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Aims While most patients with myocardial infarction (MI) have underlying coronary atherosclerosis, not all patients with
coronary artery disease (CAD) develop MI. We sought to address the hypothesis that some of the genetic factors
which establish atherosclerosis may be distinct from those that predispose to vulnerable plaques and thrombus
formation.

...................................................................................................................................................................................................
Methods
and results

We carried out a genome-wide association study for MI in the UK Biobank (n�472 000), followed by a meta-
analysis with summary statistics from the CARDIoGRAMplusC4D Consortium (n�167 000). Multiple independent
replication analyses and functional approaches were used to prioritize loci and evaluate positional candidate genes.
Eight novel regions were identified for MI at the genome wide significance level, of which effect sizes at six loci
were more robust for MI than for CAD without the presence of MI. Confirmatory evidence for association of a
locus on chromosome 1p21.3 harbouring choline-like transporter 3 (SLC44A3) with MI in the context of CAD, but
not with coronary atherosclerosis itself, was obtained in Biobank Japan (n�165 000) and 16 independent
angiography-based cohorts (n�27 000). Follow-up analyses did not reveal association of the SLC44A3 locus with
CAD risk factors, biomarkers of coagulation, other thrombotic diseases, or plasma levels of a broad array of
metabolites, including choline, trimethylamine N-oxide, and betaine. However, aortic expression of SLC44A3 was
increased in carriers of the MI risk allele at chromosome 1p21.3, increased in ischaemic (vs. non-diseased) coronary
arteries, up-regulated in human aortic endothelial cells treated with interleukin-1b (vs. vehicle), and associated with
smooth muscle cell migration in vitro.

...................................................................................................................................................................................................
Conclusions A large-scale analysis comprising �831 000 subjects revealed novel genetic determinants of MI and implicated

SLC44A3 in the pathophysiology of vulnerable plaques.
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Introduction

Myocardial infarction (MI) and coronary artery disease (CAD) are
the leading causes of death in Western societies,1 even in the con-
temporary era of high-potency statin therapy.2 Individuals with CAD
are typically asymptomatic, with the first manifestations often being
major adverse clinical events, such as MI, or sudden death due to the
rupture of an atherosclerotic plaque.3 Thus, understanding the bio-
logical mechanisms that precipitate plaque rupture and thrombosis
could have important clinical implications since it may lead to earlier
detection or better prediction of the transition from a stable lesion
to a vulnerable plaque.

It is generally accepted that common forms of MI and CAD are
characterized by heritable susceptibility factors in the context of life-
time exposure to an atherogenic environment. Consistent with this
notion, large-scale and multi-ethnic genome-wide association studies
(GWAS) have identified >200 loci that influence risk of MI and CAD
via perturbations of lipid metabolism, blood pressure regulation, in-
flammation, and platelet function,4–12 as well as through mechanisms
that still remain unknown. However, the susceptibility alleles, most of
which are common in the population, still only explain a small fraction
of the overall heritability for CAD and MI. Furthermore, even though
the vast majority of patients with MI have underlying coronary ath-
erosclerosis, not all patients with coronary atherosclerosis develop
MI. This observation suggests that some of the mechanisms that es-
tablish atherosclerosis or drive its progression may be distinct from
those that predispose to plaque vulnerability and thrombus forma-
tion. Again, genetic studies support this concept. For example, 9p21
is one of the most strongly associated loci for CAD but is not specif-
ically associated with MI when comparing CAD-positive/MI-positive
(CADþ/MIþ) individuals to those who are CAD-positive/MI-negative
(CADþ/MI-).13,14 In contrast, the same analytical approach initially
identified ABO, which defines the common ABO blood group system,
as being associated with MI among individuals with CAD, but not ne-
cessarily with the presence of coronary atherosclerosis itself.13 Thus,
even though nearly all loci identified to date for CAD are also

associated with MI, it is likely that additional genetic factors predis-
posing more strongly or specifically to plaque rupture and thrombot-
ic phenotypes exist as well. However, with the exception of ABO, no
other such locus has been identified. In the present study, we sought
to further explore the genetic architecture of MI and address the hy-
pothesis that distinct genetic risk factors may underlie susceptibility
to MI and CAD.

Methods

Detailed methods are provided in the Supplementary material online.

Results

Identification of 8 novel loci for MI
To further expand our understanding of the genetic architecture of
MI, we first carried out a GWAS for MI with 17 505 cases and
454 212 controls from the UK Biobank (Figure 1 and Supplementary
material online, Table S1). This analysis identified 1966 single-
nucleotide polymorphisms (SNPs) at 31 loci that were associated
with MI at the genome-wide significance threshold of P = 5.0 � 10-8

(Supplementary material online, Figure S1 and Table S2). Twenty-eight
of the 31 loci were previously reported for an all-inclusive CAD
phenotype that included MI.6 When MI was defined according to the
algorithm provided by the UK Biobank, virtually identical results
were obtained (Supplementary material online, Table S2). We next
combined our results in the UK Biobank with summary statistics
from CARDIoGRAMplusC4D6 in a fixed-effects meta-analysis that
included a total of �61 000 MI cases and �578 000 controls and
8 126 035 SNPs common to both data sets (Figure 1 and
Supplementary material online, Table S1). This analysis revealed 4419
significantly associated variants at 80 loci (Figure 2 and Supplementary
material online, Figure S2), eight of which were novel and associated
with MI (or CAD) for the first time herein (Table 1 and Figure 3). The
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other 72 genome-wide significant loci in our MI meta-analysis over-
lapped with the 205 previously identified CAD regions7–12

(Supplementary material online, Table S3). We also obtained evi-
dence for association of the 133 remaining known CAD loci at
P < 2.5� 10-3, although 12 signals would not be considered significant
at the Bonferroni-corrected threshold for testing 205 regions
(P = 0.05/205 = 2.4 � 10-4) (Supplementary material online, Table
S3). Thus, our meta-analysis with the UK Biobank and
CARDIoGRAMplusC4D replicated nearly all 205 known CAD loci
and, together with the eight novel regions, brings the total number of
MI/CAD susceptibility loci to 213 at the time of this analysis
(Supplementary material online, Table S3).

Prioritization of positional candidate
genes and follow-up analyses with novel
MI loci
To identify candidate causal genes at the new loci, we first used multi-
tissue gene expression data from the GTEx Project,15 the eQTLgen

Consortium, or previously published studies available through the
Phenoscanner database.16 For each locus, at least one candidate gene
could be prioritized based on the lead SNP yielding a cis eQTL in one
or more tissues relevant to MI (Supplementary material online, Table
S4). Candidate causal genes were prioritized further using co-
localization analysis with summary statistics from our meta-analysis
and eQTL data from the STARNET cohort17 in blood, atherosclerot-
ic aortic artery, internal mammary artery, visceral and subcutaneous
adipose, liver, and skeletal muscle. Based on posterior probabilities of
>_75%, we obtained evidence for SLC44A3, TMEM87B, and FHL5 as
being causal positional candidate genes on chromosomes 1p21.3,
2q13, and 6q16.1, respectively (Supplementary material online, Table
S5). To explore the biological relevance of the MI loci, we also eval-
uated the lead variants for association with CAD risk factors in the
UK Biobank and other disease phenotypes using the PhenoScanner
database.16 Five loci yielded genome-wide significant associations
with blood pressure, lipid levels, body mass index, and/or type 2 dia-
betes in the UK Biobank (Supplementary material online, Table S6).
The other three loci on chromosomes 1p21.3 (SLC44A3), 1p36.11,

Functional evaluation of SLC44A3

~61,000 MI cases and ~577,000 controls
8,126,035 SNPs common to both datasets

Identification of 8 novel loci for MI and  
replication of 72 previously known MI/CAD loci

Independent replication of association of chromosome 1p21.3 
locus (SLC44A3) with MI but not CAD in Biobank Japan 

(n~165,000) and 16 angiography-based cohorts (n~27,000)

6 novel loci more strongly associated with MI 
than CAD in UK Biobank (n~472,000)

GWAS in UK Biobank
17,505 MI cases and 454,212 controls

10,903,881 SNPs

Summary GWAS data in CARDIoGRAM+C4D
~44,000 MI cases and 123,504 controls

9,289,491 SNPs

1,966 significantly associated 
SNPs distributed among 31 loci

Fixed-effects meta-analysis

4,419 significantly associated 
variants distributed across 80 loci 

Figure 1 Overview of genetic and functional analyses. A genome-wide association study was first carried out for myocardial infarction using
primary-level data in the UK Biobank with�11 million single-nucleotide polymorphisms. These results were then combined with summary genome-
wide association study data from the CARDIoGRAMplusC4D Consortium in a fixed-effects meta-analysis that included a total of�61 000 myocar-
dial infarction cases and�577 000 controls, and 8 126 035 single-nucleotide polymorphisms common to both data sets. The meta-analysis identified
eight novel loci for myocardial infarction, six of which exhibited stronger association signals for myocardial infarction compared to coronary artery
disease. Follow-up analyses and independent replication in Biobank Japan and 16 angiography-based cohorts, encompassing a total of�831 000 sub-
jects, provided confirmatory evidence for association of the chromosome 1p21.3 locus with myocardial infarction. Bioinformatics and eQTL analyses
prioritized SLC44A3 as one positional candidate on chromosome 1p21.3 for functional evaluation.
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..(AHDC1), and 4q22.3 (PDLIM5) were either not associated with any
CAD risk factor or only yielded suggestive associations
(Supplementary material online, Table S6). Based on Phenoscanner,
the loci on chromosomes 1p21.3 (SLC44A3) and 1p36.11 (AHDC1)
have also not been associated with other disease-related phenotypes,
whereas the lead variants (or tightly linked proxies) at the remaining
MI loci have been suggestively or significantly associated with other
complex traits, including inflammatory cytokines, circulating

leucocytes, prostate cancer, and migraine (Supplementary material
online, Table S7).

Comparison of association signals for MI
and CAD phenotypes at novel loci
We next investigated the phenotypic specificity of the association sig-
nals for MI and CAD using various analytical strategies. In the first
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Figure 2 Manhattan plot of results from genome-wide association study meta-analysis for myocardial infarction. (A) Eight novel loci on chromo-
somes 1p36.11, 1p21.3, 2q13, 2q32.1, 4q22.3, 6q16.1, 9q34.3, and 15q24.2 (orange dots) were significantly associated with myocardial infarction.
Genome-wide thresholds for significant (P = 5.0� 10-8) and suggestive (P = 5.0� 10-6) association are indicated by the horizontal red and blue lines,
respectively. P-values are truncated at -log10(P) = 40.

........................................ ........................................

....................................................................................................................................................................................................................

Table 1 Novel loci identified for MI through GWAS meta-analysis of the UK Biobank and CARDIoGRAMplusC4D

MI CAD

SNP Chr Pos Nearest gene(s) EA/OA EAF OR (95% CI) P-value OR (95% CI) P-value

rs113716316 1p36.11 27 928 640 AHDC1 G/A 0.93 1.09 (1.06–1.13) 4.4 � 10-8 1.07 (1.05–1.10) 5.0 � 10-8

rs12743267 1p21.3 95 249 306 SLC44A3 C/T 0.77 1.05 (1.03–1.07) 1.1 � 10-8 1.03 (1.01–1.04) 2.0 � 10-4

rs6761276 2q13 113 832 312 IL1F10 T/C 0.43 1.04 (1.03–1.06) 2.8 � 10-8 1.03 (1.01–1.04) 2.2 � 10-5

rs12693302 2q32.1 183 211 443 PDE1A G/A 0.39 1.05 (1.03–1.06) 2.5 � 10-9 1.03 (1.01–1.04) 2.5 � 10-5

rs2452009 4q22.3 95 495 908 PDLIM5 A/G 0.70 1.05 (1.03–1.07) 5.8 � 10-9 1.03 (1.02–1.05) 9.4 � 10-7

rs9486719 6q16.1 97 060 124 FHL5 G/A 0.80 1.06 (1.04–1.08) 6.8 � 10-10 1.04 (1.03–1.06) 1.1 � 10-8

rs28429551 9q34.3 139 243 334 GPSM1 A/T 0.76 1.06 (1.04–1.08) 1.7 � 10-8 1.04 (1.02–1.05) 4.0 � 10-6

rs8037798 15q24.2 75 240 030 COX5A-RPP25 G/T 0.23 1.05 (1.03–1.07) 3.8 � 10-8 1.02 (1.01–1.04) 1.6 � 10-3

Chr, chromosome; CI, confidence interval; EA, effect allele; EAF, effect allele frequency; OA, other allele; OR, odds ratio; P, P-value obtained from meta-analysis of the UK
Biobank and CARDIoGRAMplusC4D; Pos, base-pair position (hg19).
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approach, we carried out association analyses with the eight novel
loci in the UK Biobank using an all-inclusive definition of CAD (see
online Methods for details). This was followed by a meta-analysis of
the results with summary statistics for CAD provided by the
CARDIoGRAMplusC4D Consortium. Compared to MI, all eight loci
yielded some degree of association with CAD in our meta-analysis
with the UK Biobank and CARDIoGRAMplusC4D, with two loci on
chromosomes 1p36.11 and 6q16.1 exhibiting genome-wide signifi-
cance (Table 1 and Supplementary material online, Table S8). These
latter observations suggest that the association signals on chromo-
somes 1p36.11 and 6q16.1 may not be specific to MI. The associa-
tions between the eight novel loci and CAD were also consistent
with another recent meta-analysis for CAD using the UK Biobank
and CARDIoGRAMplusC4D Consortium11 (Supplementary material
online, Table S3).

Since CARDIoGRAMplusC4D used an all-inclusive definition of
CAD that incorporated MI,6 it was not possible to determine the
true specificity of the associations for MI vs. CAD using our meta-
analysis results for CAD. Therefore, as a second approach, we used
primary-level data in the UK Biobank to compare association of the

eight novel loci with MI and a restricted CAD-only phenotype that
excluded subjects with MI. As a positive control locus, we also
included ABO in these analyses. Consistent with previous studies,13

our lead SNP (rs9411377) at the ABO locus in the UK Biobank was
strongly associated with MI, but not the restricted CAD-only pheno-
type (Table 2), thus validating this analytical approach. Seven of the
eight novel loci identified for MI were not associated with CAD in the
comparative analyses using the UK Biobank (Table 2). The only ex-
ception was the AHDC1 locus on chromosome 1p36.11, although
the effect size and significance level were weaker for CAD than with
MI (Table 2). We also evaluated association at the eight novel loci in
the UK Biobank in analyses comparing cases defined as having both
CAD and MI (CADþ/MIþ) to controls defined as CAD-only subjects
(CADþ/MI-). In addition to the expected association with ABO, six of
the eight loci were nominally associated (P < 0.05) with MI among
subjects with CAD (Table 2). Taken together, these results suggest
that the association signals at some of the novel eight loci are either
specific to or more robust for MI than with a CAD-only phenotype.

We next carried out the same analyses in the UK Biobank for 15
previously identified loci that have been suggested to modulate risk

0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

●●

●
●●
●

●●●
●
●
●

●
●●●●

●●

●●●●●●

●●●

●●●●●●●●●●●●

●●●
●●●●●●●
●●●●●●●
●●●●
●

●●●●●●●

●●●●●●●●●
●●●●●
●●●●●●●●●●

●●●●
●
●●●●
●

●●●●●
●
●●
●●
●

●●
●●●●●●
●●●●●●●●●●●●●●●

●
●

●

●●●●
●●●
●●●

●●
●●
●●●
●●●●
●●●

●●●●●●●
●
●●●
●
●●●

●●●●●●

●

●●●●●●●●●
●●●●●●●●

●●●●●
●●●

●●
●●●
●
●

●●●●●●●
●●
●●●
●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●●

●●●

●●●●●
●
●●●●●●●●●●●●
●
●
●●●●●●●

●

●●
●●●●
●

●●●●● ●

●●

●●
●●●●●
●●●●●

●●
●●●

●
●●●
●●
●●●●●

●
●

●●●
●●●

●●

●

●●
●
●●
●

●

●●●●
●

●●●●●

●

●
●

●●●●●●●
●●
●

●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●
●●

●●
●
●
●
●

●●
●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●
●●●
●●
●●

●
●

●●●●
●
●●●●●●

●●●
●●●●●●●
●●●●●●●●●●

●●
●●●●
●●●●●●
●●●
●●●●●●●●
●●●●●
●●●●●●
●●
●●
●
●●
●●●
●●●●●●

●●●●●●●
●●
●
●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●
●

●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●
●●●●
●
●●●●
●
●●●●

●
●●●●●●

●
●●●●●●

●
●●

●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●

●●●
●●●●●●●●

●
●
●●●●●●●●●●●●●●
●
●●
●
●●●●●
●
●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●
●●●
●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●●
●●●●●●●
●●●●●●●

●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●
●●

●●●●●●●
●●

●●
●●
●●●●●●●●●●●●
●
●●●●●
●●●●●●●●●
●

●●
●●●●●●●
●

●●●●
●●●●●●
●●●
●●●●
●●●●●●●●●●

●
●

●
●
●

●●●●●
●
●●●●
●●

●●●●●●●●●●●●●●

●●●

●●●●●●
●●●●●●●●
●●●●
●●
●●

●●●●●●●●●

●●●●
●
●●●
●

●●

●●●
●●●
●

●●●●●●

●
●●●●
●●●

●
●●●
●●●●
●●●
●
●●

●●●
●●●●●

●●●●
●

●
●

●●●●●●●

●
●●
●

●●●●

●
●●●●●

●●●
●
●●●●●●●●●●●

●●●●●●
●●●●●●●

●
●
●
●
●●●●●●●●

●●
●

●

●●●●●
●●●●●

●
●
●●

●

●●●
●●●●●●●

●

●●●●●●●●●●●
●●
●●●●●●●●●●●

●●●● ●●●●●

●
●

●

●●●●●●●●●
●●

●●

●●●●●●
●●●●
●●

●
●●

●

●

●

●●
●
●●

●

●
●●●
●●●

●●●
●●●

●
●

0.2

0.4

0.6

0.8

r2

WDTC1

TMEM222

LOC644961

SYTL1

MAP3K6

FCN3

CD164L2

GPR3

WASF2 AHDC1

FGR

IFI6 FAM76A

STX12

PPP1R8

SCARNA1

THEMIS2

RPA2

SMPDL3B

XKR8

EYA3

27.6 27.8 28.228
Position on chr1 (Mb)

0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

●●
●●●●

●●●

●●●●●●●
●●●●

●
●●●
●

●

●●●●●●●●●

●

●
●●●●●
●
●●●●●●●●●●●●●●

●●●

●●
●

●●
●●●●●●●●
●●●●●●

●●
●●●●●●●
●
●●●●●●●●●

●

●

●

●
●

●●●●●●●
●●●●●

●

●

●
●

●●●●
●
●●●●●●
●●●●
●

●●

●●●●

●
●●

●

●

●●●●

●

●

●●●
●●

●

●●●●●●●
●●●●

●

●●●●●●

●●●●

●

●

●●
●●●●●

●
●●●●●●●●●
●●●

●●●●●●●●●●●
●
●
●
●●●●●
●●●●●
●●

●●

●
●●●●●●
●●●●
●●●●

●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●

●
●●●●
●
●

●

●●

●●●●●●●

●●●●

●●

●

●●
●●

●

●●●●●●●●

●●●●●●●●●●●●●●●
●

●●●●●●●●
●
●
●

●●●●●●●●

●●●●●●●
●●●●●●●●

●
●●●●●●●
●
●●●●
●●●●●●●●●

●●●●●

●●●●

●●●●

●●●●●●●●●●●●
●
●

●
●

●●●●●●●
●●
●●●●●

●●●●●

●●●●

●●●●●●●●●●●

●●●●●●●

●●
●
●●●

●

●●●●●
●●●
●●●●●

●

●●●●●

●●

●
●

●●
●●●●●●●●●

●

●●●●●●●●●●●●●●
●

●●●

●●●●●●●●●

●●●
●●●
●●●●●●●●
●●●
●●●●●
●
●●

●●●●
●●●

●●●

●●●●
●

●
●●●●●

●

●●●

●

●●

●●

●●●●●●●●●●●●●
●●●●

●●●●●

●●●●●●●●●●●

●

●

●

●
●●●●●●●●●●

●●●●
●●
●●

●●●
●●

●

●
●

●●
●●
●●●●●●●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●
●
●●

●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●
●●●●
●
●●●●●
●●
●●●●●●●●●●●●●●
●
●

●
●●●●●●●

●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●

●●

●●

●●
●
●

●
●●
●●

●●

●

●●●
●●●●●●●●●

●●●●●

●●

●●●●●
●
●

●

●

●

●●

●●●●●●●●●●●●●●●●
●●●●●

●●●

●

●

●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●

●
●●●●●●●●
●●●●

●●●●●
●●●●●●●●●●●●

●●●
●●●

●

●●●
●

●●●●●
●●
●●
●●●
●
●●●

●●

●●●●●●

●

●
●●●

●●●●●●●

●●●●

●
●

●●●●●

●

●●

●●

●●

●●●

●●●●

●●

●●●
●●

●●●●●●

●●●

●

●●

●●●●
●●

●●●●●●●●●●
●

●●●

●●●●

●●●

●
●
●

●●●●

●

●●●
●

●●●●
●●

●

●
●

●●●●●●
●●●●
●

●●●●●

●●●●●●
●●●●●

●●

●●●●
●●●

●

●●●●●●●●
●●●●●●●●
●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●

●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●

●●
●●●
●●●●●●●

●●●●

●●

●●●●

●

●●
●
●
●●
●●
●●●●●

●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●
●●
●●●●●

●
●●●

●

●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●
●●●

●●●
●●●●●

●●●●●●
●●●●●●●●●●●●●●●

●
●●

●
●●●●●●
●●●
●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●
●●●

●●●

●●●

●●

●●
●●

●

●●●●●●●●●
●●●
●●
●●

●●●●●●●●●
●

●●●

●●●
●●●
●●●●●●●●●●●●

●●
●●●

●●●●
●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●

●●

●●

●●

●

●●●●●●●●●●●●●●●

●●

●●●
●●●●●●●
●●●●●

●●●●●●●●●●●●●●
●
●●●●●●●●
●●

●●●●
●

●●●●●
●●●●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●
●
●●●●

●●

●●●
●
●●

●●●●●●●●●
●
●●●●●●

●●●●●●●●
●●

●●●●

●●

●●

●

●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●

●●●●●

●

●●●●●●●●●
●
●●
●
●●
●●●

●●

●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●

●

●●●●●●

●

●●●●●●
●●●●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●

●●●●
●●●

●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●

●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●
●●

●
●
●●

●●●
●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●
●●●●●●
●●

●●●●
●●●●●●●●

●
●
●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●

●●

●
●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●●
●●●
●
●●●

●●●●

●●●●●
●●
●
●
●
●●●●●●

●●●●●●●●
●

●
●●

●
●●●

●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●●

●●●●●●●
●●●

●●●

●
●●●●●●●●●

●●
●●●●●●

●
●●●●●●●

●

●

●●
●●●●●●●●

●
●●●

●●●●●●●●●●●●●
● ●●●●

●
●●
●

●●●●

●●●●●
●●●●

●

●●
●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●

●

●

●●●

●
●●

●
●●●●●●●

●●
●●
●●●●●
●●●
●●●●●●●●

●●●
●●●●●●●●
●●●●●
●

●●●●

●

●●
●
●●
●●●●●●

●

●●●●
●

●

●

0.2

0.4

0.6

0.8

r2

ABCD3

F3

LINC01057

SLC44A3

CNN3

LOC729970

ALG14 TMEM56

TMEM56−RWDD3

95 95.4 95.695.2
Position on chr1 (Mb)

0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

●

●

●●●●●
●●

●●●●●●

●●●●●●

●

●●
●

●●●●●●
●
●●
●●
●●●●●
●●●●●●
●
●●●●●●●
●●
●●●●●●●●
●●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●

●●●●●●●●●●●●●●

●●●●●●
●●●●●
●●●●●●
●
●
●●●●●
●●●●●

●●●●●●●
●●●●●

●●●●●●
●

●
●●●●●●

●
●●●●●●●●

●●●

●●

●

●

●

●

●

●●●●●
●

●●●●●●

●●

●

●●●●●●

●●●●●●●

●●●●●●●

●

●

●●

●●●

●
●
●●●
●
●
●

●●●

●●

●●●●

●

●●

●

●●●

●●●●●

●●●●●●●
●●●●●●●

●

●●

●
●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●

●●●●●●
●
●●

●●●●
●

●

●●●

●●
●●

●●●●●●●●●●●
●●
●●●
●●

●

●●●●●●
●

●
●●●●●
●●●
●●●●●●

●●●

●●●
●

●●●●

●●●●●●

●●●

●
●●●●●

●

●●●●●●●

●●
●

●●

●●●

●●●

●●●
●
●●

●●●●●●
●●

●●●●●●

●●

●

●

●●●●
●●●
●

●●

●●
●●●
●●

●●
●●
●●

●●●●●●●●●

●

●

●

●●

●

●

●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●●●●
●

●●

●●●●●●●●●●●●
●●●●
●●●●●●●

●●●

●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●
●●●●

●
●●●●

●●

●●●

●●●●●

●●●●●●●●●●●●
●
●●●
●

●●●

●●●●●

●●●●●●●●●●●
●●●●●●●●●
●

●●

●●●●●●●

●●●

●

●●●●

●●
●●●
●
●
●

●●●●

●

●●

●●●●
●●●●●●●●●●●●●●

●
●●
●●●●●●●

●

●

●

●●
●

●
●

●
●●●
●
●
●●

●

●●●●●

●

●●

●●●●●●

●●●●●
●●●●●
●●●

●●

●●●●●

●●

●●●●●●●●●●●

●●●●

●●●●●●

●●●●●●●●
●●●●●

●●●●●●●

●●●

●●
●●

●
●●●

●

●●●●●

●●
●●●●

●●

●
●●●

●●
●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●
●
●●●●●●●●●●

●
●●●●●●
●●

●

●●●●●●●●●
●●●●●●●●●
●

●
●●

●●
●

●●
●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●
●●●●
●

●●●●●

●

●●

●

●

●●

●●●●●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●

●●●

●●
●●●●

●●
●●●●●

●●●●●●

●●●●●

●●●

●●●●●●

●

●●●●●
●

●●

●●●●

●●●●
●

●

●

●

●●●●
●
●
●●
●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●

●●●

●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●
●●●●●●●●

●●●

●●●●●●●●●●

●●●●●●

●●●
●●●

●

●●●●●

●●●●●

●

●
●●●●●

●●●●●●●●

●●●●●●●●●●●●●
●●●●

●

●●

●●●
●●

●●●●
●●●●

●●●
●●●●
●●●
●●●
●
●●●●●●●

●

●

●●
●●●●

●

●
●●●●●●●●●
●
●●●●

●●●●●●

●●●●
●

●●●●●●
●
●
●
●●●●
●●
●●●
●●●●●●●
●

●

●

●●●●●●●●●●●●●●●
●●●●

●●●

●

●
●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●
●
●

●

●
●●●
●

●

●●●●●●
●●●●

●●●●●●

●

●

●●●
●
●●●●●●●●●●●

●●

●●
●●

●●

●●

●●●●●

●●

●

●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●

●●

●

●●●●

●●●●●

●●●

●●
●●●●●●●●●●●●●

●

●●●

●

●
●●●

●●
●●●●●●●●●●●

●●●●●
●●
●●●●

●●
●

●

●
●

●●●●●●
●●●●●●

●●●●●●●
●
●

●

●●●●●●●

●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●
●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●

●

●
●

●
●●●●●●●●

●
●

●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●

●

●
●●●●●
●
●●●

●

●●
●
●●●●●

●●●●

●
●●●●
●●●●●●●●●
●●
●

●

●
●●●●

●●●●

●●●●●●●●●●
●
●
●●●
●
●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●

●●
●●●

●
●●●
●

●●●●●●●
●
●
●
●●●●●●●●●●●●●●●

●
●●
●●●●●
●●●

●●●
●●●●●●●●●●●●●●
●●●●
●●●
●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●

●●●

●

●●●●
●●
●
●●●●

●●●●●●●●●
●●●●●●

●
●
●●

●●●●●●

●●
●●●

●●●●●●●

●●●●●●●●●

●●●
●●●●

●●●●●●●●●●●
●●
●●●●●
●●●●●

●●●●●

●●●●●●

●
●●●●●●

●●●●
●●●●●●●●●●●

●●●●●
●
●

●

●●●●
●
●●●●●●●

●●●●●●●●●●●
●●●
●●●

●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●
●

●
●●●

●

●
●
●
●●●

●

●●
●●●●●●●●●●●●●

●

0.2

0.4

0.6

0.8

r2

CKAP2L

IL1A

IL1B IL37 IL36G

IL36A

IL36B

IL36RN

IL1F10

IL1RN

PSD4

PAX8

PAX8−AS1

CBWD2

113.6 114 114.2113.8
Position on chr2 (Mb)

0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

●

●● ●●●●●●●●●
●●●●●●
●●●●●

●●

●●
●
●

●●●

●●●●●

●●●●
●
●●

●●●●●
●
●

●
●

●●●●●●●●

●●
●●●●●●●●●●

●●●●
●●●●

●●●

●●

●●●●●●●●

●
●●●●●
●●
●●●●

●●●●●●●●●

●●●●
●●●●●●●
●●●●●
●●●●●●

●●

●●●

●
●●●●●

●

●●●

●

●●●
●●
●●
●
●
●●
●

●●

●●

●●●

●●
●●●

●

●

●●●●●●

●●●●
●●●●●

●●

●

●●●●

●●
●●●●

●●●

●
●●●
●

●
●
●
●●●●●●
●

●●
●●●●

●●●

●

●●●●●●●●●●
●●
●●
●●●●●

●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●
●●●●●●●
●●●●●●●●●●●●●●

●

●●●
●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●
●●●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●

●●●
●

●●●●●●
●●●

●●●●●

●

●●●
●●●●
●●●●●●●●●
●●

●●●

●●●

●●●●●●●●●
●
●●
●●●●●●
●●●●
●●

●

●

●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●
●
●●●●

●

●

●●●●●●●●●

●●●●●●

●●

●●●

●●●●
●●●●●●●●●●●

●
●●

●

●

●●●●

●●

●●●●●

●●●●

●●●●●
●●●●●

●

●
●●●●●●

●

●

●●

●●●●

●●●●●

●●
●●●●●

●●●●●●●●●

●

●●●●
●●

●●●●

●
●●●●●

●

●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●
●
●●●●●

●●●●●●●●●

●●●●●

●

●●●
●
●●
●
●●●●●●●
●
●●●
●

●●●●●●

●●●
●●●●

●

●

●●●

●●●
●●●●●●●●
●●●●●
●●●●

●

●●

●●

●●●●●●●●●●
●●●●●●●●

●●●

●●
●●

●●●●●●●

●

●

●●●●●●
●●●●

●

●●
●●●

●

●●●●●●●●●●●●●●
●●●●

●●

●

●

●●●●
●●

●●●●●●●●●●●

●

●●●●●●●●
●●●●
●●

●

●

●●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●

●●●●
●●●●●●●●●

●●
●●●

●

●●●

●

●●●
●

●●●

●●

●●●

●
●

●●

●

●

●

●

●●●●●
●●●●●●●
●●●●

●●●●●

●●●

●●

●●●●

●

●

●

●●●●
●

●●●●●●●●●●

●

●
●

●●
●●●
●

●●●●●

●●●●●●●

●

●
●
●
●●

●●●
●●

●●●●●
●
●

●●●●●

●●●●●●

●●●●

●

●●

●

●●●●●
●●●

●●

●●

●●
●●●
●
●

●
●●●●●●●●
●
●●●●●●
●

●

●●●●●●

●

●

●

●

●

●●

●●●

●●●●●●●●●●
●
●

●●●●●●●●●
●

●
●

●●

●

●
●●●●●

●●

●●●●

●●

●

●●
●●

●●●

●

●●●

●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●
●

●
●●

●

●●●●

●●

●●●●●●●●●●●●●●●●●●

●●●
●

●●●●

●●

●●●●●●●●
●
●
●
●●●●●●●●

●●

●●
●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●

●●●●●

●●
●●
●●●●

●●●●●●●

●●

●●●●●●●●
●

●
●●●●●
●●●●●●●●●
●●●

●●●●●

●●●●●●

●●●●●●●

●

●●●●●●●
●
●●●

●
●

●●●●●●●●●●●
●

●
●

●●●●●●●●●●

●●

●●

●

●●
●

●●●

●

●
●●●●●●●●●

●●●●●●

●

●
●●●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●●

●●●●●●●
●●

●●●●

●
●●

●

●

●●●●●●●●●●●●●●●
●
●●●●●●●●●●●

●●●●
●●

●●●

●●●

●●●●●●●

●

●●●

●●●●●●●●●●●●●●
●●
●●

●

●●●●●
●●●

●

●●●●

●
●●

●●

●

●

●●●●●
●●

●●●
●

●●●

●●

●

●●●●

●

●●●●
●●●●●●

●
●●●

●●●

●●
●

●

●●●
●●●
●
●●●●●●●●●●

●●●●

●
●●

●●●●●
●●●

●

●●●
●●●●●

●●●●●
●●●

●●
●

●●●
●●●●●●●●●
●●●

●●●●●
●

●●●

●

●●●●●●●

●●

●●●●

●●●

●●●●●●●●●●
●
●●●
●
●●●●●●●
●●●●●●●

●

●●●●

●●

●●
●●●●●●●●●●

●

●

●●●●

●●●●●●●●●●

●

●
●●

●

●

●●●●●●
●●●●●
●●●●●●●
●

●●●●●●●

●●●

●●
●

●
●●●●●●●●●●●●●●●●●●●

●●●●
●

●

●

●

●●
●

●●●●●●

●●

●●●●●
●●●●
●
●●●●
●●●●
●●●

●

●●●●●●●●●●●

●

●●

●●
●●●●●●●●
●●

●

●●●
●●●●●●●●●●●●●●
●

●●●●●

●●●

●

●●●●●●●●●
●●●

●

●
●●

●●●●

●

●●●●●●●●

●●●●●●●●
●

●

●●●●
●●●●

●●

●●

●●●
●

●

●

●●●●
●
●●

●●

●●●●

●

●

●●●

●

●●●●●●●

●●

●

●●
●●●

●●

●●

●●●●●
●

●●

●

●●●●●●●●

●

●●●●
●●●
●

●●●●●●

●●
●●●
●●

●●●●●

●●●●●
●
●

●●●●●●●●●●
●●●●
●●●●●●
●●●

●

●●●●●●
●●●●

●

●●●●
●●

●

●●

●●●●●●●●

●●

●

●

●

●●●●
●
●
●

●

●
●

●
●●●

●●
●●●●●
●

●●

●●●●●●

●

●
●●
●●●

●

●●

●
●
●●●●●●
●

●
●●

●●●●
●●●●

●

●●●●●●

●●

●

●

●●●●

●●
●●●

●●●●●●

●●

●●●

●●

●
●●

●

●●●
●
●●
●●●

●

●
●●

●●
●●

●●

●

0.2

0.4

0.6

0.8

r2

PPP1R1C PDE1A DNAJC10

183 183.4 183.6183.2
Position on chr2 (Mb)
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of CAD through thrombotic mechanisms.5–11 At a Bonferroni-
corrected significance threshold for testing 15 SNPs (P = 0.05/
15 = 3.3� 10-3), the lead variants from our MI meta-analysis at seven
of these loci were associated with MI, but not the CAD-only pheno-
type, in the UK Biobank (Supplementary material online, Table S9).
Four of these seven loci were also associated with MI among individu-
als with CAD (CADþ/MIþ vs. CADþ/MI-) at P < 0.05, but none were
associated with the CAD-only phenotype (Supplementary material
online, Table S9). The remaining eight thrombosis-related loci were
associated with both MI and CAD but not with MI in the context of
CAD (Supplementary material online, Table S9). Thus, some, but not
all, of the 15 previously identified CAD/MI loci related to thrombosis
exhibited association patterns in the UK Biobank that were similar to
those observed at the ABO locus and several of the novel MI loci
(Table 2).

To determine whether the novel MI loci were associated with
other CAD phenotypes and whether the association signals differed
by ancestry, we carried out sensitivity analyses in the UK Biobank. As
shown in Supplementary material online, Table S10, there was no evi-
dence for association with ‘soft’ endpoints, such as angina and death
due to CAD, which may have been due to decreased sample size.

Although the P-values for MI in subjects of non-European ancestry
did not reach significance either, presumably also due to decreased
power, the effect sizes were all directionally consistent with those in
European ancestry subjects (Supplementary material online, Table
S10) and still contributed to the overall increased significance
observed at the MI loci in analyses that included all subjects from the
UK Biobank (Table 2).

Replication of comparative association
signals for MI and CAD in Biobank Japan
To replicate the association signals at the novel loci in a large non-
European ancestry population, we carried out the same comparative
analyses for MI vs. CAD only in Biobank Japan (n�165 000). Since the
restricted CAD phenotype in Biobank Japan could only be defined
based on a diagnosis of stable angina, we first evaluated the lead SNP
at 9p21 (rs2891168) as a positive control CAD locus. This analysis
yielded the expected strong association with CAD only [odds ratio
(OR) = 1.14, 95% confidence interval (CI) 1.11–1.17; P = 7.3� 10-21].
Similar to the UK Biobank, the ABO locus was also strongly associated
with MI in Biobank Japan but not CAD-only (Supplementary material
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online, Table S11). Based on these results further validating this com-
parative strategy and its applicability to Biobank Japan, we tested the
novel regions for association with MI vs. CAD-only. Since the loci on
chromosomes 1p36.11 (AHDC1) and 6q16.1 (FHL5) yielded genome-
wide significant association with CAD in the meta-analysis with the
UK Biobank and CARDIoGRAMplusC4D (Table 1), they were not
considered in these analyses. None of the six remaining newly identi-
fied loci were associated with the CAD-only phenotype, whereas
three regions (1p21.3, 2q32.1, and 15q24.2) yielded nominal
(P < 0.05) associations with MI in Biobank Japan (Supplementary ma-
terial online, Table S11) that were directionally consistent with the
UK Biobank (Table 2). However, only the lead SNP (rs12743267) at
the chromosome 1p21.3 locus harbouring SLC44A3 was also associ-
ated with MI among CAD cases (Supplementary material online,
Table S11).

Preferential association of the SLC44A3
locus with MI in the presence of
atherosclerosis
We next sought to replicate the association signals for MI at the
novel loci using independent cohorts in which the presence of CAD
was more directly assessed by angiography. Case–control analyses
were carried out in a first set of six cohorts with �14 000 angio-
graphically documented CAD patients with MI (CADþ/MIþ cases;
n = 6514) and without MI (CADþ/MI- controls; n = 7411)
(Supplementary material online, Table S12). A fixed-effects meta-ana-
lysis with these six cohorts revealed consistent and strong association
of the SLC44A3 locus on chromosome 1p21.3 with risk of MI among
individuals with CAD (OR = 1.16, 95% CI 1.09–1.23; P = 3.3 � 10-6)
(Table 3), with no significant evidence for heterogeneity (P-het = 0.10)
(Supplementary material online, Table S12). Exclusion of the Emory
cohort, which itself exhibited a very strong effect size with large vari-
ation, did not appreciably change the direction or significance level of
the overall association between the SLC44A3 locus and MI
(OR = 1.15, 95% CI 1.08–1.22; P = 6.2� 10-6) (Supplementary mater-
ial online, Table S12).

As another replication study, we evaluated association of the
newly identified MI loci in 10 additional angiography-based cohorts
comprising 7412 CADþ/MIþ cases and 5542 CADþ/MI- controls
(Supplementary material online, Table S13). These analyses also
yielded evidence for association of the SLC44A3 locus with MI in the
context of CAD (OR = 1.09, 95% CI 1.03–1.16; P = 2.1 � 10-3) but
not the remaining five loci. When all 16 angiography-based cohorts
were meta-analysed together (n�27 000), association of the
SLC44A3 locus with MI in the presence of coronary atherosclerosis
increased in significance by several fold (OR = 1.12, 95% CI 1.08–
1.17; P = 5.6� 10-8) (Table 3). Notably, the SLC44A3 locus was highly
significantly associated with MI in an all-inclusive meta-analysis with
UK Biobank, Biobank Japan, and the 16 angiography-based cohorts
(n = 41 336 CADþ/MIþ cases and 40 363 CADþ/MI- controls) and
exceeded the threshold for genome-wide significance (OR = 1.07,
95% CI 1.05–1.10; P = 5.4 � 10-11). Taken together with the weak
associations observed with CAD in the meta-analyses with
CARDIoGRAMplusC4D and UK Biobank and the comparative analy-
ses in the UK Biobank and Biobank Japan, these results provide com-
pelling evidence for the SLC44A3 locus being preferentially associated
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with plaque instability and/or rupture in the presence of coronary
atherosclerosis but not atherosclerotic CAD itself.

Association of the SLC44A3 locus with
other thrombotic phenotypes
We next explored whether the SLC44A3 locus was associated with
other thrombotic and coagulation phenotypes related to MI. Based
on data from the MEGASTROKE Consortium,18 there was no evi-
dence for association of rs12743267 with most forms of stroke ex-
cept for nominal associations with cardioembolic and small vessel
stroke in subjects of European ancestry that would not be considered
significant at a Bonferroni corrected P-value of 0.01 for testing five
forms of stroke (0.05/5 = 0.01) (Supplementary material online,
Table S14). Second, variants at the chromosome 1p21.3 locus had
been previously associated with circulating levels of D-dimer,19 which
is produced when cross-linked fibrin is degraded by plasmin and the
most widely used clinical marker of activated blood coagulation.20

However, rs12743267 was not associated with D-dimer levels (beta
= -0.011; SE = 0.007; P = 0.12) based on a GWAS carried out by the
CHARGE Consortium19 and the lead SNP for D-dimer
(rs12029080) was not associated with MI in our meta-analysis with
the UK Biobank and CARDIoGRAMplusC4D Consortium
(OR = 0.99, 95% CI 0.98–1.01; P = 0.32) or in Biobank Japan
(OR = 0.98, 95% CI 0.96–1.01; P = 0.12). Lastly, SLC44A2, a member
of the solute carrier family of membrane transporters that includes
SLC44A3, has been associated with venous thromboembolism
(VTE),21 another coagulation and thrombotic phenotype relevant to
MI. However, there was no association of rs12743267 with VTE
(OR = 0.97, 95% CI 0.92–1.02; P = 0.23) in a GWAS carried out by
the INVENT Consortium.21 By comparison, the lead VTE SNP in
SLC44A2 (rs2288904) was associated with CAD (OR = 1.04, 95% CI
1.03–1.05; P = 7.0 � 10-8) and MI (OR = 1.04, 95% CI 1.02–1.06;
P = 1.5� 10-5) in our meta-analyses, as well as with CAD in Biobank
Japan (OR = 1.03, 95% CI 1.01–1.06; P = 1.1� 10-3).

Association of the SLC44A3 locus with
choline-related metabolites
While the function of SLC44A3 as a solute carrier is not entirely
known, it has been reported to encode a putative choline-like trans-
porter.22 In humans, elevated plasma levels of choline and
products of its metabolism have been linked to risk of MI-related out-
comes.23–25 However, we did not obtain evidence in the Genebank
cohort for association of the SLC44A3 locus with plasma levels of
these metabolites or a panel of choline-related small molecule amines
that have also been associated with CAD and MI26–31

(Supplementary material online, Table S15). Based on data from three
metabolomics and proteomics studies,32–34 the SLC44A3 locus did
yield associations with small molecules in plasma or urine, but these
would not be considered significant at Bonferroni-corrected thresh-
olds for the number of analytes tested in each data set
(Supplementary material online, Table S16).

Functional analysis of SLC44A3
We next used functional studies to evaluate SLC44A3 as a candidate
causal gene at the chromosome 1p21.3 locus. Among 600 CAD
patients in the STARNET study,17 SLC44A3 was expressed at
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relatively high levels in several MI-relevant tissues, such as athero-
sclerotic aortic root, adipose tissue, mammary artery, and liver
(Figure 4A). In addition, the lead SNP on chromosome 1p21.3 yielded
cis eQTLs for SLC44A3 in atherosclerotic aorta and mammary artery,
where the MI risk allele (C) was associated with increased expression
(Figure 4B). In the GTEx Project, similar eQTLs were observed in
aorta and coronary artery (Figure 4C), as well as in whole blood and
various components of the gastrointestinal tract (Supplementary ma-
terial online, Table S4). These findings were consistent with mRNA
levels of SLC44A3 being significantly higher in ischaemic coronary
arteries compared to non-diseased coronary arteries in another in-
dependent data set (Figure 4D). To explore the vascular cell type in
which SLC44A3 could mediate its biological effects on MI, we used
RNAseq and functional data from two additional independent data
sets of human aortic endothelial cells (HAECs) and smooth muscle
cells (SMCs), respectively. Compared to vehicle control, SLC44A3 ex-
pression was significantly up-regulated in HAECs treated with the
pro-atherogenic inflammatory cytokine interleukin (IL)-1b
(Figure 4E). SLC44A3 expression in SMCs was also modestly, but sig-
nificantly, inversely correlated with migration towards platelet-
derived growth factor-BB in vitro (Figure 4F). Taken together, these
data provide supportive functional evidence that SLC44A3 is at least
one candidate causal at the novel MI locus on chromosome 1p21.3
locus and suggest that this putative solute carrier could promote
increased risk of plaque rupture and thrombosis through mechanisms
at the level of the artery wall.

Discussion

In the present study, we identified eight novel loci for MI through a
large-scale gene discovery effort that in total incorporated�831 000
subjects from the UK Biobank, CARDIoGRAMplusC4D Consortium,
Biobank Japan, and over a dozen angiography-based cohorts. Based
on our own meta-analyses with CARDIoGRAMplusC4D and the UK
Biobank and another recent comparable analysis,11 the strength of
the associations at the eight loci was, for the most part, stronger with
MI than with CAD. This pattern of association signals is not entirely
surprising since our primary meta-analysis was specifically for a pla-
que rupture phenotype. Various follow-up analyses provided further
evidence that six of the novel loci were either specifically or more
strongly associated with MI than with CAD. However, only one of
these loci yielded independent association with MI among subjects
with CAD in replication analyses. Thus, it is possible that some of the
novel loci may also influence risk of CAD and are therefore not truly
specific for MI. Nevertheless, our collective analyses led to the identi-
fication of eight novel genetic determinants of cardiovascular out-
comes, bringing the total number of loci associated with
atherosclerosis-related outcomes to 213.

Of the loci identified, multiple independent analytical approaches
provided evidence that the SLC44A3 locus was specifically associated
with MI, but not CAD. This association was revealed not only by our
initial meta-analysis and subsequent comparative analyses in the UK
Biobank, but were also supported by association signals in the com-
parably sized Biobank Japan that were equivalent in magnitude and
significance to those in the UK Biobank. Further and consistent asso-
ciation of the SLC44A3 locus with MI was also observed in an initial

set of 6 followed by another 10 additional independent cohorts in
which associations were tested specifically with MI among individuals
with angiographically documented CAD. Importantly, the magnitude
of the effect size of the SLC44A3 locus on MI in the context of coron-
ary atherosclerosis (OR = 1.12) was stronger than the ORs obtained
in the GWAS meta-analysis, UK Biobank, or Biobank Japan
(OR�1.05), and equivalent to some of the most significantly associ-
ated loci identified to date for CAD.11 Taken together, these results
support the notion that the biological mechanism(s) underlying the
association of the SLC44A3 locus may be related to plaque rupture
rather than plaque progression per se. In this regard, ABO was similar-
ly identified as being only associated with MI in the original study by
Reilly et al.,13 which we replicated in our analogous comparative anal-
yses with the UK Biobank and Biobank Japan. Thus, to our know-
ledge, the SLC44A3 locus represents the second and only other
genetic risk factor that is specifically associated with MI but not with
CAD. We also did not obtain evidence for association of the
SLC44A3 locus with other thrombotic phenotypes, such as stroke or
VTE. This observation is not entirely surprising since the genetic
determinants of CAD and stroke, while shared, do not completely
overlap.35 However, it should be noted that our meta-analyses for MI
had approximately 10-fold higher numbers of subjects than the VTE
GWAS.21 Thus, it is possible that power was insufficient in the
INVENT Consortium to detect an association of the SLC44A3 locus
with VTE.

The lead SNP on chromosome 1p21.3 (rs12743267) is located
�36kb upstream of the transcriptional start site for SLC44A3 and
�250kb away from the gene-encoding tissue factor or coagulation
factor III (F3). Given the known role of tissue factor in the blood co-
agulation cascade and the association of variants around its gene with
circulating D-dimer levels,19 F3 would be considered a more biologic-
ally plausible candidate gene for a thrombosis-related phenotype
such as MI. However, we did not obtain any evidence that would pri-
oritize F3 as a candidate causal gene since our lead SNP was not asso-
ciated with D-dimer levels and the lead SNP for D-dimer
(rs12029080) showed no evidence for association with MI.
Furthermore, cis eQTLs for F3 were not observed with our lead SNP
or proxy variants in any available tissue in STARNET or the GTEx
Project. Given these observations and the presence of cis eQTLs for
SLC44A3 in multiple tissues and independent data sets, we focused
on SLC44A3 as a candidate causal gene for MI. SLC44A3 is one of five
members of the SLC44 family of solute carriers (SLC44A1-5) that
have been proposed to function as choline transporters.22 However,
SLC44A1 is the only member of this transporter family for which a
role in transporting choline across both the plasma and mitochon-
drial membranes has been demonstrated by direct experimenta-
tion.36,37 In addition, the SLC44A3 locus was not associated with
plasma levels of choline, pro-atherogenic choline-derived small mol-
ecule amines, such as trimethylamine N-oxide and betaine,24,25 or
with a large panel of metabolomic and proteomic targets in plasma
and urine.32–35 Thus, additional functional studies will be needed to
demonstrate whether SLC44A3 encodes a transporter for choline or
other molecules and whether such activity would modulate levels of
metabolites that influence risk of MI.

Several lines of evidence from our functional and bioinformatics
analyses further pointed to SLC44A3 as one causal positional candi-
date on chromosome 1p21.3 and suggested that putative biological
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mechanisms through which this gene could influence plaque rupture
and/or thrombosis may be through direct effects at the level of the
vessel wall. First, SLC44A3 was expressed in MI-relevant vascular tis-
sues, such as the aorta and mammary artery. Second, co-localization
analyses carried out in atherosclerotic aorta yielded a strong poster-
ior probability for SLC44A3, but not the other genes at the chromo-
some 1p21.3 locus (i.e. F3), as being causal for MI. Third, carriers of
the MI risk allele had significantly higher SLC44A3 mRNA levels than
non-carriers, with a stronger effect size observed in atherosclerotic
aortic root than mammary artery. The same cis eQTLs for SLC44A3
were independently observed in aorta and coronary artery in the

GTEx Project. Fourth, expression analyses in two independent heart
donor data sets demonstrated up-regulation of SLC44A3 in ischaemic
coronary arteries by�50% compared to normal arteries and by�3-
fold in HAECs incubated with the pro-atherogenic cytokine IL-1b.
This latter observation suggests that SLC44A3 might be involved in
the response of HAECs to inflammatory stimuli that increase expres-
sion and secretion of various pro-atherogenic genes, such as adhesion
molecules and chemokines.38 Lastly, although we did not detect an
eQTL for SLC44A3 in SMCs (or HAECs), possibly due to insufficient
power, an in vitro assay demonstrated that SLC44A3 expression was
inversely correlated with SMC migration. In this regard, previous
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Figure 4 Functional analyses of SLC44A3 in myocardial infarction-relevant tissues. (A) In the STARNET cohort, SLC44A3 was expressed at relative-
ly high levels in tissues relevant to myocardial infarction, including atherosclerotic aortic root (aorta), visceral adipose, mammary artery, and liver.
(B) The lead single-nucleotide polymorphism at the chromosome 1p21.3 locus yielded cis eQTLs for SLC44A3 in atherosclerotic aortic root and nor-
mal mammary artery among subjects from the STARNET cohort, where the myocardial infarction risk allele (C) was associated with higher mRNA
levels. (C) A similar pattern of cis eQTLs was also independently observed with the SLC44A3 locus in aorta and coronary artery based on data from
the GTEx Project. (D) In another independent human data set, SLC44A3 expression was increased in ischaemic coronary arteries (n = 36) from heart
donors with coronary artery disease compared to normal coronary arteries from non-diseased donors (n = 24). (E) Incubation of human aortic
endothelial cells isolated from a different and independent set of anonymous heart donors (n = 53) with interleukin-1b for 4 h up-regulated SLC44A3
expression �3-fold compared to paired vehicle-treated human aortic endothelial cells. (F) Using a fourth independent human data set (n = 151),
SLC44A3 expression was also observed in smooth muscle cells and inversely correlated with migration rate towards platelet-derived growth factor-
BB in vitro.
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.
studies have shown that SMC proliferation and migration can pro-
mote secretion of extra cellular matrix proteins and the formation of
a protective fibrous cap that renders a lesion less prone to rupture.39

Taken together, these functional data and the results of our genetic
analyses collectively implicate SLC44A3 as at least one candidate
causal gene on chromosome 1p21.3 and suggest that its expression is
positively associated with MI-promoting characteristics of various
vascular cell types. However, in STARNET, SLC44A3 mRNA levels in
adipose and liver were equivalent to those observed in aorta, and
based on data from the GTEx Project, expression was also high in
kidney, pancreas, the small intestine, and colon. Moreover, the
eQTLs in GTEx for SLC44A3 in aorta and coronary artery were mod-
est relative to those observed in whole blood, heart, pancreas, liver,
and colon. In some of these tissues, such as liver, the allelic associ-
ation of rs12743267 with SLC44A3 mRNA levels was also opposite
to that observed in arterial tissues. Although these observations sug-
gest that SLC44A3 could influence risk of MI through mechanisms
related to metabolism, the SLC44A3 locus was not associated with
traditional CAD risk factors, such as lipid levels and type 2 diabetes.
Nonetheless, we still cannot rule out the possibility that SLC44A3
could also increase risk of plaque rupture via a role in other MI-
relevant tissues.

While our results point to novel and distinct genetic determinants
of MI, certain limitations of our study should still be taken into consid-
eration. First, the majority of subjects in our analyses were of
European ancestry and it is possible that some of the genetic associa-
tions may not be generalizable to other populations. However, the
SLC44A3 locus yielded an equivalent association with MI in Biobank
Japan and exhibited directionally consistent effect sizes in other Asian
populations, suggesting that at least a subset of the association signals
identified herein may also be relevant in other ethnicities as well.
Second, it is possible, albeit unlikely, that some subjects in the UK
Biobank and CARDIoGRAMplusC4D Consortium overlapped,
which could have been a confounding factor in the meta-analysis.
However, a recent analysis concluded that duplicate samples be-
tween CARDIoGRAMplusC4D and the UK Biobank were minimal
(<0.1%) and would not significantly influence test statistics.11 Third,
we did not exclude subjects with a positive family history of CAD
from the control group in the UK Biobank as was done in another re-
cent GWAS meta-analysis for CAD.11 There could also have been
misclassification in our analyses since, for example, MI and CAD may
not have been defined in exactly the same in CARDIo
GRAMplusC4D, the UK Biobank, and Biobank Japan. We note that if
such misclassifications had occurred, they would have most likely
been non-differential and biased the results towards the null. Finally,
even though SNPs with minor allele frequencies as low as 0.5% were
included in our analyses, our study was primarily focused on discov-
ery of main effects with common susceptibility alleles. However, rare
variants or GxE interactions still likely play important roles in modu-
lating risk of MI, which, along with vascular cell-specific eQTL analy-
ses, will require additional investigation.

In summary, our results identify several previously unrecognized
loci for MI and provide new avenues for exploring the pathophysi-
ology of vulnerable atherosclerotic lesions. Most importantly, our
data support the concept that some of the heritable determinants of
plaque rupture and thrombus formation are distinct from those that
contribute to development of coronary atherosclerosis, with

SLC44A3 emerging as one such potential genetic susceptibility factor.
Future studies will be needed to explore the clinical relevance of
these findings for patients at risk of MI.
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