibodies in this study, including a 

more negatively charged VL (−3.9 relative to 0.8±2.0 at pH 7.4) and light chain CDRs (−4.9 

relative to 0.6±1.9 at pH 7.4) as well as a lower VL isoelectric point (pI of 4.7 relative to 

7.5±1.4). Moreover, mutations in the light chain CDRs of omalizumab (D28A, D30N, 

H92Y, E93T, D94T and Y96P in VL) that reduce the amount of negative charge (−1.0 

relative to −4.9 for wild type at pH 7.4) and increase the isoelectric point of VL (pI of 6.3 

relative to 4.7 for wild type) to be within the range of the high specific antibodies in this 

study significantly reduce the viscosity (<10 cP at ~120 mg/mL).41, 42, 50 Future work is 

needed to better define limits on the amount of negative charge in antibody variable regions 

that is favorable for specificity without promoting attractive electrostatic interactions that are 

unfavorable for high concentration viscoelastic behavior.

There are also multiple factors to consider when interpreting and applying our findings. We 

defined the limits of sequence space for our analysis in Table S5 based on the maximum and 

minimum numbers of each type of amino acid (weighted by their relative solvent 

accessibilities) in the CDRs and variable regions of preclinical and clinical-stage antibodies 

in our training sets. It is expected that the performance of our rules will be reduced for 

antibodies whose amino acid compositions and site-specific solvent accessibilities are 

outside the range of chemical and structural diversity that we explored in this analysis. 

Encouragingly, we find that the accuracy of our specificity predictions for non-specific 

binding (PSR assay) is weakly impacted by reducing the similarity of antibodies in our test 

set relative to the those in our training set (Fig. S7). However, the accuracy of such 

predictions is expected to decrease as the antibodies to be analyzed become more dissimilar 

relative to those in our training sets. Second, the antibody specificity measurements 

considered in this work were obtained using common antibody constant regions (IgG1 

isotype with corresponding kappa and lambda light chains) regardless of the actual antibody 

isotype.14, 15 This is notable because it is well known that isotype differences between 

antibodies can lead to differences in self-association and related properties such as solubility 

and viscosity.14, 48, 51–54 The effects of different antibody isotypes on the physicochemical 

properties of mAbs have not been addressed in our specificity analysis and will need to be 

addressed in future work.

It is also important to consider the impact of the methods we used to calculate solvent-

accessible surface areas on our findings. We employed a published machine learning method 

that only requires antibody variable region sequences,16 which is particularly convenient for 

antibodies of unknown structure. Nevertheless, it is important to note that this machine 

learning method yields slightly different models each time it is trained, which leads to small 

differences in the predicted solvent accessibility values and the resulting chemical rule 

values. For example, we compared two different models generated from this machine 

learning method and observed minor differences in the number of chemical flags for the 

clinical-stage antibodies (Table S17). This results in minor changes in the accuracy of the 

predictions for the specificity of the clinical-stage antibodies (e.g., 82–85% accuracy). We 

recommend not only using the same machine learning method, but also the same compiled 

model that we used in this work to calculate solvent accessibilities for evaluating the number 
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of chemical flags for additional antibodies. It is also notable that the machine learning 

method is mostly trained on antibodies with kappa light chains, and caution should be used 

when applying this method to antibodies with lambda light chains. More generally, our 

training sets of non-specific and self-interaction measurements primarily contained 

antibodies with kappa light chains given that most clinical-stage antibodies have kappa light 

chains (91% of the clinical-stage antibodies in this study), and our chemical rules are 

expected to be most useful for predicting the specificity of antibodies with kappa light 

chains.

We expect that our findings will immediately impact therapeutic antibody development in 

multiple ways. First, our specificity rules will serve as valuable design guidelines for 

generating antibody libraries with drug-like specificity. This is particularly important for 

both in vitro antibody discovery and affinity maturation given that it is only possible to 

sample an extremely small fraction of maximum CDR chemical diversity, and it is critical to 

focus the CDR diversity on combinations of residues that give rise to drug-like properties. 

We also expect that our specificity rules will provide powerful guidelines for both 

identifying antibody candidates with high specificity during early antibody discovery and re-

engineering existing antibodies with drug-like properties later in the optimization and 

development process. More generally, we expect that our novel conceptual framework – 

which can be readily expanded in the future to include additional structural information and 

incorporate additional biophysical data sets – will accelerate the generation of potent 

antibody therapeutics with drug-like properties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of the methodology used to evaluate the molecular determinants of antibody 

specificity for monoclonal antibodies (mAbs). Each mAb received up to five physical flags 

based on exceeding limits for two self-interaction tests (AC-SINS >11.8 nm and CSI >0.01 

response units) and three non-specific interaction tests (PSR >0.27, ELISA >1.9 signal/noise 

and BVP >4.3 signal/noise). The experimental data and limits were reported in a previous 

publication.14 The statistical significance was evaluated for the ability of the chemical rules 

to selectively flag mAbs with low specificity (≥2 physical flags) relative to mAbs with high 

specificity (<2 physical flags). The chemical rules were filtered using non-specific 

interaction measurements for an additional set of 424 preclinical mAbs to identify the most 

robust and general chemical rules.
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Figure 2. 
Chemical rules for selectively flagging mAbs with low specificity that limit the maximum 

allowable number of solvent-accessible residues in antibody variable regions. Each chemical 

rule is a maximum limit on the summed counts of different types of amino acids in the 

CDRs weighted by their relative solvent accessibilities. (A) Most selective maximum 

chemical rule for identifying mAbs with low specificity. mAbs with >5.0 Gln, Arg, His, Pro, 

Met, Leu, Tyr and Trp residues – weighted by their solvent exposures – in five CDRs (heavy 

chain 1, 2 and 3 and light chain 2 and 3) are flagged. On the left, the percentage of mAbs 

flagged with high and low specificity are reported for entire set (137 mAbs). In the middle, 

the distribution of the percentage of mAbs with ranges of chemical flag values are reported. 

On the right, the average adjusted accuracy of the chemical rule for flagging low specific 

antibodies relative to high specific ones is reported for the training and test sets. (B) 

Summary of the ten most selective chemical rules that limit the maximum sum of particular 

Zhang et al. Page 21

Mol Pharm. Author manuscript; available in PMC 2021 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



types of residues. The bolded value of each rule is the most statistically significant one when 

evaluated for the entire panel of clinical-stage mAbs, while the range of values reflect those 

that met the constraints used during cross validation. In (A) and (B), the contributions of the 

residues to each rule are reported in terms of their contributions to the differences in the 

observed rule values for mAbs with low specificity (40 clinical-stage mAbs) relative to those 

with high specificity (97 clinical-stage mAbs). The relative contributions of each amino acid 

are represented as bold and underlined blue font (most important, >30%), regular and 

underlined blue font (important, 10–30%), black font (minor importance, 0–10%) and grey 

font (least important, <0%). The negative contributions of some residues are due to the fact 

that the contributions are calculated for the entire set of clinical-stage mAbs (137 mAbs) and 

not only for those mAbs flagged by each rule. mAbs with low and high specificity are 

defined as described in Fig. 1. The p-values were calculated using a 2×2 contingency table 

(Fisher’s exact test), and the reported accuracies are adjusted to account for the different 

numbers of mAbs with high (97) and low (40) specificity. In (A), the average adjusted 

accuracies are calculated based on the training (80%) and test (20%) sets for each of the ten 

splits of the training and test sets. In (B), the adjusted accuracies are calculated for the entire 

set of 137 clinical-stage mAbs using the best flag values.
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Figure 3. 
Chemical rules for selectively flagging mAbs with low specificity that limit the minimum 

allowable number of solvent accessible residues in antibody variable regions. Each chemical 

rule is a minimum limit on the summed counts of different types of amino acids in the CDRs 

weighted by their relative solvent accessibilities. (A) Most selective minimum chemical rule 

for identifying mAbs with low specificity. mAbs with <11.6 Asn, Asp, Leu, Ala, Pro, Met, 

His, Glu and Gln residues – weighted by their solvent exposures – in VH are flagged. The 

graphs are presented as described in Fig. 2. (B) Summary of the ten most selective chemical 

rules that limit the minimum sum of particular types of residues. In (A) and (B), the 

contributions of the residues to each rule are reported are described in Fig. 2 except that the 

differences in the observed rule values are calculated for high specific mAbs relative to low 

specific mAbs. mAbs with low and high specificity are defined as described in Fig. 1. The p-

values and accuracies were calculated as described in Fig. 2.
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Figure 4. 
Combined chemical rules display high selectivity for identifying clinical-stage mAbs with 

low specificity. (A) Antibodies with predicted high specificity are required to be flagged by 

<8 of 12 rules. The contributions of the residues to each rule are reported as described in 

Figs. 2 and 3. (B) The combined rules selectively flag mAbs with low specificity (⩾2 

physical flags) and display similar average adjusted accuracies for the training and test sets. 

The experimentally determined antibody specificities – as judged by five measurements of 

non-specific and self-interactions – are defined as described in Fig. 1. The p-values and 

adjusted accuracies were calculated as described in Fig. 2, and the area under the curve 

(AUC) is also reported.
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Figure 5. 
Distributions of the number of chemical flags for clinical-stage mAbs with high and low 

specificity. The chemical flags are defined in Fig. 4A. The experimentally determined 

antibody specificities – as judged by five measurements of non-specific and self-interactions 

– are defined as described in Fig. 1. mAbs with high specificity are those with <2 physical 

flags and mAbs with low specificity are those with ≥2 physical flags. The adjusted 

accuracies are calculated as described in Fig. 2.
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Figure 6. 
Comparison of the average rank for clinical-stage mAbs based on five measures of non-

specific and self-interactions and the corresponding number of physical and chemical flags. 

(A) The average rank of mAbs with <2 physical flags (97 of 137 mAbs, 71% of mAbs) and 

⩾2 physical flags (40 of 137 mAbs, 29% of mAbs) were calculated based on their ranks in 

five assays of self- and non-specific interactions. (B, C) The average experimental rank of 

mAbs compared to (B) <8 versus ⩾8 chemical flags and (C) the number of chemical flags. 

In (C), three regions are shown, one with predicted high specificity (0–3 chemical flags), a 

second one with intermediate specificity (4–7 chemical flags) and a third one with low 

specificity (8–12 chemical flags).
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Figure 7. 
Combined chemical rules strongly differentiate between mAbs with different levels of non-

specific and self-interactions for an independent set of antibodies. (A) Non-specific 

interactions (ELISA) and (B) self-interactions (AC-SINS) were measured for 39 mAbs that 

were not included in the training and test sets used to generate the combined chemical rules. 

The p-values were calculated using a two sample Anderson-Darling test. In (A), the 

difference between ⩽3 chemical flags and 4–7 chemical flags is not significant.
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Figure 8. 
Design of Fab sub-libraries of emibetuzumab guided by the combined chemical rules and 

evaluation of selected mutants with improved antibody specificity. The VH domain of 

emibetuzumab was mutated at eight solvent-exposed sites (Y33, R50, R54, R55, G56, A95, 

W97 and Y102) in the three heavy chain CDRs that were flagged by the maximum chemical 

rules. The mutations sampled the wild-type residue as well as five mutations that are 

predicted to reduce the number of chemical flags. The libraries were constructed as single-

chain Fab fragments (scFabs) on yeast, sorted for non-binding to two polyspecificity 

reagents [PSR and ovalbumin (OVA)], and evaluated via deep sequencing. (A) Enrichment 

ratios for antibody variants with a set of four mutations (F33, T54, D56 and A102 in VH) 

relative to antibody variants with wild-type residues at the same positions (Y33, R54, G56 

and Y102 in VH) for two different polyspecificity reagents. The curves (logistic regressions) 

are guides to the eye. (B) Top ten sets of four mutation combinations that are most strongly 
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correlated with reduced binding to polyspecificity reagents and increased specificity. (C, D) 

The (C) number and (D) percentage of mAb variants selected with high specificity as a 

function of the number of chemical flags relative to the corresponding values for the input 

library. In (A), the mAbs included in the wild-type or mutant groups are only required to 

have wild-type or mutant residues at the four evaluated sites and can have either wild-type or 

mutant residues at the other four sites. Moreover, the p-values are for the Spearman’s 

correlation coefficients (ρ). In (C), the p-values for the comparisons of the number of mAbs 

were calculated using a 2×2 contingency table (Fisher’s exact test). In (D), the p-value for 

comparing the distributions of mAbs was calculated using paired sample t-test (two tailed).
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