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Abstract

A mild, versatile organophotoredox protocol has been developed for the preparation of diverse, 

enantioenriched α-deuterated α-amino acids. Distinct from the well-established two-electron 

transformations, this radical-based strategy offers the unrivaled capacity of the convergent 

unification of readily accessible feedstock carboxylic acids and a chiral methyleneoxazolidinone 

fragment and highly diastereo-, chemo- and regio-selective incorporation of deuterium 

simultaneously. Furthermore, the approach has addressed the long-standing challenge of the 

installation of sterically demanding side chains into α-amino acids.

Graphical Abstract

Isotopically labelled amino acids, particularly, the α-deuterated version, are broadly used in 

almost every sub-discipline in the life sciences for studying biosynthetic pathways,1 

enzymatic mechanisms,2 and probing the secondary and tertiary structures of peptides and 

proteins by NMR and MS techniques.3 Furthermore, the incorporation of deuterium into α-

position of amino acids can enhance metabolic stability and reduce the rate of epimerization 

of peptido and peptidomimetic therapeutics and thus enhance the efficacy and/or decrease 
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the potential toxicity (see representatives in Figure 1).4 Therefore, there is a long-standing 

interest in the synthesis and application of enantioenriched α-deuterated amino acids.5–7

In the routes available for the synthesis of chiral α-deuterated amino acids, enzyme-

catalyzed approaches including enzyme mediated deuteration of α-amino acids8 and 

enzymatic reductive amination of pyruvates,9 are largely limited by narrow substrate scope. 

The commonly used methods with the capacity of access to unnatural α-amino acids rely on 

asymmetric alkylation of deuterated glycine derived imines10 or H/D exchange of amino 

acids derived imines11 using chiral auxiliary (e.g., Schöllkopf’s bis-lactam ether) or chiral 

promoter catalyzed enolization (Scheme 1A1). Transitional metal-catalyzed C-H activation 

followed by H/D exchange12 or 1,3-deuteride transfer13 provides an alternative to 

incorporate the isotope into α-position of amino acids (Scheme 1A2). Although these 

techniques represent the state-of-the-art strategies for the synthesis of α-deuterated amino 

acids, they all rely on a polar bond connection, and therefore carrying inherent limitations 

such as poor chemo-, regio- and/or enantio-selectivity, and in many cases, moderate level of 

deuteration. Furthermore, an intrinsic limitation of these ionic strategies is difficult to 

synthesize highly sterically demanding amino acids, a class of structures widely used in the 

field of peptides and peptidomimetics to constrain their conformations, and thus improve 

their potency and/or selectivity, lipophilicity, and metabolic stability.14 To overcome these 

issues, it is clear that a new design paradigm is needed.

An open shell radical process would offer a distinct and pragmatic approach for introducing 

the bulky groups into amino acids by virtue of favorable formation of 3° radicals.15 The 

radical addition to dehydroalanine (Dha) derivatives has been demonstrated as a viable 

approach for the synthesis of α-amino acids.16 In recent efforts, notably, an efficient Giese-

type reaction of tertiary amines or halogenated pyridine with Dha derivatives is realized with 

photoredox catalysis by Jui and coworkers.17 Molander and colleagues elegantly introduced 

fluorine at the α-position of amino acids by regioselective carbofluorination of Dha 

compounds using alkyl trifluoroborate reagents as radical precursors.18 We envisioned that 

direct addition of a decarboxylative radical 4 to Dha derivatives such as (S)-

methyleneoxazolidinone 219 as a chiral inducer could lead to enantioenriched amino acids 3 
by the employment of ubiquitous, readily accessible alkyl carboxylic acids 1 as radical 

progenitors (Scheme 1B).20 The ready accessibility of feedstock alkyl carboxylic acids 1 
make possible for the synthesis of more structurally diverse amino acids. Furthermore, 

drawing from the mechanistic evidence amassed in these and our studies,17,18,21 we 

conceived that Re-face selective deuteration of the chiral anion intermediate 6 would 

potentially provide a novel approach to enantioenriched α-deuterated amino acids 3. It is 

expected that the power of the strategy is fueled by the chemo-, regio- and diastereo-

selective incorporation of bulky side chains and deuterium into α-amino acids 

simultaneously. To our knowledge, a strategy of this type has not been documented 

previously.

To investigate the feasibility of this proposal, in the initial attempt, we probed a reaction of 

deuterated methyl 2,3-O-(1-methylethylidene)-β-D-ribofuranosiduronic acid (1a, 1.5 equiv) 

as the glycosyl radical precursor and (S)-methyleneoxazolidinone 2 (1.0 equiv) as the amino 

acid surrogate, and D2O (80 equiv) as the deuterium source in the presence of a 
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photosensitizer (PS) irradiated by a 40 W Kessil blue LED (Table 1). Commonly used 

Cs2CO3 (1.5 equiv) as base in photoredox decarboxylation was tested in anhydrous 

dichloroethane (DCE) as solvent for 24 h. It should be noted that the use of deuterated acid 

and anhydrous solvent (eliminating H2O) was necessary for achieving higher deuteration 

level. It was found that the reaction efficiency was PS dependent (entries 1–3). Among the 

PS probed, mesityl acridinium salt (Mes-Acr-Me+•ClO4−) delivered the desired product 3a 
in encouraging 59% yield (entry 1), while PS with low reduction potential 

Ir[dF(CF3)ppy]2(dtbpy)PF6 (entry 2) and (4CzIPN (entry 3) failed to produce the product. In 

addition, 85% D-incorporation with excellent diastereometric ratio (dr) >20:1 was achieved. 

Further optimization reaction conditions including solvent (entry 4), the amount of D2O 

(entry 4), 1a and base and amount (entries 5 and 6and 3), and (7revealed the optimized 

reaction conditions (entry 7): 0.3 equiv of DBU, 80 equiv of D2O and anhydrous MeCN. 

The control experiments confirmed that base, light and photocatalyst were prerequisites for 

this transformation (entries 8–10).

With optimized reaction conditions in hand, we first evaluated the coupling reactions 

utilizing glycosyl carboxylic acids 1 with 2 by providing an alternative for the synthesis of 

β-glycosyl α-deuterated amino acids. The protocol worked well for the tested pentose and 

hexose to give the desired products 3a-c in moderate yield and with high level of deuterium 

incorporation at the desired α-position (Scheme 2A). It should be noted that the anomeric 

effect of the glycosyl radicals delivers highly stereoselective anomeric products, consistent 

with our previous works.22,23 Furthermore, the chiral (S)-oxazolidinone controlled the 

deuteration very well with >20:1 dr by only forming one diastereomer.

Encouraged by the above studies, we extended the strategy for the synthesis of highly 

valued, structurally diverse and unique unnatural α-deuterated amino acids, which are 

difficult to be accessed by the established polar bond connection methods (Scheme 2B–D). 

The results from the studies show that the protocol serves as a general approach to various 

unnatural α-deuterated amino acids. In the view of biological importance of the bulky side 

chains of amino acids in peptido- and peptidomimetic relevant drug discovery and biological 

studies, the difficulty in accessing them using prior methods made them an ideal starting 

point. We first paied our attention on the sterically demanding tertiary alkyl carboxylic acids 

(Scheme 2B). To our delight, despite their high steric hindrance, the tested tertiary 

carboxylic acids including adamantyl group and analogue (3d-f), cyclohexyl derivatives (3g-

l), tert-butyl group bearing various functional groups (3k-o) gave good to excellent yield 

with uniformly high diastereoselectivity (dr >20:1) and high deuteration level (91–99%). 

Moreover, the bridged structures (3p- q) could also be incorporated with high efficiency. 

Next, cyclic secondary alkyl radicals (3r-v) bearing five-, six-, and seven-membered rings 

were probed (Scheme 2C). The less hindered structures gave rise to higher yield (80–91%) 

without sacrificing deuteration level (93–98%) and diastereoselectivity (>20:1 dr). The same 

trend was observed for acyclic secondary carboxylic acid (3w-y), including the natural 

amino acid d-leucine and aldehyde precursor-acetal. This study was further expanded to 

primary carboxylic acids (3z-ae, Scheme 2D) as alkyl radical precursors, which are 

generally difficult to generate. As shown, the protocol worked smoothly for the cases of 

3z-3ae in terms of reaction yield, dr and deuteration. It should also be aware that under the 
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mild reaction conditions, this radical-based method exhibits broad functional group 

tolerance, as demonstrated for protected amines (3m, 3u and 3ae), free hydroxyl (3n), 

alkene (3l), ester (3q), ether (3a-c, 3o and 3aa), acetal (3y), carbonyl (3ac, ad), and 

heteroaromatic (3ab). No desired products were obtained under the standard reaction 

conditions for 3f, 3u, 3v, 3y, and 3ae. However, the reaction could proceed smoothly with a 

mixture of 1 (0.24 mmol), 2 (0.2 mmol) and 4CzIPN (0.01 mmol) in anhydrous DMF (2.0 

mL) irradiated with 40 W Kessil blue LEDs in N2 atmosphere at rt.

To further demonstrate the utility of this mild decarboxylative deuteration methodology, we 

performed a series of late-stage modifications on medicinal agents and natural products. As 

shown in Scheme 3A, the standard protocol (for detailed experiments, see Scheme 2, 

footnote [a] and SI) was successfully applied to natively and selectively modify bezafibrate 

and drug gemfibrozil, clinically used lipid lowering agents, to give amino acid derivatives 7 
and 8 in 79 and 68% yield, and 96 and 97% D-incorporation, respectively and with >20:1 dr. 

Moreover, an anti-inflammatory agent 3-indolacetic acid, indomethacin was efficiently 

transformed into corresponding isotopically labelled amino acid (9) in good yield (85%), 

high deuteration (97%) and excellent dr (>20:1). Finally, enoxolone (10) containing a 

secondary alcohol and an α, β-unsaturated ketone, was tolerated. Of note, a modified 

protocol using 0.6 equiv. of DBU with a 0.05M concentration was used to improve the 

reaction efficiency.

The synthesized products 3 could be conveniently transformed into α-deuterated α-amino 

acids, as showcased in the synthesis of α-deuterated Leu (11) by reacting with con. HCl for 

30 min without the erosion of deuteration level (Scheme 3B). Intrigued by the apparent 

breadth of scope, a preliminary mechanistic inquiry was conducted (Scheme 3C). Radical 

clock experiments–cyclopropyl ring-opening (12) by forming alkenyl derived amino acid 13 
suggest the presence of alkyl radicals. This observation is consistent with previously 

reported decarboxylative coupling studies.20,22,23

In summary, a mild, versatile organophotoredox protocol has been developed for the 

preparation of diverse, enantioenriched, α-deuterated α-amino acids. The distinct radical 

approach represents a significant departure from the two-electron transformations so often 

prescribed in the literature. This radical-based strategy offers the unrivaled capacity of the 

convergent unification of readily accessible feedstock carboxylic acids and a chiral 

methyleneoxazolidinone fragment and highly diastereo-,chemo- and regio-selective 

incorporation of deuterium simultaneously, which could vastly expand the domain of highly 

biologically and medicinally valued α-deuterated amino acids. Furthermore, the approach 

has addressed the long-standing challenge of the installation of sterically bulky side chains 

into α-amino acids. Customizable by design, the simplicity and efficiency of this procedure 

should resonate with medicinal chemists requiring rapid access to these highly sought 

building blocks.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Examples of α-deuterated amino acid therapeutics.
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Scheme 1. 
Synthesis of enantioenriched α-deuterated amino acids.
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Scheme 2. 
Scope of the organophotoredox-mediated asymmetric α-deuterated α-amino Acids synthesis 

with simple carboxylic acids[a]

[a] Reaction conditions: unless specified, a mixture of 1 (0.3 mmol), 2 (0.2 mmol) and Mes-

Acr-Me+•ClO4
− (0.01 mmol) in anhydrous MeCN (2.0 mL) was irradiated with 40 W Kessil 

blue LEDs in N2 atmosphere at rt for specified time. [b] Yield of isolated products. [c] 

Deuteration and dr determined by 1H NMR. [d] No desired product was obtained under the 

standard reaction conditions. The reaction was carried out, as follows: a mixture of 1 (0.24 

mmol), 2 (0.2 mmol) Cs2CO3 (0.24 mmol) and 4CzIPN (0.01 mmol) in anhydrous DMF 
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(2.0 mL) was irradiated with 40 W Kessil blue LEDs in N2 atmosphere at rt for specified 

time.
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Scheme 3. 
Late-stage functionalization of pharmaceutics and natural products, conversion to amino 

acids and radical clock reaction.

[a] Reaction conditions: unless specified, see footnote [a] in Scheme 2 and see SI. [b] Yield 

of isolated products. [c] Deuteration and dr determined by 1H NMR.
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Table 1.

Exploration and optimization
[a]

entry derivation from standard conditions yield (%),
[b]

 D-content (%)
[c]

1 Cs2CO3 (1.5 equiv) as base, anhydrous DCE as solvent for 24 h 59, 92

2 Ir[dF(CF3)ppy]2(dtbpy)PF6 as PS, Cs2CO3 (1.5 equiv) as base, and D2O (40 equiv) used in 
anhydrous DCE for 24 h

<5, nd
[e]

3 4CzIPN as PS, Cs2CO3 (1.5 equiv) as base, and D2O (40 equiv) used in anhydrous DCE for 
24 h

<5, nd
[e]

4 Cs2CO3 (1.5 equiv.) as base, D2O (40 equiv) used, anhydrous DCE as solvent for 24 h 52, 85

5 0.6 equiv of DBU used 69, 96

6 1.2 equiv of 1a used 63, 96

7 none
70 (68),

[d]
 95

8 no base
<5, nd

[e]

9 no PS
<5, nd

[e]

10 no light
<5, nd

[e]

[a]
Reaction conditions: unless specified, a mixture of 1a (0.3 mmol), 2 (0.2 mmol) and catalyst (0.01 mmol) in anhydrous MeCN (2.0 mL) was 

irradiated with 40W Kessil blue LEDs in N2 atmosphere at rt for 36 h.

[b]
Yield based on 1H NMR.

[c]
Determined by 1H NMR.

[d]
Yield of isolated products.

[e]
not determined.

Org Lett. Author manuscript; available in PMC 2021 March 06.


	Abstract
	Graphical Abstract
	References
	Figure 1.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Table 1.

