
Retinitis pigmentosa (RP) is a group of inherited retinal 
disorders characterized by photoreceptor degeneration, 
progressive peripheral visual field loss, and night blind-
ness. Sector RP is an atypical form of RP first described by 
Bietti in 1937 [1] characterized by retinal degeneration with 
bone spicule-like pigmentation limited to a retinal quadrant 
(typically the lower nasal) usually with bilateral symmetric 
involvement [2]. The typical forms, generally diagnosed in 
midlife, are usually associated with a more favorable prog-
nosis [3]. However, RP has been reported to occur sometimes 
in pedigrees where other family members have typical/classic 
or diffuse RP [4].

There are a limited number of reports of patients with 
sector RP in the literature, and the natural history of this 
condition and its phenotypic variability are still unclear and 
remain to be determined. In particular, it is still debated 
whether sector RP is a stationary or slowly progressive 
disease [5,6]. Autosomal dominant sector RP has been associ-
ated with pathogenic mutations in the rhodopsin (RHO; Gene 
ID: 6010, OMIM 180380) gene in various ethnic populations 
[7-14], while mutations in other genes have been detected in 
autosomal recessive [15-18] and X-linked forms [9,19]. We 
report for the first time on the clinical and genetic features 
of a relatively large series of Italian patients diagnosed with 
sector RP.

METHODS

In this retrospective study, patients with a clinical diagnosis of 
sector RP were selected from the database of the Hereditary 
Retinal Degenerations Referring Center of Careggi Teaching 
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Hospital in Florence (Italy). The medical records and results 
of imaging studies of 30 eyes of 15 consecutive patients were 
retrospectively reviewed according to the guidelines of the 
local Ethical Committee at the Florence Careggi teaching 
Hospital. All procedures were reviewed and deemed to be in 
accordance with the tenets of the Declaration of Helsinki for 
research involving human participants.

The criteria for inclusion was based on the presence 
of characteristic sector RP fundus features, that is, bone 
spicule-like pigmentation in one or two retinal quadrants 
with sparing of the other quadrants and associated VF defects 
corresponding to the altered retina. We included primarily 
patients with known pathogenic mutations associated with 
RP. Patients with unknown genotypes were considered only if 
their clinical picture agreed with the clinical inclusion criteria 
above.

Patients were excluded from the study if they had other 
ocular diseases or systemic disorders that could affect the 
results of the multimodal and visual function tests (except 
related retinal alterations) or cataract with nuclear sclerosis 
grade ≥2 (NS2) in the Lens Opacities Classification System 
III (LOCS III) [20]. All patients underwent a complete 
ophthalmic examination with evaluation of best-corrected 
visual acuity (BCVA), autorefractometry (Autorefractometer 
AR-600; Nidek, Padova, Italy), and biomicroscopy of ante-
rior and posterior chambers. Ocular mydriasis was obtained 
with Visumidriatic Tropicamide 1% ® drops (Visufarma Srl, 
Rome, Italy). Fundus imaging was performed using a Zeiss 
retinograph with image processing software VISUPAC (Carl 
Zeiss, Dublin, CA) to document the localization of bone 
spicule-like pigmentation.

Fundus autofluorescence (FAF) imaging was performed 
with a confocal scanning laser ophthalmoscope (Heidelberg 
Retina Angiograph 2 or Spectralis HRA+OCT; Heidelberg 
Engineering, Dossenheim, Germany) using a 30° field of 
view at a resolution of 1,536 × 1,536 pixels. An optically 
pumped solid-state laser (488 nm) was used for excitation, 
and a 495 nm barrier filter was used to modulate the blue 
argon excitation light. Standard procedure was followed for 
the acquisition of FAF images, including focus of the retinal 
image in the infrared reflection mode at 820 nm, sensitivity 
adjustment at 488 nm, and acquisition of nine single 30° × 
30° images. The nine single images were computationally 
averaged to produce a single frame with improved signal-to-
noise ratio. In particular, we identified three FAF patterns: 
normal (N-AF), hyper-autofluorescence (hyper-AF), and 
hypoautofluorescence (hypo-AF).

Spectral domain-optical coherence tomography 
(SD-OCT) was performed in all patients in the macular area 

and in the area with bone spicule-like pigmentation. Spec-
tralis HRA+OCT was used for 11 patients and Zeiss Cirrus 
OCT 4000 (Carl Zeiss) for four patients. Both instruments 
allow for simultaneous OCT scans and fundus photography 
and subsequent image superimposition. The acquisition 
protocol consisted of a macular cube 512 × 128 scan pattern 
in which a 6.0 × 6.0 mm region of the retina was scanned (a 
total of 65.536 sampled points) within a scan time of 2.4 s and 
a raster vertical line which passed simultaneously through the 
pigmented area and the fovea. The precise location and orien-
tation of each scan were determined using the simultaneous 
OCT grayscale fundus images. The ellipsoid zone (EZ) band 
was identified on the OCT scans and classified as present 
(well-defined), disrupted (poorly defined or disorganized), 
or absent (complete absence of the EZ band). Macular edema 
was defined as a central foveal thickness greater than 250 
μm with intraretinal hyporeflectivity cysts. Each OCT scan 
was independently evaluated by three different observers 
(TV, VM, and AS). In cases of disagreement between the 
observers, the opinion of the senior observer (AS) was 
considered.

Visual fields (VFs) were obtained using a Humphrey 
perimeter (Carl Zeiss Meditec Inc., Oberkirchen, Germany), 
the 30–2 pattern, and the Swedish Interactive Threshold Algo-
rithm (SITA)-standard protocol. Electroretinography (ERG) 
was performed using the International Society for Clinical 
Electrophysiology of Vision (ISCEV) standard protocol [21]. 
Following pupil dilation, ERGs were obtained using Retiscan 
201 B4 (Roland Consult, Brandenburg, Germany). Dark-
adapted full-field ERGs were recorded following stimulation 
with white flashes of intensities of 0.01 and 3.0 cd.s.m2. Phot-
opic cone system function was assessed after 10 min of light 
adaptation by recording ERGs to 3.0 cd.s.m2. We compared 
the results with those obtained from a group of age-similar 
control patients (n = 15) with no significant ocular pathology 
who attended our clinic. An Excel database (Microsoft Excel 
2010, Microsoft Office Professional Plus 2010) was used to 
record all the data. The data were analysed by means of Stata 
13.1 software (StataCorp LP, College Station, TX), using the 
Student’s t-test with statistical significance set at a p-value 
<0.05.

Following informed consent and a complete medical 
history of each patient, 10 ml of peripheral blood were 
obtained from the antecubital vein using EDTA-containing 
vials. DNA was extracted from 200 μl of peripheral blood by 
using automated DNA extractors: BioRobot EZ1 (QIAGEN, 
Hilden, Germany) or QIAsymphony SP workstation 
(QIAGEN GmbH, Germany), according to the manufacturer 
protocols. The mode of inheritance was analyzed in all 
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patients; in each family, the proband was the first patient 
with a clinical diagnosis of RP included in the study. In 11 
probands from five independent pedigrees, genetic analysis 
was performed with targeted next-generation sequencing 
(NGS) at the Department of Genetic Diagnosis (Careggi 
Teaching Hospital, Florence, Italy) which is a certified UNI 
EN ISO 9001:2008 laboratory. A panel of 137 genes known to 
be associated with retinal dystrophies was used for targeted 
NGS: Exons of DNA samples were captured and investigated 
as shown previously with enrichment methodology SureSe-
lect QXT Target Enrichment (Agilent Technologies, Santa 
Clara, CA), using the Illumina NextSeq TM500 platform 
(Illumina, San Diego, CA). All identified variants were 
confirmed with Sanger sequencing and further segregated 
in the respective families when other relatives were avail-
able. Variants’ pathogenicity was evaluated with InterVar, 
a bioinformatic software tool for clinical interpretation of 
genetic variants according to the classification proposed by 
the America College of Medical Genetics and Genomics [22].

RESULTS

Thirty eyes of 15 patients (six men and nine women) from 
nine independent pedigrees were included in the study. The 
average (± standard deviation) age was 50.14 ± 18.20 years 
(range 19–77 years). Mean age at onset was 41.20 ± 15.51 
years (range 11–69 years). Pathogenic mutations were identi-
fied in nine patients; two patients carried variants of uncertain 
significance (VUS), and four patients were not available for 
genetic testing. Selected demographic, clinical, and genetic 
features of the study population are summarized in Table 1.

Visual acuity and refraction: The mean BCVA was 0.05 ± 
0.13 logMAR (range 0–0.52 logMAR; 20/20–20/66 Snellen 
acuity), and the mean refractive error was −0.52 ± 1.89 D 
spherical equivalent (range −6.50 to +3.00 D, see Table 1). 
Five out of 30 eyes presented with a low-grade NS1 cata-
ract, one eye was pseudophakic without any surgery-related 
complication, and 25 eyes had no evidence of cataract.

Fundus evaluation and retinography: In all patients, bone 
spicule-like pigmentation was observed in the affected 
sectors of the retina. On ophthalmoscopy, two patients 
showed bilateral vitreomacular adhesions (vitreoretinal 
interface syndrome). There was no evidence of abnormal and 
irregular retinal appearance in the macular region in any of 
the 30 eyes. All patients, except one (P12), presented with 
symmetric alterations of the pigmented area in both eyes. 
For 14 patients (28 eyes), the inferior hemiretina was the most 
affected area (see the examples in Figure 1A,B); for three of 
the 14 (P1, P4, P11) the nasal quadrant was also affected, and 
for two (P6, P10), the temporal quadrant. In one patient (P7), 

the pigmented area had a diffuse appearance with involve-
ment of the superior sector, whereas for another patient (P12), 
the pigmented area was nasal in the right eye and temporal 
in the left eye. No patient showed alterations in the superior 
retina (see Table 1).

Visual field: For all eyes, the VF defects corresponded to the 
retinal areas of degeneration. Figure 2 provides an example 
of correspondence between superior VF defects and inferior 
retinal changes for P13. Figure 3 illustrates the correspon-
dence between the superior VF defect and FAF changes in the 
inferior retina for P1; the hyper-AF arc reflects the transition 
between “normal” and “abnormal” retinal function.

Fundus autofluorescence: In all patients, except P15, we 
found a band of markedly hyper-AF which was associated 
with the transition zone between the normal-functioning 
retina and the diseased retina, and corresponded to the 
scotomatous area on the VF (Figure 4, Figure 5, and Figure 
6). This demarcation band does not match the border of the 
pigmented RPE areas as seen on retinography and FAF, but 
it appears to be localized nearer to the posterior pole. Figure 
7 shows wide-angle retinography and FAF in P15 without 
the hyper-AF band and with the area of pigmentary changes 
located more peripherally.

Optical coherence tomography: On OCT, there was no 
evidence of macular edema in the 30 eyes. We observed 
epiretinal membranes in four eyes. Interestingly, the OCT 
performed in the area with the hyper-FAF line showed the 
presence of the EZ band in the relatively “healthy” retina 
nearer to the posterior pole, absence of the EZ band with 
the presence of RPE in the transition zone, and absence of 
the EZ and RPE in the severely affected retina. Two typical 
examples are shown in Figure 8A,B: The yellow line indicates 
the OCT scan line and the blue line the intact EZ band. The 
two arrows indicate the internal (the outer border of hyper-AF 
band) and external boundaries (adjacent to atrophic RPE with 
bone spicule-like pigmentation), respectively, of the transi-
tion zone. We also obtained horizontal OCT line scans in the 
region of the bone spicules, and we noticed that bone spicules 
are localized within the retinal layers (in particular at the 
level of the outer plexiform layer) with an underlying choroid 
with prominent enlarged choroidal vessels (Figure 9).

Electrophysiology: No delays in implicit times were 
observed. All patients had decreased scotopic ERG response 
amplitudes compared to the healthy controls; the photopic 
response amplitudes were within normal limits. The results 
are summarized in Table 2.

Genetic analysis: Nine patients of three independent pedi-
grees showed a clear dominant inheritance (two from family 
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A, six from family S, and one from family T). The other 
patients appeared with sporadic forms, but in those cases, 
we could not examine the remaining family members. The 
pedigrees of families A, S, and T are reported in Figure 10.

In 11 patients from five independent pedigrees, blood 
samples were obtained for genetic analysis. The same muta-
tion c.568G>A p.(Asp190Asn) in the gene encoding RHO 
(Online Mendelian Inheritance in Man (OMIM), 180,380) 
was found in nine patients of four different families. This 
variant has been reported [23-29] in association with RP and 
can be considered pathogenic. Another patient (P8) from 
an independent pedigree carried a novel variant c.548T>C 
(p.Leu183Pro) in the same RHO gene. This variant was 
interpreted as a VUS by the predictive software InterVar. 

All patients carrying the mutations in RHO had clinical 
manifestations of sector RP. An “additional” variant of the 
GUCY2D gene (OMIM, 600,179; c.2179G>A (p.Gly727Ser) 
was found in one patient (P14) in heterozygous state. As this 
variant has been reported as non-disease-causing [30], and 
it is present only in one patient whose phenotype is fully 
explained by a surely pathogenic RHO variant, the patient 
can be considered a heterozygous carrier of a VUS that likely 
does not contribute to the patient’s disease. The last patient 
(P15) who underwent genetic analysis carried two in “cis” 
variants of the ROM1 gene (OMIM, 180,721), (c.178C>A 
(p.Pro60Thr) and c.323C>T (p.Thr108Met). This genotype 
has been reported in association with the RP phenotype, but 
its pathogenicity is uncertain, and they are considered VUS 

Figure 1. Color retinography imaging. Bone spicule-like pigmentation in the inferior retina with symmetric alterations of the pigmented 
area in both eyes in patient 5 (A) and patient 11 (B).
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[31-33]. The remaining four patients (P3, P4, P7, and P10 from 
family S) were not available for molecular study.

DISCUSSION

In this study, we describe the phenotype and genetic features 
of a group of Italian patients affected by a typical form of 
sector RP. In this cohort, we found relatively good BCVA 
in agreement with previous studies [7-9], and with reports 
of a benign clinical natural history in which patients usually 
maintain good visual acuity and become aware of the disease 
after a long time [34-38]. One exception in the literature was 
the report of a patient in a study by Coussa et al. [9] who 

showed a significant reduction in bilateral visual acuity. 
Another finding of interest was that only five eyes out of 
30 presented with a low-grade cataract, and one underwent 
cataract surgery; this percentage was lower than that reported 
for classic RP (more than 50%) [39]. This result could be due 
to the limited number of patients in this study or to their rela-
tively young age; however, it is possible that this is another 
example of milder ocular complications in sector RP.

In agreement with previous findings, the most commonly 
affected retinal area was the inferior retina [7-9,34-37]. This 
has been explained based on preferential exposure of the 
inferior retina to the light coming from typically overhead 

Figure 2. 30–2 visual field testing and corresponding color retinography in both eyes in patient 13. The visual field shows superior scotoma-
tous defect while retinography shows the corresponding inferior retinal degeneration with bone spicules pigmentation.
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light sources (i.e., sunlight and indoor illumination) [40,41]. 
The bilateral and symmetric topographic involvement of the 
pigmentary alterations in accordance with the genetic cause 
of the disease has also been reported [7-9,34].

On FAF, we found a demarcation line of hyper-AF in 
the affected quadrant. In RP, the hyperfluorescent ring is 
considered to represent the boundary between functional 
and non-functional areas of the retina. Specifically, the edge 
of the ring corresponds to the internal border of the visual 
field defect [37]. Popovic et al. [42] noted a good correla-
tion between the radius of the hyper-AF ring and visual field 
sensitivity; the authors concluded that the healthy retina was 

located within the ring, and the diseased retina was peripheral 
to the hyper-AF ring. In agreement with these findings in 
patients with sector RP, Fleckenstein et al. [43] and Lima et al. 
[44] described an interruption of the EZ band and a decrease 
in the outer nuclear layer thickness straddling the perimeter 
of the hyper-AF ring. Wakabayashi [45] observed that the 
hyper-AF ring could represent the regional distribution of 
the active degeneration of the photoreceptors, i.e., a region 
with a high rate of phagocytosis of the photoreceptors’ outer 
segments by the RPE. When the accumulation of lipofuscin 
has reached a critical level, this induces the signal captured 
by the FAF at its maximum intensity. RPE cells die with 

Figure 3. Color retinography, fundus autofluorescence, and visual field testing for left eye in patient 1. The image shows the correspondence 
between the inferior retinal degeneration and the superior hemifield defect.

Figure 4. Fundus autofluorescence imaging. The images are related to patient 3 and show hyper-AF arcs associated with the transition zone 
between the normal-functioning retina and the diseased retina.
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a concomitant loss of lipofuscin granules. Photoreceptor 
death leads to RPE atrophy and the consequent absence of 
detectable fluorescence [46] that can be seen in the retinal 
periphery. Duncker et al. [47] described a case of sector RP 
with a continuous line of higher autofluorescence outlining 
the affected retina suggesting that this band could originate 
from dying photoreceptor cells.

In the analysis, we noted that in sector RP the line of 
hyper-AF corresponded to the interruption of the EZ band on 
OCT (Figure 8). The peripheral dark area on FAF appeared 
to be far from the hyper-AF band with the presence of a tran-
sitional area between the two. In this transitional area, the 
retina was thinner; on OCT, the EZ band was absent, the RPE 
was present, and FAF appeared to be normal. This transitional 

Figure 5. Fundus autofluorescence imaging. The images show the demarcation line of hyper-AF in the affected quadrant in patient 1 (A) and 
patient 2 (B). This line represents the boundary between functional and non-functional areas of the retina.
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area seems to be similar to the transition zone described in 
classic RP with photoreceptor alterations but with an intact 
RPE with progression from periphery to the center [42-44].

Cystoid macular edema is often associated with classic 
RP with a prevalence of 10–15% [48]. However, in this 
cohort of patients with sector RP we found no evidence 

of macular edema on OCT; in two patients, we observed 
epiretinal membranes (ERM)s. The absence of macular 
edema represents an important finding in the clinical course 
of the disease. This could be related to lower inflammatory 
activation than that hypothesized for classic RP, given the 
topographic limitation of retinal alterations.

Figure 6. Fundus autofluorescence imaging. The images show the hyper-AF bands in the inferior sectors in patient 10 (A) and patient 11 (B). 
The continuous lines of higher autofluorescence outline the affected retina.
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Visual field defects of varying extent have been reported 
in patients with sector RP [7-9,34-37]. For all the patients in 
the cohort, VF changes not only corresponded topographi-
cally to the retinal alterations (i.e., the superior scotoma 
corresponded to the dystrophic inferior retinal area) but also 
to the ophthalmoscopic abnormalities. This is in agreement 
with previous findings [7,9] excluding the one case reported 

by Coussa et al. [9] who showed ophthalmoscopic abnor-
malities in both eyes in the inferior retina associated with a 
concentric visual field constriction.

In addition, with regard to function, full-field ERG 
recordings showed varying degrees of impairment of rod 
function. There were no delays in implicit time but scotopic 

Figure 7. Widefield retinography and fundus autofluorescence imaging. The images show inferior pigmentary changes in the very periphery 
in patient 15.
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ERG response amplitudes were decreased; however, they 
were less affected than in patients with classic RP [49]; the 
photopic ERG responses were within normal limits. Addi-
tional evidence that sector RP is characterized by limited 
retinal involvement and mild functional damage was provided 
in a recent study by Giambene et al. [38]. In that study, the 

cone-mediated multifocal ERG examination displayed 
significant differences between sector and generalized RP. 
The patients with sector RP had normal ERG amplitude and 
latency values even in pigmented areas.

The genetic analysis of the 11 screened patients 
showed pathogenic sequence variants in the RHO gene in 

Figure 8. Fundus autofluorescence and OCT imaging. The images are referred to patient 2 (A) and patient 1 (B). The yellow line indicates 
the vertical OCT scan line passing through the hyper-AF demarcation line while the blue line indicates the intact EZ band. The two white 
arrows indicate the internal and external borders of the transition zone.
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nine patients. Specifically, nine patients of four indepen-
dent pedigrees carried the same RHO mutation c.568G>A 
p.(Asp190Asn), which has been reported in patients with reti-
nitis pigmentosa [23-29]. Interestingly, most of the patients 
associated with this mutation presented with a classic RP 
phenotype. Park et al. [26] reported on a family in which the 
father and his younger son presented with a classic diffuse 
RP phenotype (even if the clinical picture was definitely 
more severe in the father), while the eldest son presented a 
sector RP phenotype with involvement of the inferior sector 
of the retina. Another case carried a different RHO sequence 
variant c.548T>C (p.Leu183Pro), but its interpretation with 
predictive software classified it as a VUS. These results are 

in agreement with those of other papers [7-14,50,51] reporting 
mutations in RHO in most of the patients affected by sector 
RP, even if the detected mutations are different from those of 
various ethnic groups. The data support the hypothesis that 
RHO sequence variants are the most commonly associated 
with the sector RP phenotype and suggest that priority should 
be given to the genetic analysis of the RHO gene during muta-
tion screening of patients with sector RP. The detection of the 
same mutation in RHO c.568G>A p.(Asp190Asn) in the large 
majority of this genetically screened sector RP suggests that 
this variant could be peculiar to Italian patients with sector 
RP. The last screened patient can be considered geneti-
cally not characterized, as USH2A (Gene ID: 7399, OMIM 

Figure 9. OCT scan at the level of bone spicules with an underlying choroid with prominent choroidal vessels.

Table 2. Full-field ERG results in sector RP and a control group.

Variables  Sector RP (15) Controls (15) P value
Age 50.14 +/−18.20 42.40 +/−10.78 0.15
Dark adapted 0.01 ERG amplitude (μV) 33.78±13.17 121.50±22.91 <0.001
Dark adapted 3.0 ERG amplitude (μV) 117.84±24.24 141.81±23.05 <0.01
Light adapted 3.0 ERG amplitude (μV) 102.55±25.92 105.53±10.20 0.68
Dark adapted 0.01 ERG IT (msec) 75.49±15.46 75.19±7.81 0.95
Dark adapted 3.0 ERG IT (msec) 43.07±1.68 43.65±3.77 0.59
Light adapted 3.0 ERG IT (msec) 33.46±0.84 33.01±1.24 0.25
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608400) and ROM1 (Gene ID: 6094, OMIM 180721) sequence 
variants are usually associated with recessive inheritance 
[31-33,52,53]. Nevertheless, in previous papers the same 
ROM1 genotype c.178C>A (p.Pro60Thr) associated in “cis” 
with c.323C>T (p.Thr108Met) was hypothesized to be associ-
ated with an RP phenotype. This genotype was not definitely 
interpreted as pathogenic because of the small size of the 
pedigrees and the limited possibility of segregation analysis. 
Moreover, in this series the brother of the proband carries 

the same ROM1 genotype (with the two variants in the same 
allele in “cis”), and he is still clinically healthy. Of course, we 
should consider the possibility of digenic inheritance muta-
tions in RHO and PRPH2 (Gene ID: 5961, OMIM 179605). 
In this patient, the NGS results did not show any alterations 
of the PRPH2 gene, but as NGS can miss significant inser-
tions and deletions, we could have also performed multiplex 
ligation-dependent probe amplification (MLPA) to exclude 
chromosomic rearrangements. Unfortunately, the patient 

Figure 10. Autosomal dominant pedigrees of families A, S, and T.
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was not available for further molecular analysis. Thus, the 
pathogenicity of these ROM1 variants remains questionable.

Of note, even if in this series RHO variants are the most 
common genetic determinants of sector RP (SRP), the report 
of a case not associated with mutations in RHO requires 
one to consider other possible genetic causes of sector RP 
phenotypes. This is in agreement with previous investigations 
reporting some sector RP cases that do not carry mutations 
in the RHO gene [7-9].

Similarly, with regard to clinical genetics, in this case 
series, three families presented more affected members with 
a clear dominant transmission. All other patients appeared to 
be sporadic, although it was difficult to classify them with 
accuracy given the impossibility of examining other family 
members. Sector RP is mostly associated with good visual 
acuity and limited changes in the visual field; thus, only a 
complete examination of the patient can allow one to exclude 
the disease. Therefore, at present no inheritance pattern can 
be completely excluded.

In families with more affected members (families A and 
S), we found in the series that the sector phenotype was trans-
mitted from generation to generation. In all cases except one, 
the members of these families presented an alteration of the 
inferior retinal sector; only one patient presented a different 
alteration (nasal in one eye, temporal in the other). Therefore, 
this series, although limited, shows that it is possible to main-
tain a sector phenotype in successive generations. However, 
even if we did not have the chance to examine them directly, 
the cousin of patients P1 and P2 and the mother of patient 
P15 were reported to be classic RP phenotypes. This is in 
agreement with previous papers reporting a classic diffuse 
RP phenotype in the same patients carrying the RHO muta-
tion c.568G>A p.(Asp190Asn) [24,25], while Park reported on 
a family in which this mutation is associated with a diffuse 
classic RP phenotype in the father and in the younger son but 
with a sector RP phenotype in the eldest son [26]. Finally, 
Xiao reported significant phenotypic variability and variable 
penetrance in his series of Chinese patients with sector RP 
[7]. These data strongly support a possible phenotypic vari-
ability in patients affected by sector RP.

The main limitations of this study are the small sample 
size with only a few evaluated families and the lack of 
longitudinal data. However, the analysis highlighted some 
important aspects of sector RP providing more information 
about the physiopathology of the disease and confirming, in 
the typical cases, the topographically limited involvement 
of the retinal degeneration process. Moreover, in this study 
we included only selected typical cases with clearly sectorial 
ophthalmoscopic and visual field abnormalities.

In conclusion, typical Italian patients with sector RP 
have normal visual acuity and generally a more favorable 
prognosis than other forms of RP. In most of the cases, the 
disease is associated with pathogenic mutations in the RHO 
gene with possible phenotypic variability even within the 
same family. Further investigations, including longitudinal 
studies with a long follow-up, are needed to clarify and define 
the natural history of the disease, to evaluate the possibility 
of unusual sector RP cases (i.e., disagreement between 
ophthalmoscopic retinal alterations and the extent of visual 
field loss) and to define the role of multimodal imaging for 
monitoring the progression of the disease for future thera-
peutic interventions. Moreover, even if RHO mutations are 
the most commonly reported in this series, the genotypic 
and phenotypic variability of sector RP is still to be fully 
determined.
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