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Abstract 
Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understand-
ing of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time 
regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators 
of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of mem-
brane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein 
dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, 
time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular 
when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how 
to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids.
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The Membrane Protein Influencer

Membrane proteins execute critical cellular processes and 
enable—with incredible diversity and ingenuity—life as we 
know it. To appreciate the courage of a membrane protein 
researcher, it is illustrative to consider the typical spati-
otemporal scale and operating conditions of such biological 
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macromolecules. First, the lipid composition varies drasti-
cally in membranes across organelles, tissues, and organ-
isms—and also in-between the bilayer leaflets (Harayama 
and Riezman 2018). In addition, the lipid bilayers display a 
wide range of structural dynamics from local structural rear-
rangements (Wiener and White 1992) to transient formation 
of lipidic micro-assemblies, referred to as lipid rafts (Simons 
and Sampaio 2011). Second, membrane proteins become 
inserted into its complex lipid environment by the translocon 
machinery—itself being a protein—in a process still holding 
lingering mysteries (Cymer et al. 2015). Third, membrane 
protein function depends on carefully orchestrated subtle 
structural rearrangements of amino acid side chains and 
large-scale conformational changes that span several orders 
of magnitude on the temporal scale (Fig. 1a). The emerg-
ing view is that membrane proteins have coevolved with 
the membrane lipids to optimize functionality (Lee 2004). 
Therefore, one of the intricate regulation machineries that 
control membrane protein activity are the physicochemical 
properties of the lipids in the surrounding membrane. The 
endeavor to understand membrane protein function—and 
associated disease—should therefore ideally monitor the 
reaction directly in the native membrane on the biological 
time scale.

Prime examples of the complex protein-lipid interplay 
are voltage-gated sodium, potassium, and calcium channels 
that govern nerve impulses. In these proteins, a central ion-
conducting pore opens and closes in response to movements 
of associated voltage-sensing domains induced by changes 
in the electrical potential (Swartz 2008). The membrane in 
the vicinity of the voltage-sensing domains deforms locally 
and enables the formation of a water-filled crevice that 
hydrates critical acidic and basic amino acid residues, thus 
allowing them to keep the electrical charge—and hence the 
capability to respond to changes in the membrane potential 
(Krepkiy et al. 2009). The water hydration pattern around 
simulated isolated charge-carrying S4 helices or voltage-
sensing domains was shown to depend upon the presence of 
lipid phosphates in the surrounding membrane (Sands and 
Sansom 2007; Freites et al. 2005; Andersson et al. 2011) 
(Fig. 1b), which provides a possible molecular explanation 
of the lipid head group requirements for optimal functioning 
of voltage-gated potassium channels (Schmidt et al. 2006; 
Ramu et al. 2006; Xu et al. 2008). In membranes of heart 
cells and neurons, polyunsaturated fatty acids (PUFAs) 
activate voltage-gated potassium channels via electrostatic 
interaction (Xu et al. 2008; Borjesson et al. 2008) with spe-
cific sites of interaction predicted by molecular dynamics 
(MD) simulation (Yazdi et al. 2016). In addition, phos-
phatidylinositol 4,5-bisphosphate (PIP2) anionic lipids also 
regulate voltage-gated potassium channels, in particular the 
subcategory KCNQ channels (Kruse et al. 2012; Duncan 
et al. 2020). Regulation includes promoting the coupling 

between the central ion-conducting pore and the peripheral 
voltage-sensing domains thus affecting voltage sensitivity 
(Zhou et al. 2013; Zaydman et al. 2013; Zhang et al. 2013; 
Kim et al. 2017), which has been located to a linker region 
connecting the two domains (Rodriguez-Menchaca et al. 
2012). A crystal structure of an open-state channel resolved 
a phosphatidylglycerol (PG) lipid, which is also negatively 
charged, at the linker region (Long et al. 2007) and several 
simulations have observed a similar PIP2-interaction site 
(Kasimova et al. 2014; Kasimova et al. 2015). A second 
PIP2-interaction site has been proposed to display prefer-
ence for the closed state of the channel and could therefore 
possibly be involved in channel deactivation (Zaydman et al. 
2013; Zhang et al. 2013; Eckey et al. 2014). Indeed, MD 
simulations observed PIP2 migration between both sites 
(Chen et al. 2015). Finally, as an extreme case, PIP2 directly 
activates so-called inwardly-rectifying potassium channels 
(Huang et al. 1998).

Pentameric ligand-gated ion channels (pLGICs) bind 
neurotransmitters and govern fast synaptic transmission 
(Plested 2016). A common structural basis consists of a 
central ion-conducting pore forming in-between 4-helical 
membrane domains from the five subunits. Ligands bind to 
large extracellular subunits that transmit gating signals to 
the membrane pore region, which has been observed by e.g. 
series of crystal structures (Hu et al. 2018) and, at least par-
tially, by MD simulation (Yoluk et al. 2015; Polovinkin et al. 
2018; Guros et al. 2020; Damgen and Biggin 2020; Lev and 
Allen 2020). Several pLGICs show strict requirements for 
certain membrane lipids (Thompson and Baenziger 2020). 
Cryo-EM structures in nanodiscs composed of lipids known 
to disrupt functionality, showed significant structural change 
between agonist-bound and apo structures in the extracellu-
lar domains, but not in the membrane domains (Kumar et al. 
2020), thus providing a structural explanation for the lipid 
dependency. In addition, direct binding has been observed 
of e.g. phosphatidylglycerol (PG) (2019) and phosphatidy-
lethanolamine (PE) (Henault 2019) lipids and cholesterol 
(Henin et al. 2014; Brannigan et al. 2008;Zhu et al. 2018; 
Sharp et al. 2019), that modulates function.

G protein-coupled receptors (GPCRs) induce intracellular 
signaling in response to external binding of a wide range of 
stimuli, such as photons and small molecules (Pierce et al. 
2002). Ligand binding mediates structural rearrangements 
in the seven-transmembrane protein that results in G pro-
tein dissociation and the intracellular response. Membrane-
embedded cholesterol has been identified as critical to GPCR 
function (Oates and Watts 2011) with proposed effects on 
ligand binding (Pucadyil and Chattopadhyay 2004), stabil-
ity (Zocher et al. 2012), and oligomerization (Chakraborty 
and Chattopadhyay 2015). Advances in GPCR structural 
biology have generated more than 70 unique receptor struc-
tures and signaling complexes (Wang et al. 2020; Congreve 
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et al. 2020), which have resulted in significant insight into 
protein-lipid interactions by MD simulation approaches. For 
instance, several cholesterol-binding sites have been identi-
fied (Lee and Lyman 2012; Sengupta and Chattopadhyay 
2012; Shan et al. 2012), and also have shown that binding 

alters the conformational state of the receptor (Manna et al. 
2016). An observed decrease in the number of hydrogen 
bonds in the cholesterol-containing protein-lipid interface 
provides a possible molecular explanation to the enhanced 
conformational freedom in the presence of cholesterol 

Fig. 1   Membrane protein structural rearrangements and lipid regu-
lation. a Homology model of the human Cu+-transporting P-type 
ATPase (ATP7B) (orange) with associated regulatory domain (blue) 
inserted into a lipid bilayer. Several simulated overlayed struc-
tures visualize thermal fluctuations displayed within a single state 
of the reaction. b A simulated S4 voltage-sensor peptide (silver 
with white GGPG flanks) showing bilayer distortion as the charged 
residues (blue) become solvated by lipid phosphates and water mol-
ecules (red). The lipid headgroups and tails are displayed in yellow 
and green, respectively. Adapted from Freites et  al. (2005). c Lipid 

sites (A1 and B) hosting PC and PS lipids remodeled from a crystal 
structure at the cytoplasmic side of the Na+, K+ ATPase transporter. 
Adapted from Cornelius et  al. (2015). d Lipid-dependent dynam-
ics (magenta arrow and helix) and internal trigger (protonation state 
of residue E325) in the Lactose permease (LacY) transporter. The 
C-terminal and N-terminal domains are colored yellow and tan, 
respectively. The hydrophobic core of the membrane is colored green, 
and the polar headgroup region is depicted in orange. Adapted from 
(Andersson et al. 2012)
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(Ramirez-Anguita et al. 2018), and the affinities of choles-
terol, ganglioside (GM3), and PIP2 lipids were shown to 
differ between different conformations of GPCR structures 
(Song et al. 2019). In addition, MD simulations have also 
shown that the degree of membrane disorder, as affected by 
lipid composition, facilitate oligomerization and that nega-
tively charged lipids affect activation—but not oligomeriza-
tion (Marino et al. 2016).

Other examples of membrane proteins with function 
that depends upon the membrane lipids are ATP-dependent 
P-type ATPases that transport ions, and also lipids, against 
their gradients. The Na+,K+ P-type ATPase maintains elec-
trochemical gradients by ATP-dependent transport of three 
intracellular Na+ ions and two extracellular K+ ions across 
the membrane and thereby contributes to the membrane rest-
ing potential (Nyblom et al. 2013). Several sites of direct 
lipid-protein interaction have been identified in crystal struc-
tures (Cornelius et al. 2015) that have been shown to affect 
activation, stabilization, and inhibition of transport activity 
in detergent/lipid micelles (Habeck et al. 2017; Habeck et al. 
2015) (Fig. 1c). Such lipid-protein interaction sites have also 
been identified in crystal structures of Ca2+ P-type ATPase 
proteins that govern e.g. muscle relaxation (Drachmann 
et al. 2014). These Ca2+ transporters, or SERCA proteins, 
have adapted to the thickness of sarcoendoplasmic reticulum 
membranes (Johannsson et al. 1981) and this adaptation has 
been assigned to specific steps in the reaction cycle, such as 
phosphorylation and dephosphorylation (Michelangeli et al. 
1991). Due to the unfavorable thermodynamics involved in 
exposing water to hydrophobic amino acids in the membrane 
domain of the protein, any mismatching to the surround-
ing membrane can be expected to be minimized. Both the 
SERCA protein itself and the inner layer of the surround-
ing lipids was shown to adapt structurally to different thick-
nesses of the membrane (Sonntag et al. 2011). Such adapta-
tion has also been shown to induce tilting of the SERCA 
protein in mixed lipid-detergent micelles (Norimatsu et al. 
2017).

The archetypal member of the major facilitator super-
family, the lactose permease of Escherichia coli (LacY), 
which imports galactopyranoside sugar in a secondary active 
transport mechanism (Kaback 2015), requires phosphatidy-
lethanolamine (PE) lipids for proper insertion and active 
transport (Bogdanov et al. 2002). MD simulations identi-
fied PE-interaction sites in LacY that were unable to accom-
modate phosphatidylcholine (PC) lipids, leading to a loss of 
observed local and global functional dynamics in PC lipid 
bilayers (Andersson et al. 2012) (Fig. 1d). In addition to such 
direct lipid-protein interactions, the general physicochemical 
properties of the membrane also affect LacY structure and 
function (Bogdanov et al. 2010). While folding, stability, 
and function of LacY all depend critically on the composi-
tion of the lipid bilayer, these properties show significant 

differences in their lipid dependencies (Findlay and Booth 
2017). The LacY transporter is a cardinal example of the 
complexity of lipid regulation of membrane protein systems. 
To understand the molecular basis of how lipids can act as 
allosteric modulators, and how lipid composition can be 
engineered to curb membrane protein-associated disease, 
will take persistence, novel methodology, and courage.

The Spatial‑ Vs. Temporal‑Scale Dilemma

With technical advances and development of novel enhanced 
sampling algorithms, MD simulation has emerged as a 
powerful tool for biophysical characterization of com-
plex membrane protein systems (Enkavi et al. 2019). Even 
though unbiased, atomistic simulations cannot sample the 
biological time scale, i.e. quite frequently reaction cycles of 
tens-to-hundreds of milliseconds, certain critical aspects of 
the membrane protein reactions can be simulated at atom-
istic detail. For example, the membrane domain of P-type 
ATPases is attached to large protruding cytoplasmic domains 
in which the ATP hydrolysis takes place (Fig. 2a). These 
domains then undergo large-scale conformational changes 
that drive the transition from so-called E1 states that are 
open to the cytoplasm, to E2 states with ion-binding sites 
instead exposed to the extracellular side (Fig. 2b). While 
crystal structures of the sarcoendoplasmic reticulum cal-
cium ATPase (SERCA) protein, trapped in different modes 
of action, have contributed enormously to understanding of 
the transport reaction (Dyla et al. 2019), biophysical char-
acterization, including MD simulation, has added necessary 
details on the conformational dynamics involved in e.g. acti-
vation, inhibition, and regulation (Dyla et al. 2019; Aguayo-
Ortiz and Espinoza-Fonseca 2020).

Several crystal structures have paved way for a bet-
ter understanding of P-type ATPases that regulate cellu-
lar heavy-metal homeostasis (so-called Type-I ATPases) 
(Gourdon et al. 2011; Andersson et al. 2014; Wang et al. 
2014), but dynamic processes such as entry and release 
of ions, hydration dynamics, and membrane partitioning 
remained elusive. Predictions from MD simulations of ion 
release enabled determination of an ion-release pathway in 
Cu+-transporting P-type ATPase (CopA) proteins (Anders-
son et al. 2014). By comparing to the Type-II SERCA trans-
porter, it was clear that copper transport was associated with 
unique structural changes in the membrane domain (com-
pare Fig. 2c and d). Interestingly, the ion-release mecha-
nism in Zn2+-transporting P-type ATPase (ZntA) proteins, 
on the other hand, was reminiscent of the prototype SERCA 
reaction (Wang et al. 2014), which highlights mechanistic 
variations within the heavy metal-transporting subfamily. 
Due to the lack of crystal structures trapped in ion-binding 
states, how heavy-metal ions enter and bind to the internal 
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transport sites remain unknown. A combined modeling-
simulation approach predicted membrane partitioning of a 
protein-associated platform for ion-delivering chaperones 
and a putative ion-entry mechanism in Cu+-transporting 
(CopA) P-type ATPases (Gronberg et al. 2016). Hence, 
atomistic MD simulations can clearly provide critical insight 
into dynamical processes in membrane proteins that are dif-
ficult to assess with experimental methods, but the method 
is limited by the time scales that can be sampled, which 
frequently correspond only to a fraction of the full reaction.

Advancing towards simulations on the biological time 
scale is a continuous effort. Specialized simulation-dedi-
cated hardware (Shaw et al. 2007; Shaw et al 2014) has ena-
bled tens-to-hundreds microsecond sampling of membrane 

protein systems. For example, such simulations have pro-
vided insight into the energetics of membrane partition-
ing (Andersson et al. 2013), insertion of outer-membrane 
proteins (Lundquist et al. 2018), and mechanisms of GPCR 
receptors (Hollingsworth and Dror 2018), voltage-gated 
potassium (Jensen et al. 2012) and sodium (Boiteux et al. 
2014) channels. Another area of active research is devel-
opment of enhanced-sampling algorithms. Enhanced sam-
pling methods can enable access to free energy landscapes 
associated with simulated membrane protein conformational 
dynamics (Harpole and Delemotte 2018; Howard et  al. 
2018), and estimate e.g. lipid-binding energetics (Corey 
et  al. 2020). The accelerated weight histogram (AWH) 
method was used to understand the structural features and 

Fig. 2   P-type ATPase structure, 
transport reaction, and subtype 
differences. (a) P-type ATPase 
architecture, exemplified by 
a bacterial Cu+-transporting 
ATPase (CopA), with nucle-
otide-binding (N), phospho-
rylation (P), and actuator (A) 
domains in red, blue, and 
yellow, respectively. The part of 
the membrane domain common 
to all P-type ATPases is shown 
in white and the CopA-specific 
helices in cyan. (b) P-type 
ATPase reaction scheme show-
ing shifts in ion affinity (E1/E2) 
and accompanying phospho-
rylation events. Asterisks mark 
the existing Zn2+ and Cu+ 
ATPase crystal structures. A 
side-by-side comparison of the 
E2P (magenta)-to-E2Pi (green) 
transition of (c) SERCA and the 
(d) Cu+ ATPase highlights dif-
ferences in structural dynamics 
in the transmembrane domain 
involved in ion release (black 
spheres correspond to similar 
Cα positions in each state). 
Adapted from Andersson et al. 
(2014)
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thermodynamics underlying ammonia selectivity in aqua-
porin TIP2;1, a membrane channel permeable to both 
water and ammonia (Lindahl et al. 2018). A metadynamics 
approach based on spatial collective variables of a sugar-
uptake pathway in the LacY transporter obtained from 
extended brute-force simulations (Fig. 3a), resulted in a 
binding free energy that were in excellent agreement with 
experimental data (Kimanius et al. 2018) (Fig. 3b). Finally, 
coarse-grained (CG) simulation models enable enhanced 
sampling by reducing the degrees of freedom in the system, 
while keeping critical physicochemical properties, although 
at the cost of atomic resolution (Hedger and Sansom 2016). 
The CG description has enabled e.g. simulation of multi-
component, asymmetric biological membranes (Marrink 
et al. 2019) and also containing multiple copies of mem-
brane proteins (Chavent et al. 2016). Despite these impres-
sive advances, simulating membrane proteins in native 

membranes at the biological time scale of tens-to-hundreds 
of milliseconds at atomistic detail, does not seem possible 
within a foreseeable future.

From a different perspective, time-resolved X-ray solu-
tion scattering (TR-XSS) experiments are ideally suited to 
provide direct X-ray structural fingerprints on the biologi-
cal micro-to-milliseconds time scale, albeit at low spatial 
resolution—in a natural membrane environment. Hence, 
there is temporal and spatial complementarity between 
the simulation and TR-XSS methodologies and combining 
the two should, in principle, allow approaching one of the 
grand challenges in structural biology, namely to observe 
proteins operate in single turn-over cycles directly in the 
natural membrane environment. In TR-XSS experiments, 
a laser pulse triggers the reaction and intense, synchrotron-
generated X-ray pulses monitor the structural changes in the 
liquid sample (Fig. 4a). The methodology developed from 

Fig. 3   Sugar-binding energetics 
determined by metadynamics-
enhanced sampling. a LacY 
crystal structure open towards 
the periplasm inserted into a 
lipid bilayer with hydrophobic 
core and polar headgroups in 
brown and green, respectively, 
with water molecules solvating 
both sides of the membrane. 
Extended, unbiased MD simula-
tions identified a sugar-uptake 
pathway from the periplasm 
(dashed arrow). b Metady-
namics simulations using the 
location of the uptake pathway 
(Z and S) as collective variables 
determined the free energy 
associated with sugar uptake 
and binding with excellent 
agreement to experimental data. 
Adapted from Kimanius et al. 
(2018)
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studies tracking the time-dependent formation of transient 
structural intermediates of photoactive chemicals, such as 
I2 (Neutze et al. 2001), CH2I2 (Davidsson et al. 2005), and 
C2H4I2 (Ihee et al. 2005), as well as expansion of the sur-
rounding solvent matrix (Georgiou et al. 2006). Because the 
heavy atoms are strong X-ray scatterers, relatively subtle 
structural rearrangements result in prominent difference 
scattering profiles that extend to the wider angles, i.e. con-
tains structural information of higher resolution. The sensi-
tivity of the TR-XSS method was showcased by resolving 
high-resolution temporal and spatial differences in the dis-
sociation and recombination following photoactivation of 
CH2I2 in solvents of varying polarity (Vincent et al. 2009). 
However, protein large-scale conformational changes involve 
thousands of atoms and present a very different scenery for 
TR-XSS visualization. Nevertheless, MD simulations pre-
dicted the feasibility of such studies (Andersson et al. 2008).

Monitoring Conformational Dynamics 
in Light‑Sensitive Proteins

Conventional, i.e. not resolved in time, small-angle and 
wide-angle X-ray scattering (SAXS/WAXS) experiments 
result in data that is a rotational and conformational aver-
age of the protein structure, observed as concentric rings 
on the detector. After radial integration, the structural data 
are represented as scattering intensity as a function of the 
scattering vector q, where q acts as an atomic ruler (Fig. 4b). 
At q < 0.2 Å−1, the global shape and approximate size of 
the protein is observed. With widening scattering angles, 
i.e. at higher q, successively more detail is probed in the 
protein structure: interactions between internal domains (0.2 
< q < 0.4 Å−1), interactions between secondary structural 
elements (0.4 < q < 0.6 Å−1), and between individual side 
chains (q > 0.6 Å−1). However, because the protein mol-
ecules tumble around in the sample, the high-resolution data 
is inaccessible. In addition, obtaining a unique structural 

solution of the 1-dimensional scattering spectrum, poses an 
immense challenge. TR-XSS experiments monitor only the 
structural differences in the sample, and hence reduce the 
complexity of the data enormously. Also, the experimental 
data contain information of the structural changes of all the 
atoms in the protein molecule, in contrast to traditional spec-
troscopic methods that register the immediate environment 
around a certain probe. To obtain the difference scattering 

Fig. 4   Schematic of the TR-XSS experimental design and resolved 
membrane protein dynamics. a The pump laser pulse arrives at the 
sample in the capillary (either static or at a continuous flow rate) 
before the onset of the X-ray probe pulse, which yields concentric 
rings on the detector. Subtracting non-activated images from the 
laser-activated images results in difference images that contain the 
time-resolved structural data. b Conventional X-ray scattering pro-
files from two P-type ATPase protein structures (black and red lines), 
where q = 4π sin(θ)/λ = 4π/2d, where 1/d is the resolution in X-ray 
crystallography. E.g. q = 0.2 Å−1 corresponds to distances of approxi-
mately 30 Å, and q = 1.0 Å−1 to approximately 6 Å. An example of 
a difference TR-XSS spectrum is shown in the inset. c Bacteriorho-
dopsin TR-XSS data identified structures and kinetics of two transient 
intermediates at 22 μs and 1.9 ms with a subsequent relaxation back 
to the ground state in 16 ms. The structural changes were about twice 
those observed in crystal structures and revised the bacteriorhodopsin 
transport mechanism. Adapted from Andersson et al. (2009)

▸
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profile, a spectrum obtained without laser excitation is sub-
tracted from that registered at a particular point in time after 
the laser flash. On the micro-to-milliseconds time scale, 
the obtained difference spectra suffer from low signal-to-
noise ratio. Therefore, the TR-XSS experiment needs to be 
repeated typically hundred to thousands of times, which sets 
demands on sample size.

Another important prerequisite for a successful TR-XSS 
experiment is that a large enough population of the species 
to be studied needs to be activated simultaneously. In this 
way, synchronized structural dynamics will be performed 
as the reaction propagates, which directly affects the experi-
mental signal-to-noise. Fast-mixing devices can trigger e.g. 
protein folding/unfolding (Akiyama et al. 2002), and laser 
activation can provide an exact trigger—given that the reac-
tion is photosensitive. In the first TR-XSS protein experi-
ment, conformational changes of human hemoglobin were 
resolved at nanosecond time resolution (Cammarata et al. 
2008). Laser-induced release of bound carbon monoxide 
was used to trigger the reaction, which then was followed 
from 200 ns to 32 ms. The protein was observed to form 
the ‘tense’ structure, which is stable in the absence of the 
ligand, in less than 100 μs. Light-sensitive proteins carry 
an inherent light trigger and are hence prime candidates for 
TR-XSS characterization. Such experiments have increased 
understanding of how bacterial sensor histidine kinases 
induce signaling networks in bacteria (Takala et al. 2014; 
Berntsson 2017). In particular, local structural rearrange-
ments were resolved on the μs timescale in the vicinity of the 
chromophore with a subsequent rotational conformational 
change occurring within a few milliseconds (Björling 2016).

The first TR-XSS study of a membrane protein focused, 
not surprisingly, on archaeal rhodopsins including the pro-
ton transporter bacteriorhodopsin, well-known for its sta-
bility (Andersson et al. 2009). Structural modeling of the 
time-resolved data involved rigid-body movements based 
on morphing trajectories extracted from a plethora of avail-
able bacteriorhodopsin crystal structures trapped in dif-
ferent states of the photocycle. The resulting structures of 
transient states at 22 microseconds and 1.9 milliseconds 
showed that the laser-triggered isomerization of the retinal 
cofactor induced helical rearrangements that increased over 
time (Fig. 4c). Helical movements were present already in 
advance of the so-called primary proton transfer at the reti-
nal, which was in agreement with trapped crystal structure 
intermediates showing reorganization of the internal H-bond 
network (Edman et al. 2004; Neutze et al. 2002; Royant 
et al. 2000). The observed conformational changes in the 
detergent-micelle solution were about twice the magnitude 
of those observed in protein crystals, which showcases the 
restriction posed by crystal lattices. Following the proof-
of-principle membrane protein TR-XSS study, conforma-
tional changes have also been recorded for proteorhodopsin 

in detergent-micelles (Malmerberg et al. 2011) and bovine 
rhodopsin in native rod disc membranes from the bovine 
retina (Malmerberg et al. 2015).

Indirect Activation of Membrane Protein 
Dynamics

Transition of the TR-XSS methodology to include mem-
brane proteins not inherently sensitive to light requires 
finding an indirect means of activating the protein. Caged 
compounds containing photoremovable groups provide 
control over release of e.g. ions, neurotransmitter, and ATP 
molecules (Klan et al. 2013) —and constitutes a possible 
indirect trigger of protein activity (Fig. 5a). Light-induced 
ATP release from caged ATP has been used to monitor 
P-type ATPase activity and time-dependent evolution of 
structural features with Fourier-Transform Infra-Red (FTIR) 
spectroscopy (Barth et al. 1996; Ravishankar et al. 2018). 
Caged ATP activation was also used in early grazing X-ray 
incidence diffraction studies to trigger synchronization of 
SERCA reaction cycles and monitoring of intermediate 
states in partially dehydrated multilayers (Blasie et al. 1985). 
However, such lamellar diffraction experiments can only 
resolve profile differences perpendicular to the membrane 
normal, while solution-scattering studies in principle enable 
structural determination of 3-dimensional protein envelopes. 
Nevertheless, the early X-ray studies further showed feasi-
bility for caged ATP triggering of P-type ATPase transport 
dynamics. Because caged compound activation is an irre-
versible reaction, the protein solution needs to flow continu-
ously across the focal spots of the laser and X-rays, which 
sets immense demands on the experimental setup and access 
to large quantities of the membrane protein.

In the first TR-XSS experiment on a non-light sensitive 
membrane protein, structural dynamics were recorded in sar-
coplasmic reticulum (SR) membranes from rabbit skeletal 
muscle from 20 μs to 200 ms following laser-activation of 
caged ATP (Ravishankar et al. 2020) (Fig. 5b). The protein 
content in SR membranes consist to 90% of the SERCA 
protein (Meissner et al. 1973), which enabled monitoring 
activity directly in the native membrane. The time-resolved 
data contained structural fingerprints of two transient inter-
mediate states, at 1.5 ms and 13 ms, respectively (Fig. 5c). 
Development of a structural refinement protocol based on 
MD simulation enabled structural interpretation of the iden-
tified transient states. In this way, the 1.5-ms intermediate 
was found to represent a calcium-bound state where the 
cytoplasmic domains had closed upon the ATP substrate 
(Fig. 5d). Such domain movements had also been observed 
in X-ray crystallography (Dyla et al. 2019). In contrast, 
refinement of the 13-ms intermediate showed a novel 
arrangement of the cytoplasmic domains (Fig. 5d). In this 



59Tracking Membrane Protein Dynamics in Real Time﻿	

1 3

state, the ADP-binding site was exposed and the so-called 
actuator (A) domain, which dictates membrane opening and 
closing, was positioned in-between the principal locations 
that determine whether the transporter is opened towards the 
cytoplasm or the SR lumen (Fig. 5e). The existence of such a 
state had been inferred from biochemical (Danko et al. 2009) 
and fluorescence microscopy data (Dyla et al. 2017). Hence, 
the TR-XSS study presented new structural information and 
kinetics for the decisive “moment of truth” intermediate of 
SERCA inward-to-outward transport in a native membrane 
(Fig. 6). This work highlights TR-XSS in combination with 
MD simulation as a powerful tool to determine structures 
of transient, high-energy intermediates of membrane pro-
teins in complex lipid settings. The structural refinement 
relies on existence of high-resolution data, and the TR-XSS 

methodology should therefore be viewed as a complemen-
tary structural-biology technique that is highly timely since 
it capitalizes on advances in e.g. cryogenic electron micros-
copy (cryo-EM).

Future Perspective

Identification of structural dynamics of the protein and sur-
rounding membrane is key to understanding membrane pro-
tein function. While the TR-XSS methodology holds great 
promise to contribute to the membrane protein field, the 
technique is far from standardized and much developmental 
work is required. For instance, the proof-of-principle TR-
XSS characterization of a membrane protein using indirect 

Fig. 5   TR-XSS characterization of Ca2+ ATPase (SERCA) kinetics 
and structural dynamics. a The chemistry of laser-induced release 
of ATP from caged ATP. b TR-XSS data of SERCA in native mem-
branes (black). The red lines display reconstituted data according to 
the best-fitting kinetic model. c Temporal shifts in the population 
densities of the identified transient states; early (black), interme-
diate (red), and late (blue). d Refined TR-XSS models of prepulse, 

intermediate, and late states are shown with the closest correspond-
ing crystal structure (white) and rise times from the kinetic analysis. 
e Structural differences in the A domain between the late TR-XSS 
model (yellow), the preceding [Ca2]E1P:ADP crystal structure (blue), 
and the subsequent E2P crystal structure (magenta). The N and M 
domains are colored red and gray, respectively. The arrow indicates 
the forward reaction. Adapted from Ravishankar et al. (2020)
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activation targeted a P-type ATPase protein (Ravishankar 
et al. 2020). These transporters are exceptional in that the 
cytoplasmic domains in P-type ATPases protrude signifi-
cantly from membrane and undergo large-scale confor-
mational change. Therefore, it was possible to model the 
X-ray scattering data without accounting for dynamics in the 
membrane. To pave way for similar characterization of less 
pronounced structural changes in proteins lacking protruding 
domains, strategies to handle contributions from the sur-
rounding lipids need to be developed. In fact, this presents 
an opportunity to explore the allosteric nature of membrane 
lipids. Given the developments within the field of caged-
compound chemistry (Klan et al. 2013), electric-field-stim-
ulated protein dynamics in time-resolved crystallography 
(Hekstra et al. 2016), and synthetic photoswitches (Gorostiza 
and Isacoff 2008), several possible target proteins can now 
be envisioned. Also, advances of X-ray free-electron lasers 
(XFELs) delivering extremely brilliant X-ray pulses have 
provided access to picosecond structural dynamics, exem-
plified by myoglobin (Levantino et al. 2015) and a bacterial 
photosynthetic reaction center (Arnlund 2014). Finally, MD 
simulations can enable refinement of TR-XSS data. How-
ever, such approaches have so-far been case-specific and 
can potentially suffer from limited sampling, in particular 

of dynamics of proteins inserted into complex lipid bilayers. 
While the SERCA MD-based refinement protocol utilized 
enhanced sampling (Ravishankar et al. 2020), more sophis-
ticated methods have been suggested. For example, energetic 
restraints can enable driving simulations toward agreement 
with experimental data using a harmonic biasing potential 
(Chen and Hub 2015; Björling et al. 2015) or a metady-
namics collective variable (Kimanius et al. 2015). Despite 
the challenges, TR-XSS characterization has emerged as a 
powerful tool in structural biology to probe protein and lipid 
dynamics and holds great potential to contribute to under-
standing of membrane protein functioning and associated 
disease.
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pulse state shows reduced opening of the cytoplasmic domains, the 
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motif is represented by a green rectangle, and phosphorylated aspar-
tic acid in yellow, and the calcium ions are depicted as green circles. 
Adapted from Ravishankar et al. (2020)
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