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Targeting Bruton tyrosine kinase using 
non‑covalent inhibitors in B cell malignancies
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Abstract 

B cell receptor (BCR) signaling is involved in the pathogenesis of B cell malignancies. Activation of BCR signaling 
promotes the survival and proliferation of malignant B cells. Bruton tyrosine kinase (BTK) is a key component of BCR 
signaling, establishing BTK as an important therapeutic target. Several covalent BTK inhibitors have shown remarkable 
efficacy in the treatment of B cell malignancies, especially chronic lymphocytic leukemia. However, acquired resist-
ance to covalent BTK inhibitors is not rare in B cell malignancies. A major mechanism for the acquired resistance is the 
emergence of BTK cysteine 481 (C481)  mutations, which disrupt the binding of covalent BTK inhibitors. Additionally, 
adverse events due to the off-target inhibition of kinases other than BTK by covalent inhibitors are common. Alter-
native therapeutic options are needed if acquired resistance or intolerable adverse events occur. Non-covalent BTK 
inhibitors do not bind to C481, therefore providing a potentially effective option to patients with B cell malignancies, 
including those who have developed resistance to covalent BTK inhibitors. Preliminary clinical studies have sug-
gested that non-covalent BTK inhibitors are effective and well-tolerated. In this review, we discussed the rationale for 
the use of non-covalent BTK inhibitors and the preclinical and clinical studies of non-covalent BTK inhibitors in B cell 
malignancies.
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Background
B cell receptor (BCR) signaling plays a crucial role in B 
cell development and adaptive immune response and 
also contributes to the pathogenesis of different types of 
B cell malignancies [1, 2]. The BCR signaling cascades 
involve several essential kinases, including spleen tyros-
ine kinase (SYK), Bruton tyrosine kinase (BTK), and 
phosphatidylinositol-3-kinase (PI3K) (Fig.  1) [1]. Briefly, 
BCR ligation by antigen leads to phosphorylation of 
immunoreceptor tyrosine-based activation motif (ITAM) 
of CD79A and CD79B, thereby recruiting SYK [1]. SYK 
then phosphorylates and activates BTK. BTK activa-
tion initiates further downstream signaling pathways 

including nuclear factor-κB (NF-κB) pathway, MAPK/
ERK pathway, and other pathways.

The essential role of BTK in BCR signaling makes it 
an ideal target for suppressing BCR signaling. BTK was 
originally identified as a non-receptor protein tyrosine 
kinase in 1993 [3, 4]. BTK is a member of the Tec fam-
ily kinases, which contain interleukin-2-inducible T cell 
kinase (ITK), tyrosine kinase expressed in hepatocellu-
lar carcinoma (TEC), resting lymphocyte kinase (RLK), 
and bone marrow expressed kinase (BMX)[5]. BTK 
loss-of-function mutations result in X-linked agam-
maglobulinemia, a type of immunodeficiency that is 
characterized by the lack of mature B cells and immu-
noglobulins and consequent opportunistic infections 
in young boys [3, 4], highlighting the importance of 
BTK in B cell development and humoral immunity. The 
process of B cell development and the role of BCR in 
this process are described in Fig. 2. BTK comprises five 
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different protein interaction domains, which include an 
amino-terminal pleckstrin homology (PH) domain, a 
proline-rich TEC homology (TH) domain, SRC homol-
ogy (SH) domains SH2 and SH3, and a kinase domain 
(Fig.  3) [6, 7]. BTK has two critical tyrosine phospho-
rylation sites, Y223 in the SH3 domain and Y551 in the 
kinase domain. During BCR signaling, the phosphoryl-
ation by SYK at Y551 enhances the catalytic activity of 
BTK and initiates subsequent Y223 autophosphoryla-
tion [7]. BTK inhibitors, including covalent and non-
covalent inhibitors, bind to the BTK kinase domain 
and block the catalytic activity of BTK, thereby sup-
pressing subsequent Y223 autophosphorylation [6]. 
Several covalent BTK inhibitors, including ibrutinib, 

acalabrutinib, zanubrutinib, and orelabrutinib, have 
been developed for targeting BTK in B cell malignan-
cies [8–11]. These covalent inhibitors have shown 
remarkable efficacy in B cell malignancies, including 
chronic lymphocytic leukemia (CLL), mantle cell lym-
phoma (MCL), Waldenström’s macroglobulinemia 
(WM), and marginal zone lymphoma (MZL). How-
ever, treatment failure due to drug resistance or adverse 
events (AEs) is not rare in clinical practice. Overcom-
ing drug resistance and reducing severe AEs are of 
vital importance to improve the outcomes of patients. 
Using non-covalent BTK inhibitors could be a strategy 
for overcoming drug resistance and reducing adverse 
events. In this review, we discussed the rationale of the 

Fig. 1  BCR signaling. The binding of antigens to the B cell receptor leads to the phosphorylation of the intracellular immunoreceptor 
tyrosine-based activation motifs (ITAMs) of CD79A and CD79B. The phosphorylation of CD79A/CD79B initiates SYK activation, which then results 
in BTK activation and subsequent PLCG2 activation. This signal cascade ultimately leads to the activation of NF-κB and MAPK/ERK pathways, 
contributing to the survival and proliferation of CLL cells. BTK and PLCG2 mutations are detected in BTK inhibitor-resistant CLL cases
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application of non-covalent BTK inhibitors and their 
preclinical and clinical studies in B cell malignancies.

Covalent BTK inhibitors
Several covalent BTK inhibitors, which include ibruti-
nib, acalabrutinib, and zanubrutinib, have been tested 
in clinical trials and have been approved for treating 
patients with B cell malignancies. The results of phase 
III studies with covalent BTK inhibitors are summa-
rized in Table  1. Ibrutinib (PCI-32765) is an irrevers-
ible, highly potent small molecule BTK inhibitor that 
covalently binds to cysteine481 (C481) in the active site 
of BTK and blocks the full activation of BTK by inhibit-
ing its autophosphorylation at tyrosine 223, suppressing 
signaling downstream of BTK (Fig. 4a, c) [12]. Ibrutinib 
has shown remarkable efficacy in CLL, MCL, WM, and 

MZL [8, 10, 13–16]. The use of ibrutinib has revolu-
tionized the treatment of B cell malignancies, especially 
CLL. Several phase III trials have demonstrated the 
superiority of ibrutinib monotherapy in both relapsed/
refractory and treatment-naïve CLL patients [8, 14–18]. 
A recent pooled analysis of four clinical trials showed 
that first-line ibrutinib treatment resulted in high long-
term efficacy (progression-free survival 79% and over-
all survival 88% at 48  months) in CLL patients with 
TP53 aberrations, a group of patients with historically 
poor prognosis [19]. Combinations of ibrutinib with 
other novel drugs or regimens result in more profound 
responses and much higher rates of minimal residual 
disease (MRD) negativity [20, 21]. Other covalent BTK 
inhibitors, including acalabrutinib and zanubrutinib 
[9, 22], have also shown promising efficacy in B cell 

Fig. 2  BCR in B cell development. In the bone marrow, progenitor B (pro-B) cells undergo the rearrangement and development of immunoglobulin 
heavy-chain variable (V), diversity (D), and joining (J) gene segments to form the pre-BCR. The pre-BCR is an immature form of the BCR providing 
signals for survival, proliferation, and cellular differentiation. After light-chain gene rearrangement occurs, immature B cells express BCR, leave the 
bone marrow, and mature in the periphery. Mature B cells undergo somatic hypermutation (SHM) driven by the expression of activation-induced 
cytidine deaminase (AID) in the germinal center (GC) to complete BCR affinity maturation and antibody diversification. The genotoxic stress 
induced by SHM may lead to the apoptosis of these B cells. However, the continuous BCR signaling could provide pro-survival signals for these 
B cells, thereby preventing them from apoptosis. Therefore, B cells deficient in Bruton tyrosine kinase tend to undergo apoptosis during the 
development. The B cells that have completed affinity maturation and antibody diversification then undergo class-switch recombination (CSR), after 
which they develop into memory B cells with high-affinity BCRs or plasma cells secreting antibodies. DZ, dark zone; LZ, light zone; FDC, follicular 
dendritic cell; Tfh cell, T follicular helper cell
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malignancies. Although the covalent BTK inhibitors are 
effective in B cell malignancies, resistance to these BTK 
inhibitors, including primary and acquired resistance, 
is frequent in patients with B cell malignancies [23]. 
The major mechanisms for the resistance to the cova-
lent BTK inhibitors are summarized in Table  2. Here, 
we briefly discussed the mechanisms for the acquired 
resistance to covalent BTK inhibitors.

Acquired resistance to BTK inhibitors
Despite the clinical success ibrutinib has achieved, it 
should be noted that CLL progression or Richter trans-
formation (RT) occurs in a subset of CLL patients admin-
istrated with ibrutinib [24]. Most of the patients who 
experience CLL relapse have BTK C481 mutations and 
less commonly PLCG2 mutations [24]. The BTK C481 
mutations, most of which are BTK C481S, involve the 
cysteine where ibrutinib binding occurs, rendering ibru-
tinib unable to inhibit BTK and downstream pathways. 
BTK C481 mutations are also detected in approximately 
30% of patients who underwent RT on ibrutinib, suggest-
ing BTK C481 mutations could be involved in mediating 
RT on ibrutinib [25]. Ibrutinib resistance has also been 
observed in WM patients with active ibrutinib therapy. 
BTK C481 mutations are commonly observed in WM 
patients who experienced progression, suggesting BTK 
C481 mutations are also responsible for ibrutinib resist-
ance in WM [26]. Both primary resistance (10.2–35%) 
and acquired resistance (17.5–54%) to ibrutinib are 

common in ibrutinib-treated patients with MCL [27]. 
Acquired BTK C481S mutation is detected in a small 
proportion of MCL patients who relapsed after ibrutinib 
therapy [28].

Disease progression due to drug resistance has also 
been reported in patients treated with other covalent 
inhibitors. According to the study by Woyach et al., with 
a median follow-up of 47.5 months, CLL relapse occurred 
in 17 of 105 CLL patients on acalabrutinib therapy [29]. 
BTK C481 mutations were identified in 11 of these 16 
patients, indicating that the mechanism for acalabrutinib 
resistance is similar to that for ibrutinib resistance [29]. 
Thirty-one percent of R/R MCL patients on acalabrutinib 
had disease progression with a median follow-up of only 
15.2 months. The mechanisms responsible for acalabru-
tinib resistance in MCL have not been characterized yet 
[30]. The acquired resistance also occurs in CLL patients 
treated with zanubrutinib, although at a relatively low 
rate [22]. CLL patients progressing on zanubrutinib had 
concurrent BTK Leu528Trp and BTK C481 mutations 
[31]. The co-occurrence of BTK Leu528Trp and BTK 
C481 mutations suggests these mutations may cooperate 
in mediating resistance to zanubrutinib.

Adverse events of covalent BTK inhibitors
In addition to ibrutinib resistance, ibrutinib intolerance 
is also a concern in patients treated with ibrutinib, fre-
quently leading to ibrutinib discontinuation [32, 33]. 
Some kinases also harbor a modifiable cysteine residue 
that is homologous to C481 in BTK; therefore, these 

Fig. 3  The structural diagram of Bruton tyrosine kinase (BTK). The BTK protein is a 77 kDa protein of 659 amino acids, which contains five different 
protein interaction domains. There are two critical tyrosine phosphorylation sites, Y223 in the SH3 domain and Y551 in the kinase domain. BTK 
inhibitors bind to the BTK kinase domain and blocks the catalytic activity of BTK. Currently available covalent BTK inhibitors, including ibrutinib, 
acalabrutinib, zanubrutinib, and orelabrutinib, selectively bind to C481 residue in the allosteric inhibitory segment of the BTK kinase domain. The 
non-covalent BTK inhibitors do not bind to C481. For example, ARQ 531 binds to BTK by forming hydrogen bonds with E475 and Y476 residues [56]. 
Fenebrutinib forms hydrogen bonds with K430, M477, and D539 residues [50]
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kinases could also be inhibited by ibrutinib [34]. A variety 
of receptor tyrosine kinases and non-receptor tyrosine 
kinases, including EGFR, ITK, TEC, ERBB4, BMK, JAK3, 
and HER2 [35], are covalently inhibited by ibrutinib. 
The inhibition of these non-BTK kinases accounts for 
part of the AEs related to ibrutinib. The common AEs in 
patients treated with ibrutinib include diarrhea, bleeding, 
atrial fibrillation, infection, and others, and serious AEs 
may cause discontinuation. According to a pooled analy-
sis, diarrhea occurred in approximately half of the CLL 
patients treated with ibrutinib and 5% of patients had 
grade 3 diarrhea [36]. Ibrutinib-related diarrhea could 
be attributed to the inhibition of EGFR [37]; however, 
the exact mechanism remains to be determined. Bleed-
ing/bruising events occurred in 55% of CLL patients on 
ibrutinib therapy, and 7.6% of patients experienced major 
hemorrhage events [36]. The inhibition of BTK and other 
Tec family kinases impairs glycoprotein VI signalings, 
suppressing platelet aggregation, and thereby contribut-
ing to bleeding events [38–40]. Approximately 11% of 
CLL patients developed atrial fibrillation during ibrutinib 
monotherapy, and 5% of patients developed grade 3 atrial 
fibrillation [36]. It should be noted that the frequency 
of atrial fibrillation is various in different studies, with 

younger patients having a lower rate of atrial fibrillation 
(7.4% in the E1912 study) [15]. Ibrutinib inhibits BTK and 
TEC in cardiac tissue, resulting in the downregulation of 
the cardiac PI3K/AKT pathway. It has been reported that 
reduced PI3K/AKT activity increased the susceptibility 
to atrial fibrillation [41]. Therefore, ibrutinib may lead 
to atrial fibrillation by inhibiting the PI3K/AKT pathway 
in cardiac tissue [42]. Infection was prevalent (83%) in 
CLL patients on ibrutinib therapy, and grade 3 or 4 infec-
tion occurred in 29% of patients [36]. The significantly 
increased risk of infection could be caused by immune 
impairment, which is attributed to the inhibition of ITK 
in T cells and BTK in macrophages [43]. Other common 
AEs include arthralgia, fatigue, hypertension, and rash. 
Consistently, the second-generation covalent BTK inhibi-
tors, including acalabrutinib, zanubrutinib, and orelabru-
tinib, bind to C481 residue. Current studies have shown 
that the second-generation covalent BTK inhibitors have 
higher specificity and fewer off-target toxicities, while 
still cause adverse events. For instance, headache (43%) 
and diarrhea (39%) were very common in acalabrutinib-
treated relapsed CLL patients [44]. Further, the follow-up 
of patients treated with these second-generation cova-
lent BTK inhibitors is relatively short compared to those 

Fig. 4  Mechanisms for the action of representative BTK inhibitors. a Chemical structure of the covalent BTK inhibitor ibrutinib. b Chemical structure 
of the non-covalent BTK inhibitor ARQ 531. c Ibrutinib covalently binds to BTK cysteine 481 (C481), competes with ATP in the ATP binding pocket, 
and inhibits autophosphorylation of BTK. The action of ibrutinib requires its binding to BTK C481, and BTK C481 mutations abrogate the binding of 
ibrutinib and lead to the resistance to ibrutinib. d ARQ 531 non-covalently interacts with BTK, occupies the ATP binding pocket, and inhibits BTK 
autophosphorylation. The effect of ARQ 531 does not require its binding to BTK C481. Therefore, ARQ 531 remains active in patients with BTK C481 
mutations. c, d were made by using PyMOL 0.99
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treated with ibrutinib, so that longer follow-up is war-
ranted to observe potential adverse events.

Non‑covalent BTK inhibitors in B cell malignancies
Non-covalent BTK inhibitors do not bind to C481 
(Figs.  3, 4d), therefore providing a potentially effective 
option to patients with B cell malignancies, including 
those who are resistant to covalent BTK inhibitors due 
to BTK C481 mutations. These non-covalent BTK inhibi-
tors could administrate to patients who have not received 
covalent BTK inhibitors previously to reduce the risk of 
acquired resistance; meanwhile, they may also have fewer 
side effects caused by the off-target inhibition of kinases 
other than BTK. Several non-covalent BTK inhibitors 
have been studied and have shown promising efficacy 
and manageable safety profiles. The clinical trials involv-
ing non-covalent BTK inhibitors are summarized in 
Table 3.

Vecabrutinib (SNS‑062)
Vecabrutinib is a selective, reversible, non-covalent 
BTK inhibitor with nanomolar potency. In  vitro studies 

have demonstrated vecabrutinib shows activity against 
both wild-type and C481S-mutated BTK. Vecabrutinib 
decreases surface expression of B cell activation markers 
and viability of primary cells from CLL patients, resulting 
in a phenotypic alteration that is comparable to ibrutinib 
[45]. Vecabrutinib also inhibits ITK but not EGFR; there-
fore, it may have less EGFR-mediated toxicities including 
rash and diarrhea [46].

A phase I study of vecabrutinib that enrolled 32 healthy 
participants was completed [47]. All AEs were grade 
1, including headache (n = 5) and nausea, constipa-
tion, bronchitis, fatigue, orthostatic hypotension, and 
supraventricular tachycardia (n = 1 each), except for 1 
subject who received 300  mg vecabrutinib experienc-
ing grade 2 headache and fatigue [47]. The occupation 
produced by vecabrutinib and duration of BTK inhibi-
tion is encouraging [47]. A phase Ib/II dose-escalation 
and cohort-expansion study is ongoing in patients with 
relapsed/refractory advanced B cell malignancies who 
progressed on covalent BTK inhibitor therapy. Accord-
ing to the reported data, 27 patients (CLL, n = 21; MCL, 
n = 2; WM, n = 3; MZL = 1) have been treated with 

Table 2  Resistance mechanisms to BTK inhibitors in B cell malignancies

BTK Bruton tyrosine kinase, MCL mantle cell lymphoma, WM Waldenstrom’s macroglobulinemia, DLBCL diffuse large B cell lymphoma, CLL/SLL chronic lymphocytic 
leukemia/small lymphocytic lymphoma, MZL marginal zone lymphoma

B cell malignancy subtype Covalent BTK inhibitors Mechanisms underlying resistance

Primary resistance

MCL Ibrutinib Mutations involving NF-κB pathway: A20 mutations, TRAF2 mutations, BIRC3 
mutations or BIRC2 mutations, RELA E39Q mutation, and others [76, 77]

Sustained PI3K/AKT/mTOR activation [28, 78]
Tumor microenvironment [79]
Metabolic reprogramming toward oxidative phosphorylation and glutaminoly-

sis [80]
CCND1 mutation [81]

WM Ibrutinib CXCR4 WHIM-like mutations [82]

DLBCL Ibrutinib PIM1 mutation [83]
PI3K/AKT activation [84]
MAPK activation [84]
Aberrations activating NF-κB pathway: CARD11 mutation, A20 aberrations [85]
High expression of PDGFD [86]

Acquired resistance

CLL/SLL Ibrutinib BTK C481 and T474 mutations [24, 87, 88]
PLCG2 mutations (R665W, S707, L845F, and others) [87]
del(8p) [89]

CLL/SLL Acalabrutinib BTK C481 mutations and T474I mutation, PLCG2 mutations [29]

CLL/SLL Zanubrutinib BTK Leu528Trp mutation and C481 mutation [31]

MCL Ibrutinib BTK C481S mutation [28]
PLCG2 mutations [76]
CARD11 mutation [76]
Tumor microenvironment [79]

WM Ibrutinib BTK C481 mutations [26]
PLCG2 Tyr495His mutation [26]

MZL Ibrutinib BTK C481S mutation [90]
PLCG2 R665W [90]

DLBCL Ibrutinib BTK C481S mutation [91]
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doses ranging from 25 to 300  mg, twice daily [48]. The 
maximum tolerated dose (MTD) has not been reached. 
Data regarding safety are available for 24 patients; the 
most frequent AEs included anemia (37.5%), neutrope-
nia (25%), night sweats (25%), and headache (25%) [48]. 
Grade 3 drug-related AEs included alanine aminotrans-
ferase (ALT) elevation, neutropenia and worsening 
anemia (all in 1 patient), and leukocytosis (2 patients). 
Regarding efficacy, no response was observed, and 4 
CLL patients, including three with BTK C481S mutation, 
showed stable disease. Preliminary results revealed that 
vecabrutinib in dose levels from 25 to 200 mg twice daily 
was safe in patients with B cell malignancies. The 300 mg 
twice daily dose level was being evaluated when the study 
was presented at the 2019 American Society of Hematol-
ogy (ASH) meeting [48]. Vecabrutinib shows manageable 
safety profiles, while its efficacy in patients with B cell 
malignancies remains to be explored.

Fenebrutinib (GDC‑0853)
Fenebrutinib is a highly selective, reversible, non-cova-
lent BTK inhibitor that does not bind to the C481 residue 
for its action and does not inhibit EGFR or ITK [49, 50]. 
Fenebrutinib potently inhibits BCR signaling through 
BTK inhibition. In vitro studies showed that fenebrutinib 
decreased the activation of BTK and its downstream tar-
gets upon stimulation with αIgM and reduced viability, 
NF-κB gene transcription, activation, and migration in 
CLL cells [49]. Fenebrutinib inhibits C481S BTK mutant 
that mediates ibrutinib resistance and is toxic to CLL 
cells with BTK C481S mutation. Unlike ibrutinib, which 
antagonizes rituximab-mediated NK cell–mediated cyto-
toxicity through ITK inhibition, fenebrutinib does not 
inhibit ITK and preserves NK cell-mediated cytotoxic-
ity that is dependent on anti-CD20 antibodies [51]. Thus, 
exploration of fenebrutinib as monotherapy and in com-
bination with anti-CD20 antibodies is promising, espe-
cially in patients with acquired resistance to ibrutinib [49, 
52].

Fenebrutinib was well-tolerated with favorable safety, 
selectivity, and pharmacokinetic/pharmacodynamic (PK/
PD) profiles in healthy volunteers [53]. A phase I study 
has evaluated fenebrutinib in 24 patients with relapsed/
refractory B cell malignancies (CLL, n = 14; follicular 
lymphoma [FL], n = 4; diffuse large B cell lymphoma 
[DLBCL], n = 3; MCL, n = 2; prolymphocytic leukemia 
plus WM, n = 1) [54]. The enrolled patients were treated 
at 100, 200, or 400  mg once daily, orally. There was no 
dose-limiting toxicity. This phase I trial of fenebruti-
nib was prematurely terminated during dose escalation 
and the MTD was not reached. The most common AEs 
included fatigue (37%), nausea (33%), diarrhea (29%), 
thrombocytopenia (25%), and headache (20%). Eight 

of 24 patients had a response to fenebrutinib. Of these 
8 patients who responded, an MCL patient achieved 
complete response (CR) and 7 CLL patients achieved 
partial response (PR) or PR with lymphocytosis (PR-L), 
including 1 of 5 heavily pretreated patients with BTK 
C481S mutant CLL [54]. Two additional patients with 
BTK C481S mutation showed a decrease in the size of 
target tumors (− 23% and − 44%). The median duration 
of response in all responding patients and patients with 
CLL is 3.8  months and 2.5  months, respectively. As the 
MTD that may provide greater BTK inhibition was not 
reached, the short duration of response should be inter-
preted cautiously. Despite this, this study provides evi-
dence of clinical activities of reversible non-covalent BTK 
inhibitors in B cell malignancies [54].

ARQ 531
ARQ 531 is a potent, reversible inhibitor of both wild-
type (WT) and mutant BTK (WT, IC50 = 0.85  nM; 
C481S, IC50 = 0.39 nM) with additional activities against 
SRC family kinases, ERK, and AKT (Fig. 4b, d). In vitro, 
ARQ 531 suppresses BTK-dependent functions including 
BCR signaling and transcription of NF-κB genes, thereby 
suppressing viability, cell activation, and migration of pri-
mary CLL cells [55]. ARQ 531 potently inhibits C481S-
mutated BTK and downstream signaling and is also toxic 
to BTK C481S-mutated CLL cells [55]. In ibrutinib-
resistant CLL cells with mutant PLCG2, PLCG2 can be 
directly activated by LYN and SYK, thereby bypassing the 
activation by BTK. ARQ 531 effectively inhibits signaling 
downstream of mutant PLCG2 and is toxic to ibrutinib-
resistant CLL cells with PLCG2 mutations. In vivo stud-
ies have demonstrated the superiority of ARQ 531 over 
ibrutinib in mouse models of CLL and RT [56].

A phase I dose-escalation study of ARQ 531 has been 
completed in patients with relapsed or refractory B cell 
malignancies [57]. Totally, 40 patients (CLL/SLL, n = 26; 
RT, n = 6; DLBCL, n = 3; FL, n = 4; MCL, n = 1) were 
enrolled [57]. The enrolled patients were treated with 
a median of 4 prior therapies and were all previously 
treated with an irreversible BTK inhibitor. Most patients 
with CLL (22/26, 85%) had BTK C481S mutation. Doses 
of 5, 10, 15, 20, 30, 45, 65, and 75  mg daily were used. 
ARQ 531 was well tolerated, and most of the drug-related 
treatment emergent AEs (TEAEs) were grade 1 or 2. 
Partial response was achieved in 10 patients, including 
patients with CLL (n = 7), RT (n = 1), DLBCL (n = 1), and 
FL (n = 1) [57]. Patients that responded to ARQ 531 were 
mainly from the higher dose cohorts [65 mg daily]. ARQ 
531 at 65 mg daily showed manageable safety profiles and 
significant anti-tumor efficacy; therefore, 65 mg daily was 
determined as the recommended phase 2 dose in patients 
with B cell malignancies [57]. This trial suggests ARQ531 
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could be an effective therapeutic option for patients with 
relapsed or refractory B cell malignancies, including BTK 
C481S mutated CLL cases that are resistant to covalent 
BTK inhibitors. The phase I b expansion portion at 65 mg 
daily of this study is ongoing, and updated data are pend-
ing [57].

ARQ 531 may be also effective in other types of hema-
tological malignancies. ARQ 531 could target multiple 
pathways including BTK, MYB, AKT, ERK, and other 
pathways in acute myeloid leukemia (AML) [58]. In pre-
clinical models of AML, ARQ 531 showed in  vitro and 
in vivo activities against AML [59]. ARQ 531 was dem-
onstrated to be synergistic with venetoclax in AML xeno-
graft model [59], suggesting the combination of ARQ 531 
with venetoclax could be a potential therapeutic option 
in the treatment of AML.

LOXO‑305
LOXO-305 is a next-generation, reversible BTK inhibitor, 
which potently inhibits both WT and C481S mutant BTK 
with nanomolar potency and shows high selectivity with 
minimal off-target inhibition [60]. LOXO-305 potently 
inhibits Y223 autophosphorylation of all active BTK 
mutants (BTK C481S, C481T, and C481R). In vitro stud-
ies showed that LOXO-305 potently led to inhibition of 
BCR signaling and cell survival in both treatment-naive 
and BTK C481 mutant CLL primary cells, indicating that 
LOXO-305 could be used for treating treatment-naïve 
and ibrutinib-resistant CLL patients [60–62]. In high 
proliferating tumors, high rates of BTK turnover may 
result in incomplete target inhibition by covalent inhibi-
tors, which ultimately lead to resistance to these covalent 
BTK inhibitors. LOXO-305 achieves remarkable target 
coverage even in the presence of high rates of BTK turno-
ver, providing a rationale for using LOXO-305 in aggres-
sive B cell lymphomas including DLBCL.

A multicenter phase I/II BRUIN trial evaluating oral 
LOXO-305 in patients with previously treated B cell 
malignancies is currently ongoing [63, 64]. Preliminary 
results were reported at the 2020 ASH meeting [63, 64]. 
A total of 186 patients include 94 patients with CLL/SLL, 
38 with MCL, 19 with DLBCL, 17 with WM, 6 with FL, 
5 with MZL, and 7 patients with other (B-PLL and Rich-
ter’s transformation) [63]. A 3 + 3 dose-escalation design 
was used, and patients were treated on 7 dose levels 
(25 mg to 300 mg QD) [15]. The enrolled patients were 
heavily treated, and the median number of prior thera-
pies was 4 for CLL/SLL (range 1–10), 2 for MCL (range 
2–8), and 3 for other NHLs (range 2–11). In total, 84% 
of CLL/SLL patients were previously treated with a BTK 
inhibitor and 31% venetoclax. And 92% of MCL patients 
had received a prior BTK inhibitor [64]. LOXO-305 dem-
onstrated high oral bioavailability, with doses ≥ 100  mg 

QD resulting in higher than 90% of the maximum inhi-
bition for the entire dosing interval [63]. There was no 
dose-limiting toxicity or dose reductions. The only emer-
gent AEs related to LOXO-305 were fatigue (n = 29, 
16%) and diarrhea (n = 28, 15%). A recommended phase 
2 dose of 200 mg QD was selected as the recommended 
dose for future studies. The clinical activity of LOXO-305 
was demonstrated within the first cycle of therapy and at 
the first dose level. Among the 94 CLL/SLL patients, 88 
patients remained on therapy. And among the 65 CLL/
SLL patients that were efficacy-evaluable (58 BTK inhib-
itor-treated, 7 BTK inhibitor-naïve), the overall response 
rate (ORR) was 57% with 23 PRs and 14 PR-Ls [63]. The 
therapeutic efficacy of LOXO-305 in MCL patients was 
also remarkable. Among 35 efficacy-evaluable MCL, the 
ORR was 51% with 9 CRs and 9 PRs [64]. For other NHL 
patients, 15 DLBCL patients (ORR: 20%, with 3 CRs), 
5 FL patients (ORR: 60%, with 3 PRs), 3 MZL patients 
(ORR: 67%, with 2 PRs), and 6 other patients (ORR: 33%, 
with 2 PRs) were efficacy-evaluable [64]. This study sug-
gested that LOXO-305 was well-tolerated and was effec-
tive in patients with heavily pretreated CLL/SLL and 
NHLs, including those who had developed resistance to 
ibrutinib and venetoclax. However, longer follow-up and 
a larger number of patients are needed to determine its 
efficacy and safety.

Other non‑covalent BTK inhibitors
In addition to the several non-covalent BTK inhibitors 
that have shown promising efficacy in clinical trials, 
there are also some other non-covalent BTK inhibitors 
with significant antitumor effects in preclinical stud-
ies  (Table  4). For instance, XMU-MP-3, a non-covalent 
inhibitor with potent BTK inhibitory activity, inhib-
ited B cell lymphoma cells with or without BTK C481S 
mutation in vitro and in vivo [65], suggesting it could be 
effective in treating B cell lymphomas including those 
resistant to ibrutinib. Several other non-covalent BTK 
inhibitors including CB1763, GNE-431, and CGI-1746 
have shown potent inhibitory effects on both wildtype 
and C481S mutant BTK [66, 67]. Further clinical trials 
are warranted to investigate the safety and efficacy of 
these novel agents.

Future directions
Although some non-covalent BTK inhibitors have shown 
promising efficacy in the treatment of relapsed or refrac-
tory B cell malignancies, the currently available data are 
all from phase I or II studies with a small number of par-
ticipants. Phase II studies that have larger enrollment are 
needed to verify the safety and efficacy of non-covalent 
BTK inhibitors. In addition to patients who have devel-
oped resistance to covalent BTK inhibitors, patients 
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who are unable to tolerate covalent BTK inhibitors may 
also benefit from non-covalent BTK inhibitors, which 
remains to be verified. It is also important to conduct 
phase III trials to compare non-covalent BTK inhibi-
tors with covalent BTK inhibitors in the treatment of B 
cell malignancies. As the combinations of ibrutinib with 
immunochemotherapy or venetoclax have resulted in 
high rates of MRD negativity in patients with untreated 
CLL [20, 21], it would be interesting to see whether 
combining non-covalent BTK inhibitors with immuno-
chemotherapy or venetoclax produces similar effects in 
patients with CLL.

In addition to non-covalent BTK inhibitors, proteoly-
sis targeting chimeras (PROTACs) are also designed to 
target BTK and BTK mutants [68]. PROTACs simultane-
ously bind to an E3 ligase and a target protein, thereby 
resulting in ubiquitination and subsequent degradation 
of the target protein. MT-802 is a PROTAC that recruits 
BTK to the cereblon E3 ligase complex and triggers ubiq-
uitination and subsequent degradation of both wild-type 
and C481S mutant BTK, thereby providing a rationale 
for using PROTACs to treat B cell malignancies includ-
ing those resistant to ibrutinib due to BTK C481S muta-
tion [69]. Another PROTAC P13I could remarkably 
inhibit the proliferation of BTK C481S mutant DLBCL 
cell line HBL-1, which is resistant to ibrutinib [70], pro-
viding a potential treatment for ibrutinib-resistant B cell 
malignancies. Several other PROTACs have also shown 
potential therapeutic efficacy for BTK C481S mutant B 
cell malignancies in preclinical models [71]. Clinical tri-
als are required to explore the safety and efficacy of PRO-
TACs in patients with B cell malignancies including those 
resistant to ibrutinib.

Conclusions
BTK, the essential component of BCR signaling, plays a 
vital role in the origin and development of B cell malig-
nancies. The covalent BTK inhibitors, especially ibruti-
nib, acalabrutinib, and zanubrutinib, bring benefits for 
patients with CLL and other B cell malignancies. With 
resistance and off-target toxicities caused by covalent 
inhibitors, preclinical and clinical studies of non-covalent 
BTK inhibitors are ongoing. To date, several non-cova-
lent BTK inhibitors studied in B cell malignancies have 
shown great specificity and mild AEs in clinical trials, 
while long-term efficacy and safety remain uncertain; and 
the others in preclinical studies need further evaluation 
before clinical trials. Compared to covalent inhibitors, 
non-covalent inhibitors display prominent advantages 
when treating patients with BTK C481 mutations. None-
theless, further clinical and preclinical studies of non-
covalent BTK inhibitors are essential to evaluate the 
specificity, efficacy, and safety.
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