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Abstract

Background: Existing clinical methods for prognosis evaluating for Epithelial Ovarian Cancer (EOC) patients had
defects of invasive, unsystematic and subjective and little data are available for individualizing treatment, therefore,
to identify potential prognostic markers and new therapeutic targets for EOC is urgently required.

Results: Expression of 232 autophagy-related genes (ARGs) in 354 EOC and 56 human ovarian surface epithelial specimens
from 7 independent laboratories were analyzed, 31 mRNAs were identified as DEARGs. We did functional and pathway
enrichment analysis and constructed protein—protein interaction network for all DEARGs. To screen out candidate DEARGs
related to EOC patients’ survival and construct an autophagy-related prognostic risk signature, univariate and multivariate
Cox proportional hazards models were established separately. Finally, 5 optimal independent prognostic DEARGs (PEX3,
DNAJBY, RB1, HSP90OABT and CXCR4) were confirmed and the autophagy-related risk model was established by the 5
prognostic DEARGs. The accuracy and robustness of the prognostic risk model for survival prediction were evaluated and
verified by analyzing the correlation between EOC patients’ survival status, clinicopathological features and risk scores.

Conclusions: The autophagy-related prognostic risk model can be independently used to predict overall survival in EOC
patients, it can also potentially assist in individualizing treatment and biomarker development.
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Introduction

Ovarian cancer (OC) has the highest morbidity and
mortality in the female genital tract [1]. It is the fifth
most frequent cause of cancer death in women in the
United States in 2020 which results in the death of 5%
women with cancer, and 5-year survival rates are 39—
48% of all the women diagnosed with ovarian cancer [2,
3]. Epithelial ovarian cancer (EOC) is the most common
type of OC which accounts for almost 90% of all ovarian
cancers [4, 5]. It generally presents at an advanced stage
in over 70% of patients contributing to a high death rate,
where the long term survival rate (10 years) is estimated
at 15-30% [6, 7]. The prognosis of EOC is associated
with many factors such as histological type, pathological
stage, age, early recognition, the volume of ascites and
so on [8, 9], existing clinical methods for prognosis
evaluation still had defects of invasive, unsystematic and
subjective. It is necessary to refine the prognostic model
of EOC and establish a more accurate method to man-
aging this high-mortality disease.

Establishing prognosis models for EOC patients is an
important part of risk evaluation and treatment, can also
greatly assists in biomarker development [10]. From
clinically applicability, prognosis model is a handy tool
to estimate overall survival and risk of recurrence, and
can potentially help in individualizing treatment for pa-
tients [11]; From research development, it can contribute
to identify subgroups of patients with unfavorable prog-
nosis and promote us to explore alternative treatment
strategies for these patients, and provide an idea for tar-
geting therapy [12]. The present study focuses on con-
structing a prognosis model for EOC by molecular
typing methods using large databases.

Autophagy is a homeostatic mechanism that can main-
tain cell survival by recycling organelles and macromole-
cules [13]. Various genes named because of participating
in autophagy, they were called Autophagy-Related Genes
(ARGs) [14]. Accumulating data suggest that autophagy
dysregulation in EOC cells caused dormancy and chemo
—/radio-therapy resistance, and the process involving
proteins (mainly ARGs encoding proteins) are being
considered as anticancer molecular therapeutic targets
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[15-18]. However, no prior study used the large-scale
expression patterns for assessing the autophagy effect on
EOC prognosis. So, this study makes use of ARGs to
construct the prognostic risk signature of EOC. Through
this novel prognostic risk model, we expect to shed light
on prognosis evaluation and targeted treatment of EOC.

Materials and methods

Data acquisition

The gene expression profiling data sets (ID: GSE14407,
GSE6008, GSE14001, GSE26712, GSE29450, GSE38666,
GSE105437) were obtained from Gene Expression
Omnibus database (https://www.ncbinlm.nih.gov/geo/).
The brief information of 7 GEO datasets [containing 410
human ovarian surface epithelial (HOSE) and epithelial
ovarian cancer (EOC) specimens] from 7 independent
laboratories was extracted and listed in Table 1. The
RNA-seq data and the corresponding clinical data of 379
EOC patients were downloaded from the TCGA data-
base (https://portal.gdc.cancer.gov/). We downloaded
232 genes identified so far to be involved in autophagy
from the Human Autophagy Database (HADD).

Differentially expressed autophagy-related genes (DEAR
Gs) screening

Data preprocessing was performed before difference ana-
lysis for 7 independent GEO datasets. We did batch
normalization for all expression profiling data through
ComBat algorithm in R to eliminate the systematic varia-
tions among different studies. The differentially expressed
autophagy-related genes (DEARGs) between 354 EOC tis-
sues and 56 HOSE tissues were screened out by the Wil-
coxon signed-rank test. The cutoff criteria were adjusted
p-value < 0.05 and |log,FoldChange| (|log,FC|) > 1.

Protein-protein interaction (PPI) network construction for
all DEARGs

PPI analysis is a protein correlation analysis that can ef-
fectively reveal the molecular mechanisms of crucial cel-
lular activities in carcinogenesis. It is constructed based
on the STRING database (https://string-db.org/). The
PPI network was constructed for all DEARGs and

Table 1 Characteristic of microarray data used to do difference analysis

Expression profiling array (HOSE & EOC) Platforms GEO accession Samples

Genome GPL570 GSE14407 12HOSE; 12EOC
GSE14001 3HOSE; 20EOC
GSE29450 10HOSE; 10EOC
GSE38666 12HOSE; 18EOC
GSE105437 5HOSE; 10EOC

Genome GPL96 GSE6008 4HOSE; 99EOC

GSE26712 10HOSE; 185EOC



https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://string-db.org/

Fei et al. Journal of Ovarian Research (2021) 14:41

visualized with the cut-off criterion of interaction score >
0.4. To visualized the PPI network and highlighted the
hub genes, we make use of the Cytoscape software to
perform deeply biological network analysis.

Functional and pathway enrichment analysis for all DEAR
Gs

Gene Ontology (GO) analysis can annotate characteris-
tics of a set of genes, such as involved cellular compo-
nents (CC), molecular functions (MF) and biological
processes (BP). Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) analysis was used to reveal the involved
pathways of all DEARGs. These analyses were done by
clusterProfiler package of R with p value <0.05 as a
strict cutoff.

Identify the prognostic DEARGs

To identify DEARGs whose expression profiles had a
significant correlation with the overall survival (OS) of
patients with EOC, we performed the univariate Cox re-
gression model. The DEARGs with the threshold of P <
0.05 were regarded as candidate genes related to EOC
patients’ survival.

Construction of OS risk prognostic model and risk score
calculation
The survival-related DEARGs screened out through the
univariate Cox proportional hazards model were incor-
porated into a multivariate Cox regression analysis to
weeded out the DEARGs which might not be an inde-
pendent index in prognosis monitoring. Then, we can
obtain a set of optimal prognostic DEARGs, and estab-
lish a risk score model using these genes.

We can get the risk score for each EOC patient
through the followed formula,

the risk score = E regression coeffiecient(genei)
i=1,2,...,n
x expression value of (genei)

The risk score was calculated using the gene expres-
sion value multiplied by the regression coefficients of
each individual gene. The genes in the formula mean the
independent prognostic DEARGs we screened before.
The regression coefficients were obtained from the
multivariate Cox regression model and stand for the
relative weight of selected genes. It is a measure of prog-
nostic risk for EOC patients. With the median risk score
as the cutoff value, patients were divided into low-risk
group and high-risk group. A high-risk score means a
poor prognosis.
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Evaluation of OS risk prognostic model
We draw the survival curves by Kaplan—Meier plotter
and assessed the difference in the survival status be-
tween the high-risk group and low-risk groups to verify
the validity and robustness of the OS risk prognostic
model. Then, the relationship between risk score and
survival status of EOC patients was visualized. We stud-
ied genetic alterations of 5 independent prognostic
DEARGs (PEX3, DNAJBY, RB1, HSP90AB1 and CXCR4)
in an Ovarian Cystadenocarcinoma case set using an
open-access tool cBioPortal (http://www.cbioportal.org).
What’s more, we performed Cox proportional hazard
regression to evaluate whether the OS risk prognostic
model constructed with DEARGs could independent of
other clinicopathological features as a predictor of OS
for EOC patients. The correlation between the risk score
and clinical traits was analyzed by univariate and multi-
variate Cox regression methods. Age, pathological stage
and histological grade were used as candidate clinico-
pathological risk factors. We want to explore whether
clinicopathological risk factors and risk scores calculated
based on prognostic DEARGs can all be indicators in
prognosis monitoring for EOC patients, and to confirm
whether the risk score could be an independent progno-
sis factor.

Results

Identification of differentially expressed autophagy-
related genes (DEARGS)

The expression values of 13,045 genes in 410 samples
(354 EOC and 56 HOSE specimens) were normalized
with R package and showed in Fig. la. Horizontal axis
and vertical axis represents 410 samples and all gene ex-
pression value, respectively. After batch normalization,
the median of expression value of samples is almost the
same, proved normalized data were qualified. The ex-
pression values of 232 ARGs were extracted. Consider-
ing adjust p-value <0.05 and |log,FC| >1 as the filter
criteria, 31 DEARGs (14 downregulated ARGs and 17
upregulated ARGs) were obtained. We list the details
such as log,FoldChange and statistical significance of all
DEARGS in Table 2. In Fig. 1b, the fold change patterns
of 31 DEARGS were showed in a heat map. The expres-
sion of 31 DEARGS between EOC tissues and HOSE tis-
sues was visualized by scatter plots (Fig. 1c).

PPI network construction and functional annotation of
DEARGs

We displayed the distribution of all DEARGs with a vol-
cano plot (Fig. 2a). A PPI network of DEARGs was con-
structed with STRING database and visualized the
interaction of the PPI network using Cytoscape software,
there are 12 hub genes with interaction degree >5
showed as a diamond and arranged in a circle (Fig. 2b).
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A Data before normalization(GSE14407+GSE6008+GSE14001+GSE26712+GSE29450+GSE38666+GSE105437)
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

green represent HOSE samples

Fig. 1 Differentially expressed autophagy-related genes (DEARGs) screened from 354 EOC tissues and 56 HOSE tissues. a The expression values of all genes
before and after normalization were displayed by box Figs. X-axis represents 410 tissues samples from GSE14407, GSE6008, GSE14001, GSE26712, GSE29450,
GSE38666, and GSE105437 datasets. The 7 groups on the left were HOSE tissues, and the right were EOC tissues. The same color columns represent samples
that came from the same GEO datasets. b Heatmap of the expression levels of 31 DEARGs in EOC. The depth of blue and red color represents the intensity of
the expression level of DEARGs. EOC, Epithelial Ovarian Cancer. ¢ Visualization of expression patterns of 31 DEARGs. Red box plots represent EOC samples and

Table 2 All DEARGs, screened between human ovarian surface
epithelia (HOSE) tissues and epithelial ovarian cancer (EOC)
tissues with criteria of adjust-p-Value < 0.05 and |
log,FoldChange| > 1

Gene Log,FC p-Value adjust-p-Value
DNAJB9 -1.774 749E-49 1.44E-46
ST13 —1.484 245E-46 2.36E-44
BIRC5 1474 5.62E-45 361E-43
DIRAS3 -1.867 2.79E-39 1.34E-37
HGS 1.599 9.39E-39 3.62E-37
GAPDH 1628 1.77E-35 4.27E-34
VAMP7 -1.290 3.20E-30 6.17E-29
PEA15 1.065 1.02E-29 1.60E-28
CAPN1 1.165 1.08E-29 1.60E-28
CAPN2 -1.263 6.24E-29 8.60E-28
PRKARTA —1.055 1.38E-27 1.67E-26
ARSA 1.077 6.94E-26 6.69E-25
P4HB 1.387 1.09E-25 9.98E-25
VEGFA 1.027 3.12E-25 2.74E-24
CDKN1B —1.338 1.64E-24 1.32E-23
ATG2B —1.581 371824 2.75E-23
CXCR4 1.353 2.39E-23 1.59E-22
RAB33B -1.291 6.16E-23 3.72E-22
GAA 1.086 4.38E-22 249E-21
HSPAS 1.155 6.10E-22 3.27E-21
PRKCD 1.104 142E-21 7.22E-21
SIRT2 1.210 531E-19 2.23E-18
CAPNST 1.574 6.48E-19 2.66E-18
CTSD 1.250 1.68E-18 647E-18
PEX3 -1.012 7.33E-18 2.57E-17
ATG3 -1.069 3.08E-16 9.59E-16
RB1 -1.121 3.90E-15 1.12E-14
EIF4EBP1 1.002 2.87E-13 7.39E-13
FKBP1B -1.039 1.63E-12 3.99E-12
[TGB1 -1.107 2.73E-12 6.42E-12
HSP90AB1 1.028 4.50E-09 8.69E-09

GO analysis shows that DEARGs are enriched in several
hypoxia-related biological processes (BP), including au-
tophagy, macroautophagy, response to hypoxia and re-
sponse to oxygen levels. Regarding the molecular
function (MF), the DEARGS played vital parts in some
functions, such as ubiquitin-like protein ligase binding,
chaperone binding and heat shock protein binding. In
terms of the cellular components (CC), the proteins
encoded by the DEARGs are components of melano-
some, pigment granule and secretory granule lumen
(Fig. 2c). KEGG analysis showed the main pathways that
DEARGS involved containing autophagy, and protein
processing in the endoplasmic reticulum (Fig. 2d).

Establishment of autophagy-related signature

Altogether RNA-seq and clinical data of 379 EOC tissue
specimens were obtained from the TCGA database and
374 EOC tissue specimens contained complete clinical
follow-up information were subjected to univariate Cox
regression analyses to evaluate the association between
31 screened DEARGS’ expression profiles and overall
survival in 374 EOC patients. The results of univariate
Cox regression analyses revealed that 9 DEARGs were
significantly associated with the prognosis of EOC pa-
tients (p < 0.05) (Fig. 3a). To improve the validity and ro-
bustness, 9 prognostic-related DEARGs obtained from
the above univariate analysis were further subjected to
the multivariate Cox regression analysis. Finally, 5 DEAR
Gs (PEX3, DNAJBY, RB1, HSP90AB1 and CXCR4) were
screened out as optimal independent prognosis bio-
markers and applied to construct an autophagy-related
risk model (Fig. 3e). The risk score of OS for EOC
patients was calculated according to the following for-
mula: risk score = (0.3719 X expression value of PEX3) +
(- 0.4819 X expression value of DNAJBY) + (0.3235 X
expression value of RBI) + (- 0.4574 X expression value
of HSP90ABI) + (- 0.1754 X expression value of
CXCR4). The risk scores of 374 EOC patients were
calculated through the above formula, and patients were
divided into high-risk (nz =187) and low-risk group (n =
187) with the median of the risk score as the cutoff
value.

Validation of the risk signature
The OncoPrint in cBioPortal is a compact and efficient
graphical summary of genomic alterations in tumor
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specimens. According to previous results of DEARGs
screening and autophagy-related signature establish-
ment, the risk score calculated based on the expression
of PEX3, DNAJB9, RB1, HSP90ABI and CXCR4 can be a
predictor of OS for EOC patients independent of other
clinicopathological parameters. We analyzed and visual-
ized genomic alterations of 5 prognostic DEARGs by

cBioPortal in ovary carcinoma cases (Fig. 4a). Kaplan-
Meier plot was drawn to compare the OS difference be-
tween high-risk and low-risk group. EOC patients in the
low-risk group had obviously better survival outcomes
than the high-risk group (p = 9.606E-07) illustrated that
the risk score based on the autophagy-related risk model
correlated with EOC patients’ prognosis (Fig. 4b).
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Hazard ratio

Figure.4c visualized the risk scores from low to high.
The mortality of EOC patients increased as the risk
score increased (Fig. 4d). The heatmap in Fig. 4e dis-
played the expression patterns of 5 prognostic DEARGs
in different risk groups.

Clinical utility of prognostic signature

The univariate and multivariate Cox proportional hazard
regression analyses were performed to determine the
correlation between the risk score and clinicopathologi-
cal features, and to further evaluated whether the
autophagy-related risk prognostic model constructed
with DEARGs could independent of other clinicopatho-
logical features as a predictor of OS for EOC patients.
There is no difference of risk scores between age > 65
and age<65 (p=0.211) (Fig. 5a) or pathological stage
HIC-IV and pathological stage I-IIIB (p=0.195) (Fig.

5b), although elder patients seemed had a higher risk
score than younger patients and high pathological stage
patients seemed had a higher risk score than low patho-
logical stage patients. Risk score was higher in histo-
logical grade G3—4 than in G1-2 (p=0.011) (Fig. 5c).
Obviously, the majority of EOC patients are diagnosed
at a late stage, so most patients are diagnosed with
pathological stage III or histological grade 3—4. The as-
sociation between the expression level of 5 prognostic
DEARGs which used to construct the risk model and
clinical pathological parameters of EOC are shown in
Fig. 5a, b, c.

In Table 3, univariate and multivariate Cox regression
analysis showed that age and risk score was significantly
correlated with OS of EOC, risk score can be an inde-
pendent factor for the OS of EOC. These results con-
firmed that the autophagy-related prognostic signature
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Table 3 Univariate and multivariate cox regression analyses of riskscore and clinicopathologic features in the TCGA group EOC

patients
Variables Univariate analysis Multivariate analysis

HR (95% Cl) p-Value HR (95% Cl) p-Value
RiskScore 2.120(1.629-2.759) <0.001 2.107(1.609-2.760) <0.001
Age 1.020(1.006-1.033) 0.004 1.020(1.007-1.034) 0.003
Pathological Stage 1.353(0.999-1.832) 0.051 1.300(0.947-1.786) 0.105
Histological Grade 1.448(0.968-2.165) 0.071 1.244(0.828-1.868) 0.293

can be an independent indicator for prognosis monitor-
ing for EOC patients.

Discussion

Autophagy is a eukaryotic cellular degradation and re-
cycling process which is highly conserved [19]. Many
studies had confirmed that autophagy plays a significant
role in EOC [20-23]. Some pharmaceutical agents tar-
geting autophagy have been proved effective in EOC pa-
tients [24, 25]. Up to now, histological grade and stage
remain the strongest prognostic evaluation tools in EOC
[26]. Make use of a prognostic model which constructed
based on the specific molecule can improve the under-
standing of the molecular mechanism of EOC, aid the
development of more specific therapies, and identify
novel biomarkers [27, 28]. So, we construct autophagy-
related prognostic signature with DEARGs to predict the
prognosis of EOC patients.

According to our study, an autophagy-related independ-
ent prognostic signature is constructed by 5 ARGs with
different coefficients, including PEX3, DNAJB9, RBI,
HSP90ABI and CXCR4. There were only a few researches
reported a relationship between the 5 ARGs and cancers,
Daniela et al and Shaobo et al reported PEX3 plays an im-
portant role in Melanoma [29] and colon cancer [30] re-
spectively. DNAJB9 is a known negative feedback
regulator of the tumor suppressor gene p53 in non-
gestational choriocarcinoma [31] and can reduce chemo-
therapy resistance in acute myeloid leukemia [32]. Guang
et al reported that RBI is a tumor suppressor in OC [33].
HSP90ABI previously known as heat shock 90-kDa pro-
tein 1, beta, its expression is relatively stable in ovarian tis-
sues [34]. As a chemokine receptor, blocking the CXCR4/
CXCL12 signal could be a potential therapy for EOC pa-
tients [35]. The results suggest that most autophagy-
related independent potential prognostic markers were
identified and verified in other cancers except EOC, hence
identifying potential prognostic markers and new thera-
peutic targets for EOC patients is essential.

There are 374 EOC patients’ information with gene
expression and survival data were obtained from TCGA
to established an autophagy-related prognostic model,
and only 364 patients with complete clinical information
of age, pathological stage and histological grade. We

verified the relationship between autophagy-related
prognostic signature and their clinicopathological fea-
tures. The 5 ARGs are not all associated with clinico-
pathological features of EOC patients, but the risk score
calculated based on 5 prognostic DEARGs is signifi-
cantly related to the histological grade of EOC patients.
It is important to notice that among 364 EOC patients,
only 43 patients were subjected to G1-G2, 321 patients
were subjected to G3-G4. The same is only 22 patients
diagnosed in stage I-II, the rest 342 patients all diag-
nosed in stage III-IV. Many patients diagnosed at an ad-
vanced stage disturbed the analysis for the relationship
between the risk model and clinical information. Even
so, we still can find a trend of risk score was higher in
pathological stage IIIC-IV than in stage I-IIIB. Several
assessment methods confirmed that the prognostic
model can be an independent indicator for prognosis
monitoring for EOC patients. Clinical information of
EOC patients reminded us that early diagnosis is ur-
gently needed for EOC patients. Our study shed light on
finding the diagnosis and targeted treatment biomarkers
in EOC patients.

Pathway enrichment analysis showed that 31 DEARGs
were mainly involved in hypoxia or oxygen related path-
ways. Kalpana et al reported that hypoxia-induced car-
cinoma progression and metastasis, and drug resistance
are serious problems for EOC treatment in clinical [36].
Edith et al proposed that OC metastasizes and recurs all
in a unique hypoxia microenvironment in the abdominal
cavity [37]. Hence, the affection of hypoxia to EOC pa-
tients should be evaluated and managed cautiously.

Our study developed a risk prognostic model to pre-
dict individuals’ clinical outcomes, molecular signature
combined with clinical features make the model steady
and credible. Our results proved that the risk model
constructed by 5 DEARGs PEX3, DNAJB9, RBI,
HSP90ABI and CXCR4 is clinically practicable to evalu-
ated prognosis for EOC patients. Besides traditional clin-
icopathological indicators (including pathological stage
and histological grade), risk scores based on the
autophagy-related genes signature could also be applied
in clinical to provide a handy and better prognosis moni-
toring. The DEARGS can also help facilitate personalized
target treatment and early screening.
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Conclusions

Our study analyzed transcriptome expression profiles of
354 EOC tissue samples and 56 HOSE samples from 7
independent laboratories and evaluated the expression
pattern of 232 ARGs in the two groups. There were 17
up-regulated DEARGs and 14 down-regulated DEARGs
in EOC with the filter criteria of adjusting p-value< 0.05
and |log,FC| >1.0. From 31 DEARGs, 5 prognostic
DEARGs (PEX3, DNAJBY, RBI, HSP90AB1, CXCR4)
were identified to construct a risk score prediction
model, the risk score was calculated with the expression
values of these genes and regression coefficients. Com-
bined validation analysis of molecular signature and clin-
ical characteristics, the risk score prediction model can
robustly estimate the OS of EOC patients. The prognosis
DEARGs also provide new possibilities for EOC thera-
peutic intervention. Meanwhile, our study can reveal the
molecular mechanisms behind EOC from a brand-new
insight.
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