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ABSTRACT

Objective: To illustrate the problem of subpopulation miscalibration, to adapt an algorithm for recalibration of

the predictions, and to validate its performance.

Materials and Methods: In this retrospective cohort study, we evaluated the calibration of predictions based on

the Pooled Cohort Equations (PCE) and the fracture risk assessment tool (FRAX) in the overall population and in

subpopulations defined by the intersection of age, sex, ethnicity, socioeconomic status, and immigration his-

tory. We next applied the recalibration algorithm and assessed the change in calibration metrics, including cali-

bration-in-the-large.

Results: 1 021 041 patients were included in the PCE population, and 1 116 324 patients were included in the

FRAX population. Baseline overall model calibration of the 2 tested models was good, but calibration in a sub-

stantial portion of the subpopulations was poor. After applying the algorithm, subpopulation calibration statis-

tics were greatly improved, with the variance of the calibration-in-the-large values across all subpopulations re-

duced by 98.8% and 94.3% in the PCE and FRAX models, respectively.

Discussion: Prediction models in medicine are increasingly common. Calibration, the agreement between pre-

dicted and observed risks, is commonly poor for subpopulations that were underrepresented in the develop-

ment set of the models, resulting in bias and reduced performance for these subpopulations. In this work, we

empirically evaluated an adapted version of the fairness algorithm designed by Hebert-Johnson et al. (2017)

and demonstrated its use in improving subpopulation miscalibration.

Conclusion: A postprocessing and model-independent fairness algorithm for recalibration of predictive models

greatly decreases the bias of subpopulation miscalibration and thus increases fairness and equality.
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INTRODUCTION

Multivariable predictive models are becoming ever more common in

modern medicine.1 These models are used to evaluate a personal

risk for outcomes such as cardiovascular disease,2,3 osteoporotic

fractures,4,5 or lung cancer6 conditional on patients’ medical charac-

teristics and history. Health services are constantly evaluated for

aspects of ethics and fairness,7–9 and prediction models should be

subjected to the same standards.10
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Biases that result in unfairness in prediction models have multi-

ple causes. In some domains, model unfairness may arise when a

prediction model learns to emulate a bias embedded in its training

data.10–12 Risk factors or outcomes that are misdiagnosed or misla-

beled for specific subpopulations can be perpetuated by the mod-

els.11,13,14 As 1 example, if women were historically underdiagnosed

with myocardial infarction,15 a model trained on such data could

underestimate the risk for this sex group. As another example, an al-

gorithm that recommends which patients should receive additional

help presents bias against Black patients, as it mimics a trend in ret-

rospective data in which Black patients utilized less healthcare.12

A different source of bias and unfairness can stem from the

modeling process itself.10 Prediction algorithms are designed to pro-

duce an average accurate prediction on the entire training cohort. It

is thus well established that subpopulations which are underrepre-

sented in that cohort often receive nonaccurate predictions.11,13 For

example, the generalizability of the Framingham heart disease pre-

dictor, which was trained mostly on White, middle-class males, was

questioned for this reason.16,17 To address this bias, newer and

more ethnically varied cohorts such as the Multi-Ethnic Study of

Atherosclerosis (MESA) were assembled.18 Alternatively, when the

American College of Cardiology and the American Heart Associa-

tion published their updated cardiovascular risk prediction model,

the Pooled Cohort Equations (PCE), they used a mix of cohorts on

top of the original Framingham cohort and evaluated the risk sepa-

rately for males and females, Whites, and African-Americans.3,19

Correcting the tendency of prediction models to disregard minor-

ity groups by recruiting dedicated cohorts with purposely over-

sampled subpopulations is a feasible solution mainly when these

subpopulations are defined by a single attribute, such as sex or so-

cioeconomic status. When we aspire to simultaneously regard more

such attributes that are considered relevant for defining subpopula-

tions in the fairness context, the number of subpopulations that are

defined by the intersection of multiple such attributes (referred to as

“protected variables”) grows exponentially, and this solution

quickly becomes intractable (Figure 1). An alternative option, of

training a different model for every subpopulation, leads to each

model leveraging only a fraction of the total training population

data. This may reduce model performance, particularly in the

smaller subpopulations.

There is no single accepted metric to measure prediction models’

accuracy between subpopulations. Calibration, which measures the

accuracy of absolute risk estimates, is often considered an important

model property in medicine,20 where decisions are often made using

absolute risk thresholds and an inaccurate evaluation of risk is po-

tentially detrimental to patient health.20 For example, an absolute

risk of over 7.5% for cardiovascular events in the PCE warrants

more intensive treatment of blood cholesterol.3 If the risk prediction

for PCE is miscalibrated for some minority groups, the direct impli-

cation is that individuals in these subpopulations will not be classi-

fied correctly to those that need such treatment and those that do

not. When utilizing prediction models as part of clinical decision

support systems (CDSSs) in the electronic medical record, it is thus

crucial to ensure that the models are well calibrated for subpopula-

tions to ensure optimal decision-making.

H�ebert-Johnson et al21 designed an algorithm to overcome the

challenge of simultaneously correcting calibration for an exponen-

tial number of subpopulations using a postprocessing method. In

this algorithm, predictions of subpopulations with miscalibrated

scores are repeatedly “nudged” in the right direction until miscali-

bration within all subpopulations is beneath a predefined threshold.

This process is agnostic to the algorithm used to create the predic-

tions, which could range from a simple logistic regression to a deep

neural network. The required inputs include the prediction scores,

the correct outcome classification, and the values of all protected

variables for each subject. As this algorithm attempts to simulta-

neously calibrate all subpopulations to the extent defined by a toler-

ance parameter, with a guarantee of convergence to a global

minimum, the same effort to provide good calibration is devoted to

all subpopulations.

An emerging theoretical literature is proposing novel algorithms

for guaranteeing unbiased and fair predictions, and there is a press-

ing need to evaluate these algorithms empirically.10 The objective of

this study was to perform what we believe is the first real-world,

large-scale empirical evaluation of the suggested fairness algo-

rithm21 on 2 broadly used prediction models, the PCE for cardiovas-

cular events prediction,3 and the FRAX model for osteoporotic

fractures prediction.4 To accomplish this we: 1) evaluated the extent

of miscalibration of the PCE and FRAX on subpopulations of mem-

bers in a large integrated payer–provider healthcare organization in

Israel; 2) adapted and implemented the postprocessing fairness algo-

rithm on predictions created by both models; and 3) evaluated the

resulting calibration in the different subpopulations together with

the models’ other overall performance measures.

MATERIAL AND METHODS

The setting
This is a retrospective cohort study based on electronic medical re-

cord data. The study population is taken from the insured popula-

tion of Clalit Health Services (CHS), a large healthcare organization

operating in Israel. CHS is both an insurer and a provider, directly

providing primary and specialist care, imaging, labs, hospitalization,

and other services. CHS has been fully digitized since 2000 and has

a low dropout rate of 1%–2% yearly, allowing long term follow-up

of patients.

Variables used in this study were extracted from the data ware-

house of CHS. Variables with straightforward definitions (eg, blood

pressure) were extracted as they appear in the raw data. Variables

which required more elaborate definitions (eg, hypertension

treatment, osteoporotic fractures) were defined based on a combina-

Figure 1. The resulting number of subpopulations when trying to consider 5

protected variables: ethnicity, sex, age-group, socioeconomic status, and im-

migration status, resulting in a total of 360 subpopulations.
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tion of International Classification of Diseases version 9 codes and

accompanying diagnostic text phrases. A complete definition of all

study variables, including codes used, is included in Supplementary

Table 1. Missing data in the study population were imputed once us-

ing MICE.22

The models
The postprocessing calibration algorithm was evaluated on 2 base-

line models: the American Heart Association/American College of

Cardiology 2013 Pooled Cohort Equations (PCE)3 and the Univer-

sity of Sheffield fracture risk assessment tool (FRAX).4

The PCE model predicts primary cardiovascular disease for

patients aged 40–79 of both sexes, with no previous cardiovascular

disease (myocardial infarction, stroke, heart failure, percutaneous

coronary intervention, coronary artery bypass, and atrial fibrilla-

tion). Predictors used in the model include known cardiovascular risk

factors such as age, sex, total cholesterol, smoking, and diabetes. The

algorithm is a Cox proportional hazards survival analysis regression

model, with the baseline hazard and the coefficients of the indepen-

dent variables provided to allow calculation of 10-year risk.

To generate a population for the PCE model, patients matching

the inclusion criteria were selected. Predictors were extracted from

data recorded during the 3 years prior to an index date of January 1,

2008, and patients were followed until January 1, 2018. Only

patients with at least 1 year of continuous membership prior to the

index date were included to ensure the existence of the required pre-

dictors.

FRAX is a model to predict osteoporotic fractures for patients

aged 50–90 of both sexes. The model allows for prediction of either

hip fractures or major osteoporotic fractures (a composite of hip,

vertebral, distal radius, and proximal humerus fractures). Predictors

used in the model include known osteoporosis risk factors such as

age, corticosteroids use, previous fractures, and diseases causing sec-

ondary osteoporosis. The model itself is a points-based risk score,

with the different predictors summing to a score that is then trans-

formed into a probability for an osteoporotic fracture over a follow-

up period of 10 years.

To generate the population for the FRAX model, patients of the

appropriate age were indexed at January 1, 2012. Predictors were

extracted in the period prior to the index date, and patients were

monitored for the outcome over a period of 5 years. We used a 5-

year follow-up period, instead of the 10-year periods originally used

in the model, to maximize the availability of data. It has previously

been shown that in our dataset5 relevant outcomes occur at a con-

stant linear pace, justifying this decision.

In both models, prior to the application of the postprocessing al-

gorithm, the original predictions were first linearly recalibrated on

the training set. This was done in order to adjust the models to the

local outcome rate and ensure a reasonable starting point for models

that were developed on an external population. Recalibration was

performed as described by Steyerberg23: logits of each model’s pre-

diction were used as the sole predictor in a logistic regression trained

on the training set outcomes, and the intercept and slope from this

model were then used to linearly adjust the predictions on the

test set.

The algorithm
The postprocessing algorithm evaluated in this study is an adapta-

tion of an algorithm first proposed by Hebert-Johnson et al.21 The

algorithm receives as input a training population for which there

exists an arbitrary predictor, a vector of outcome labels, and a set of

protected variables for which we wish to ensure fairness. The output

of the algorithm is a postprocessed predictor meant to ensure cali-

bration over all subpopulations defined by the protected variables.

The original algorithm does not fully define all that is required for

an actual implementation. To apply the algorithm, we first situated

it in a train/test framework. We then proceeded to make the practi-

cal decisions required for the actual implementation, including the

list of protected variables, the minimal subpopulation size, the mini-

mal allowed miscalibration, etc. Whenever possible, these decisions

were based on sensitivity analyses.

The protected variables chosen for this study included age, sex,

immigrant status, ethnicity, and socioeconomic status. Age was

stratified in 10-year bins. Ethnicity was specified as is customary in

Israel, based on grandparents’ birthplace. Socioeconomic status was

discretized into 3 bins using an internal CHS categorization based

on the location of the patients’ primary care provider.

The algorithm operates by iterating over the different prediction

deciles of the different subpopulations in random order, finding

occurrences where the difference between the average of the pre-

dicted risk and the observed outcome is larger than a predefined tol-

erance hyperparameter, and correcting (“nudging”) the predictions

so as to equalize the 2 averages. This iteration proceeds until no fur-

ther prediction deciles in any subpopulation have a larger-than-

allowed difference (pseudocode for the algorithm is provided in Fig-

ure 2). Over the run of the algorithm, these corrections are listed,

and the complete list can then be used as a permanent postprocess-

ing step for the baseline predictor. The algorithm has 2 important

attributes. First, it is guaranteed to converge in a time that is propor-

tional to the size of the smallest subpopulation and the allowed tol-

erance (Lemma 3.2 in the original paper21) Second, the resulting

Figure 2. Pseudocode of the fairness algorithm.

Pseudocode for the recalibration algorithm developed by Hebert-Johnson

et al.21
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model has generalization guarantees when used with a new popula-

tion (Corollary 3.4 in the original paper21).

Another hyperparameter that needs to be set prior to application

of the fairness algorithm is the smallest allowed size of subpopula-

tions, which affects both running time and eventual generalization

performance of the results—subpopulations that are too small will

lead to a longer running time and degraded test set performance

(“overfitting”). A sensitivity analysis was performed to decide on

the minimal subpopulation size by testing different options, count-

ing the number of nudges performed, and choosing the minimal sub-

population size at which the variance metrics began converging.

Application and evaluation of the algorithm
Following calculation of the 2 model populations predictions, each

population was divided into a training and test set in a 70/30 split.

The training set was linearly recalibrated, as described above, and

the postprocessing algorithm then ran. Coefficients from the recali-

bration procedure and the corrections from the algorithm were then

applied to the test set, which itself was never seen by the algorithm.

The new test set predictions were used for evaluation in comparison

to the original predictions.

The test set was scored for overall performance by the area under

the receiver operating characteristic curve, the area under the

precision-recall curve, and the Brier score. Calibration was assessed

over each subpopulation by calibration-in-the-large (CITL; the dif-

ference between the mean observed and the mean predicted risk,

expressed as an odds ratio23) and calibration slope (CS; the coeffi-

cient of the logits of the predictions when used as a sole variable in a

logistic regression model),23 that should both equal 1 in optimal cal-

ibration. Two-hundred bootstrap repetitions were performed by

resampling the test set, and the percentile method used to derive

95% confidence intervals.

Calibration plots for the entire test set (“global”) and for subpo-

pulations were drawn as detailed by Steyerberg.23 Predictions on the

X axis were plotted against the observed outcome on the Y axis, and

a smoothed line was matched to the data. In this setup, optimal cali-

bration is represented as a diagonal 45� line.

Two additional sensitivity analyses were performed. The first

sensitivity analysis evaluates a potential alternative for improving

calibrations in all subpopulations. In this analysis, the performance

of training a separate model for each subpopulation is evaluated.

This analysis was performed using the FRAX population. Because

the subpopulations are overlapping, this necessitated training the

models only on nonoverlapping “leaves”, where all the protected

variables are assigned values. The models trained were logistic

regressions using the same variables as the baseline model. Scoring

was performed as described above. The second analysis evaluates

the sensitivity of the recalibration algorithm to the baseline outcome

rate. This analysis makes use of the PCE population but with an out-

come definition that includes all forms of coronary heart disease and

heart failure. These outcomes are used in other cardiovascular dis-

ease prediction models,24,25 though not in the PCEs.

The algorithm was programmed in the Julia programming lan-

guage, version 1.0.1.

Ethics approval
This work was approved by the institutional review board of CHS.

RESULTS

Study population
The PCE population included 1 021 041 patients that met the inclu-

sion criteria, with 47 595 (4.66%) cardiovascular events docu-

mented during follow-up. The FRAX population counted 1 116 324

patients, with 85 779 (7.68%) events occurring during follow-up.

The distribution of the different variables in both study populations,

with the proportions of missing data, is detailed in Table 1.

The protected variables were defined to be age, sex, socioeco-

nomic status, ethnicity, and immigrant status. The results of the sen-

sitivity analysis to determine the fairness algorithm’s minimal

subpopulation size hyperparameter are presented in Supplementary

Table 2. The analysis shows the strong dependence of the running

time (expressed as number of nudges) on the minimal subpopulation

size. It also shows that the subpopulation size at which the calibra-

tion variances between subpopulations began to converge was 5000

patients, which was thus chosen as the selected minimal subpopula-

tion size. This resulted in 399 and 422 subpopulations for the PCE

and FRAX test sets, respectively. A complete list detailing the size

and characteristics of each subpopulation is included in Supplemen-

tary Table 3.

Baseline model performance before applying the

fairness algorithm
To adjust the models to local outcome rates, the logits of the PCE

predictions were multiplied by 0.65 and shifted by �1.38, and the

logits of the FRAX predictions were multiplied by 1.02 and shifted

by 0.79. Following this adjustment, both models presented good

global calibration on the entire study population both visually (as

noted in the calibration plots on Figure 3) and numerically, with

both the CITL and the CS approximating 1.0; CITL was 1.01 and

0.99 for PCE and FRAX, respectively. The CS was 1.01 and 1.00

for PCE and FRAX, respectively.

However, calibration in subpopulations was poor (Table 2),

with 20% of the subpopulations suffering substantial overestima-

tion of the risk, with CITL values over 1.49 for PCE and 1.25 for

FRAX. In addition, 20% of the subpopulations suffered substantial

underestimation of the risk with CITL values under 0.81 for PCE

and 0.87 for FRAX. The variance of the CITL and CS values be-

tween the subpopulations in both models was substantial (0.50 and

0.07 for CITL and 1.18 and 0.48 for CS in the PCE and FRAX pop-

ulations, respectively).

Three specific subpopulations were selected to illustrate the

problem of subpopulation miscalibration despite adequate global

calibration. Calibration plots for these subpopulations, before

application of the fairness algorithm, are displayed in Figure 4 and

demonstrate miscalibration for all 3 subpopulations with CITL

values of 1.25, 0.75, and 0.86 and CS values of 1.57, 0.82, and

1.61, respectively.

Fairness algorithm evaluation
The allowed tolerance hyperparameter was set to 1% based on do-

main expertise (considering which calibration deviation is clinically

significant). With these settings, the algorithm ran an average of 30

minutes and performed 827 and 918 corrections on the PCE and

FRAX subpopulations, respectively, before all subpopulations were

within the predefined tolerance.

Measures to reflect the model calibration across subpopulations,

before and after application of the fairness algorithm, are presented

in Table 2. Results illustrate that both CITL and CS approached
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their optimal values of 1.0 after application of the algorithm. The

average CITL across subpopulations improved from 1.25 to 1.04 in

the PCE and from 1.08 to 1.00 in the FRAX model. The average CS

across subpopulations improved from 1.74 to 0.88 in the PCE and

from 1.41 to 0.91 in the FRAX model. In addition, the variance in

calibration between subpopulations was greatly reduced, with a re-

duction of 94.3%–98.8% in the CITL values, and a reduction of

97.1%–98.4% in the CS values. Discrimination performance meas-

ures such as area under the receiver operating curve (0.730!0.736

in the PCE model and 0.712!0.714 in the FRAX model), area un-

der the precision-recall curve (0.109!0.116 in the PCE model and

0.180!0.183 in the FRAX model) and Brier score (0.043!0.043 in

the PCE model and 0.068!0.068 in the FRAX model) were rela-

tively unaffected.

Calibration plots for 3 selected subpopulations after application

of the fairness algorithm are also presented in Figure 4 and illustrate

Figure 3. Global calibration plots for the PCE and FRAX study populations, plotting the observed outcomes against the predicted risk for the entire PCE and FRAX

test sets. A diagonal red line represents perfect calibration. A smoothed line is fit to the curve, and points are drawn to represent the averages in 10 discretized

bins. Histograms are drawn under the curves to illustrate the distribution of predictions.

Abbreviations: PCE – pooled cohort equations; FRAX – fracture risk assessment tool.

Table 2. Model performance measures across subpopulations: before and after fairness algorithm processing

PCE FRAX

Performance measure Before After Before After

Expectation across subpopulations [CITL] 1.247 (1.227–1.277) 1.039 (1.025–1.058) 1.076 (1.065–1.089) 1.001 (0.992–1.012)

Variance across subpopulations (CITL) 0.500 (0.450–0.633) 0.006 (0.006–0.013) 0.070 (0.064–0.082) 0.004 (0.003–0.006)

CITL 20th percentile 0.805 (0.787–0.824) 0.983 (0.965–0.992) 0.865 (0.856–0.882) 0.962 (0.945–0.967)

CITL 50th percentile 1.068 (1.043–1.087) 1.019 (1.005–1.036) 1.004 (0.991–1.018) 0.997 (0.987–1.006)

CITL 80th percentile 1.492 (1.453–1.565) 1.090 (1.071–1.119) 1.249 (1.237–1.285) 1.034 (1.028–1.058)

Expectation across subpopulations [CS] 1.739 (1.698–1.781) 0.876 (0.855–0.898) 1.414 (1.377–1.449) 0.906 (0.884–0.927)

Variance across subpopulations (CS) 1.179 (1.048–1.382) 0.019 (0.018–0.030) 0.484 (0.434–0.560) 0.014 (0.014–0.023)

CS 20th percentile 0.884 (0.846–0.907) 0.772 (0.738–0.798) 0.835 (0.800–0.851) 0.819 (0.786–0.843)

CS 50th percentile 1.280 (1.235–1.322) 0.883 (0.866–0.910) 1.238 (1.151–1.276) 0.913 (0.898–0.933)

CS 80th percentile 2.885 (2.683–2.952) 0.969 (0.956–1.01) 2.027 (1.924–2.135) 0.982 (0.973–1.014)

Area Under the Receiver Operating Curve 0.730 (0.727–0.733) 0.736 (0.734–0.739) 0.712 (0.710–0.715) 0.714 (0.712–0.716)

Area Under the Precision-Recall Curve 0.109 (0.107–0.111) 0.116 (0.114–0.119) 0.180 (0.177–0.183) 0.183 (0.180–0.185)

Brier Score 0.043 (0.043–0.044) 0.043 (0.042–0.043) 0.068 (0.068–0.069) 0.068 (0.067–0.068)

Note: Values are point estimates and 95% confidence intervals, derived via the percentile bootstrap method with 200 repetitions.

Abbreviations: CITL, calibration in the large; CS, calibration slope; FRAX, fracture risk assessment tool; NA, not applicable; PCE, pooled cohort equations.
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a large improvement in calibration. Similar plots for all other subpo-

pulations are included in Supplementary Figure 1.

Figure 5 demonstrates the CITL values for both models, before

and after application of the algorithm, over all subpopulations.

Figure 5a and 5b demonstrate the distribution of CITL values using

a density plot and show the distribution converging around the ideal

CITL value of 1.0. Similarly, the 20th and 80th percentiles of the

CITL improved from 0.81 and 1.49 to 0.98 and 1.09 in the PCE

model and from 0.87 and 1.25 to 0.96 and 1.03 in the FRAX model

(Table 2). Figure 5c and 5d demonstrate CITL values of specific sub-

populations on a log scale (in order to normalize the deviations

above and below the ideal value). The figures illustrate improvement

in calibration across the subpopulations, with the CITL approaching

its optimal value (0, due to the log scale) and the variance greatly re-

duced. It is important to note a gradual reduction in the improve-

ment of the CITL as subpopulation sizes grow smaller (moving right

on the X axis). Detailed performance metrics for each subpopulation

before and after applying the fairness algorithm are included in Sup-

plementary Table 3.

The sensitivity analysis in which a separate model was trained

for each nonoverlapping subpopulation is included in Supplemen-

tary Table 4. Using this method, the variance in the FRAX CITL

and CS was 0.057 and 0.290, respectively. This is an increase of sev-

eral orders of magnitude compared to the recalibration algorithm.

The sensitivity analysis that uses a different and more common out-

come for the PCE population is included in Supplementary Table 5.

In this population, which has an outcome rate that is more than 3

times the original rate (15.2% vs 4.7%), postprocessing CITL and

CS variances were 0.001 and 0.016, respectively. These values are

very similar to the results obtained using the less common outcome.

DISCUSSION

Main findings
In this work, we demonstrated that while 2 broadly used medical

prediction models showed good overall calibration after local ad-

justment, they are biased and miscalibrated when considering sub-

populations as defined by a set of 5 protected variables translating

to unfairness of the predictions for minority groups. We then con-

firmed that a postprocessing fairness algorithm designed to correct

this subpopulation miscalibration can be applied to a large patient

dataset and then successfully terminate with a large improvement in

subpopulation calibrations as well as a dramatic reduction in the

variance of the calibration between subpopulations. This improve-

ment in subpopulation calibration had no negative effect on overall

model discrimination.

A sensitivity analysis that examined the alternative solution of

training a different model for each nonoverlapping subpopulation

showed that such a method results in a large eventual variance of

the calibration metrics. This suggests that training a model for each

nonoverlapping subpopulation is not a viable solution to the prob-

lem of subpopulation miscalibration. A second analysis that aimed

to explore the sensitivity of the recalibration to the overall outcome

rate showed similar results to the population with a lower outcome

rate. This suggests that the recalibration algorithm is not particu-

larly sensitive to the outcome rate in these ranges.

Comparison to previous research
There is no single accepted metric for measuring bias and unfairness

in prediction models. The metric which was chosen to be optimized

in the evaluated fairness algorithm was calibration.20 It has been

Figure 4. Calibration plots of selected subpopulations of the FRAX model: before and after fairness algorithm processing, plotting the observed outcomes against

the predicted risk for 3 selected subpopulations. A smoothed line is fit to the curve, and points are drawn to represent the averages in 10 discretized bins. The red

diagonal 45� line marks perfect calibration.

Subpopulation 149: Sex group: Males; Ethnicity: Ashkenazi; SES: Medium; Immigration status: Any; Age group: Any; pre-CITL: 1.252; pre-CS: 1.567; post-CITL:

1.005; post-CS: 0.984

Subpopulation 220: Sex group: Males; Ethnicity: Any; SES: Any; Immigration status: Yes; Age group: 80–90; pre-CITL: 0.751; pre-CS: 0.821; post-CITL: 0.989;

post-CS: 0.817

Subpopulation 282: Sex group: Any; Ethnicity: Arab; SES: Low; Immigration status: Any; Age group: 60–69; pre-CITL: 0.860; pre-CS: 1.612; post-CITL: 1.039;

post-CS: 1.082

Abbreviations: CITL, calibration in the large; CS, calibration slope, FRAX, fracture risk assessment tool; SES, socioeconomic status.
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suggested that predictive model performance for protected subpopu-

lations should be evaluated by other measurements such as sensitiv-

ity, specificity, or positive predictive value,11 all of which are

threshold-specific measurements that depend on some balance of

true positives/negatives versus false negatives/positives. If a pre-

dicted outcome is associated with a single intervention threshold

that is 1) guaranteed not to change over time, 2) commonly ac-

cepted, and 3) evaluated separately from any other outcome, this

choice has merit. However, these assumptions do not usually hold.

First, intervention thresholds often change over time when guide-

lines are updated. Second, decision thresholds are often not widely

accepted since, as expected utility theory teaches us,26 optimal deci-

sion thresholds are individual for each patient and depend on weigh-

ing the utility the patient attributes to each outcome. Last, when

prediction results of multiple outcomes and/or adverse events need

to be weighed together to make a single medical decision,27 each

prediction must be considered as a continuous variable. For all these

reasons, it is essential that the predicted risk be accurately assessed

throughout the risk range.20 Since the fairness algorithm evaluated

in this study corrects the calibration of predictions throughout the

risk range, it serves to make predictions fairer in all these circum-

stances and also for any threshold-specific measurement.

Another approach to measure model fairness is called “equality

of odds.”28 This method defines a model as fair when false positive

rates and false negative rates are equal across all subpopulations.

This approach was also implemented specifically to improve the

fairness of the PCE model.29 However, 1 downside of this method is

that if a specific subpopulation has poor performance, this perfor-

mance then becomes the upper bound for other subpopulations in

the name of fairness.29,30 Another drawback is that, in all but the

most trivial settings, false positive rates, false negative rates, and

equal calibration cannot all be obtained simultaneously.31

Strengths and limitations
The algorithm evaluated in this article presents several advantages.

First, it can improve calibration even for subpopulations with a

modest representation in the study population. Additionally, unlike

some previous attempts at improving model fairness,29 this algo-

rithm is agnostic to the baseline prediction model and can thus oper-

ate as a postprocessing step on predictions that were generated in

any manner. The first implication is that the baseline model that cre-

ates the predictions is not restricted to a specific type of current or

future prediction method. The second implication is that any party

Figure 5. Calibration in the large of all subpopulations: before and after fairness algorithm processing.

A, B. Density plot of the calibration-in-the-large values across subpopulations for the PCE (panel A) and FRAX (panel B) models, before (orange) and after (blue)

application of the fairness algorithm.

C, D. A visualization of the calibration-in-the-large score for each of the subpopulations in the test set for the PCE (panel C) and FRAX (panel D) models, before (or-

ange) and after (blue) application of the fairness algorithm. The X-axis is a counter of the subpopulations, with each point representing a different subpopulation.

Subpopulations are ordered according to their size, with the largest (the entire test set) to the left. Due to the log scale, the red horizontal line at y ¼ 0 implies per-

fect subpopulation-calibration.

Abbreviations: FRAX, fracture risk assessment tool; PCE, pooled cohort equations.
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with access to the prediction results and with the needed inputs

(classification of the protected variables and a known outcome) can

run this algorithm even if the initial predictor was developed exter-

nally or provided as a black box.

An important limitation of this fairness algorithm is its need for

a training set of patients with an adequate follow-up period (the pre-

diction horizon of the outcome of interest). This would mean that

the process could be used either on the derivation cohort, which was

used to create the prediction model (in which case it will become

part of the model package), or by health organizations that intend to

apply an externally developed model and have access to such histori-

cal data. Another limitation is that despite the algorithm’s ability to

improve calibration for relatively small subpopulations, it still

requires a minimal subpopulation size (ie, 5000 patients, in this

study) for reasonable generalization. This limits the algorithm’s abil-

ity to assist with subpopulations that are defined by a very rare com-

bination of protected variables.

A potential limitation of this empirical evaluation of the multicali-

bration algorithm is the fact that 1 of the 5 protected variables used in

this study included ethnicity. It was recently suggested that including

race or ethnicity as proxies of underlying population genetics in predic-

tion models could be wrong, as associations of these variables with the

outcome of interest may reflect bias in social structures based upon

race rather than true biologic differences.32 Despite these concerns, we

chose to use ethnicity as 1 of the protected variables in this work for 2

main reasons. First, ethnicity groups in Israel are considered highly cor-

related to genetic variations due to Jewish history of living in relatively

closed communities.33–35 Second, the main concern of adjusting model

predictions to variables such as ethnic origin is that the difference in

outcome rate will reflect social disparities. However, as healthcare

services are provided in Israel as part of mandatory health coverage

and all citizens share access to the same broad healthcare services bas-

ket, we felt that this is less of a concern in this case. Finally, whether

the choice of including ethnicity as a protected variable is right or

wrong, this article provides a proof of concept for the simultaneous

multicalibration of many subpopulations, and future implementation

can easily choose to include a different set of protected variables.

CONCLUSION

In summary, applying a postprocessing algorithm to improve model

calibration in subpopulations is feasible and can theoretically be

added as a final step to every model development. Doing so would

allow improved decision-making for these patient subpopulations.

In this era, when prediction models increasingly affect medical deci-

sions and are integrated in CDSSs, it is important to assure that

models are unbiased, fair and accurate for minority groups and not

just on average for the entire cohort. This responsibility does not lie

solely in the hands of the data and computer scientists or statisti-

cians that develop these models. Medical professionals that recom-

mend the use of specific prediction models in guidelines or CDSSs,

as well as healthcare organizations that adopt prediction models,

should be aware of the problem, advocate for the need to address it,

and explore which measures were taken to ensure that a model is

fair.11
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