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Introduction: Diagnosing renal pathologies is important for performing treatments. However, classifying

every glomerulus is difficult for clinicians; thus, a support system, such as a computer, is required. This

paper describes the automatic classification of glomerular images using a convolutional neural network

(CNN).

Method: To generate appropriate labeled data, annotation criteria including 12 features (e.g., “fibrous

crescent”) were defined. The concordance among 5 clinicians was evaluated for 100 images using the

kappa (k) coefficient for each feature. Using the annotation criteria, 1 clinician annotated 10,102 images.

We trained the CNNs to classify the features with an average k$0.4 and evaluated their performance using

the receiver operating characteristic–area under the curve (ROC–AUC). An error analysis was conducted

and the gradient-weighted class activation mapping (Grad-CAM) was also applied; it expresses the CNN’s

focusing point with a heat map when the CNN classifies the glomerular image for a feature.

Results: The average k coefficient of the features ranged from 0.28 to 0.50. The ROC–AUC of the CNNs for

test data varied from 0.65 to 0.98. Among the features, “capillary collapse” and “fibrous crescent” had

high ROC–AUC values of 0.98 and 0.91, respectively. The error analysis and the Grad-CAM visually

showed that the CNN could not distinguish between 2 different features that had similar visual structures

or that occurred simultaneously.

Conclusion: The differences in the texture or frequency of the co-occurrence between the different features

affected the CNN performance; thus, to improve the classification accuracy, methods such as segmen-

tation are required.
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U
nderstanding renal pathology is important when
making diagnoses and decisions for the course(s)

of treatment.1,2 When interpreting renal pathology, all
the glomeruli must be carefully observed individually.
This is a time-consuming task for clinicians and re-
quires the support of a computer.3

In recent years, there have been advancements in
technologies related to artificial intelligence known as
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deep learning.4 Through deep learning, general image
recognition is often more accurate than by humans. In
particular, the convolutional neural network (CNN),
which is based on the neocognitron,5 has played a
major role. The CNN has demonstrated high perfor-
mance in image recognition and object extraction even
in the medical field. For example, Saha et al. reported
that they detected mitosis from pathological glass slides
of breast cancer using a CNN with a 92% accuracy and
an 88% recall.6

Research on pathological glomerular images using
machine learning, including the CNN, involves the
detection of glomeruli from a whole slide image (WSI)
and the classification of glomeruli. As an example of
glomerular detection from a WSI, Gallero et al. reported
that their CNN detected glomeruli from a periodic
acid�Schiff (PAS) �stained WSI with an F1 score of
0.937.7 Kawazoe et al. reported that they detected
glomeruli from PAS-, periodic acid-methenamine-silver
(PAM)�, Masson trichrome�, and Azan-stained WSIs,
with F1 scores ranging from 0.876 to 0.925 using a
modified CNN.8 Bukowy et al. reported that they
constructed a CNN to detect glomeruli from trichrome-
stained WSIs with an average precision and recall of
96.94% and 96.79%.9 Hermsen et al. constructed a
CNN to segment WSIs into 11 classes such as
“glomeruli” or “interstitium” from the PAS-stained
WSI, and it detected 92.7% of all glomeruli.10

Regarding glomerular classification, George et al.
reported that they used the k�nearest neighbor algo-
rithm and succeeded in classifying whether the
glomerular images contained proliferative lesions with
92.3% precision.11 In another study, Shruti et al.
constructed a CNN to determine whether the image
obtained from trichrome-stained WSI is a “non-global
sclerosis, global sclerosis, or non-glomerular” with
89.66% to 95.06% accuracy.12 Similarly, John et al.
used deep learning to diagnose whether the glomeruli
from hematoxylin and eosin�stained WSIs of the
transplanted kidney are sclerotic, with an F1 score of
0.865 to 0.879.13 Chagas et al. combined a CNN and a
support vector machine to classify the hypercellularity
for glomerular images from hematoxylin and eosin�
and PAS-stained WSIs, with 98.8% to 99.6%
accuracy.14

To automatically classify the glomerular images us-
ing CNN, the ground truth for features is essential for
all the images. However, in the routine diagnosis of
kidney disease, scores are not always recorded for all of
the features for all glomeruli, and they are often
recorded only for representative glomeruli. Therefore,
the pathological reports recorded in daily medical care
often do not have complete ground truth for all
glomeruli. Furthermore, the existing annotation
Kidney International Reports (2021) 6, 716–726
criterion for a specific disease, such as the Oxford
classification,15 or the annotation criterion for only
particular diseases, such as the multicenter Nephrotic
Syndrome Study Network (NEPTUNE) scoring sys-
tem,16 cannot be applied to various diseases in their
current format. Therefore, annotation criteria that can
be applied to various kidney diseases should be newly
developed. First, to create the ground truth of
glomerular images, this study established the annota-
tion criteria for glomerular images and evaluated the
degree of concordance among clinicians based on the
criteria. Next, CNNs that classified the various features
of the glomerular images were developed, and their
performance was evaluated. Finally, the concordance
between the CNN score and the clinicians’ score was
assessed, and an error analysis was performed to
determine computer-related issues for the renal pa-
thology images.

MATERIALS AND METHODS

Dataset Collection

This study collected 293 PAS-stained WSIs from 3
hospitals: 99 WSIs from the University of Tokyo Hos-
pital (UTH) from 2010 to 2017; 88 WSIs from the
Tazuke Kofukai Medical Research Institute, Kitano
Hospital (KH), from 2014 to 2017; and 106 WSIs from
the University of Tsukuba Hospital (UTSH) from 2009
to 2016. From the 293 WSIs, the glomerular image was
manually extracted in a rectangular shape so that 1
major glomerulus was included, which yielded 10,202
images. Supplementary Table S1 lists the major di-
agnoses of the 293 WSIs for the 10,202 images. The
extracted glomerular images were converted into the
png format using Openslide17 and were saved as a
single image file.

Development of Annotation Criteria

Five co-authored clinicians (1 physician and 4 pathol-
ogists) developed the annotation criteria for various
kidney diseases based on the Delphi method,18 because
we were to guarantee the quality of the annotation
criteria and annotated labels; Krause et al.19 showed
that the quality of the annotated label affected the
validity of its performance in the machine learning
model for diabetic retinopathy. Consequently, the
annotation criteria consisted of the following 3 ele-
ments: (i) “feature”: finding the name (e.g., “mesangial
hypercellularity”); (ii) “score”: the possible value of the
feature (e.g., “normal,” “mild,” “moderate,” “severe”);
and (iii) “regulation”: definitions for determining the
score (e.g., “count the number of mesangial cells .”).
The annotation criteria also included 12 features, which
are important to diagnose the PAS-stained images. The
12 features are as follows: (i) capillary collapse (CC); (ii)
717
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sclerosis (Scl); (iii) mesangial hypercellularity
(MesHyper); (iv) increased mesangial matrix (IMM); (v)
mesangiolysis (MLysis); (vi) endocapillary proliferation
(EP); (vii) fibrous crescent (F-Cre); (viii) fibrocellular
crescent (Fc-Cre); (ix) cellular crescent (C-Cre); (x)
adhesion (Adh); (xi) afferent/efferent arteriolar hyali-
nosis (AAH); and (xii) increased vasculature around the
vascular pole (IVVP). The granularity of the score and
the regulation were also discussed and agreed upon by
the 5 clinicians. In some images, the score of the
particular features could not be obtained; these were
classified as “impossible to score.” Supplementary
Table S2 lists the annotation criteria that were devel-
oped for this study. Supplementary Figure S1 depicts
the example images of annotation for each feature. In
addition to those criteria, an annotation flowchart was
developed to clarify the dependency between the fea-
tures, which sometimes made the annotation compli-
cated. Figure 1a and b show the annotation flowcharts.

Concordance Evaluation of Annotated Features

Between Clinicians

Out of 10,202 images, the first author selected 100 im-
ages for concordance evaluation. These 100 images
included relatively “easy-to-score” images but also
“hard-to-score” images in which different clinicians
might assign different scores. Five clinicians annotated
all 12 features for the 100 images except for 2 images in
which 2 clinicians considered them to be ineligible to
be scored. Supplementary Figure S2 shows the 98 im-
ages used for concordance evaluation. After the 5 cli-
nicians finished annotating the images, the Cohen
kappa (k) coefficients20 of the 5 clinicians were
calculated.

Development and Evaluation of CNN

One physician annotated all 12 features that were
included in the developed annotation criteria for the
remaining 10,102 glomerular images. The breakdown
list of the 10,102 images for the features and scores is
presented in Table 1.

The CNNs were developed for the features for which
the k coefficients were $0.40 to classify the features as
positive or negative. The binary class breakdown list of
the 10,102 images of the 5 features for the CNN is
presented in Table 2. The strength of the correlation
between the features was calculated using the phi co-
efficient (Table 3). There was a strong correlation be-
tween CC and F-Cre (phi coefficient ¼ 0.67).

The performance of the CNN was evaluated on the
validation, test, and concordance data, respectively,
over the 4-fold cross-validation (Figure 2). The per-
formance was measured using the average ROC-AUC
and F1 score via 4-fold stratified cross-validation for
718
the 10,102 images, and also for the 98 images used for
the concordance evaluation.

This study used a 50-layer residual network
(ResNet50) as the structure of the CNN, which dem-
onstrates the high performance in general image
recognition and is unlikely to fall into poor local
minima because of its structure21; hence, it would
achieve high classification performance. This investi-
gation also adopted transfer learning,22 which uses the
parameters that were trained by the ImageNet data-
set.23 The weighted softmax cross entropy loss was
used as a loss function because the dataset for this
study was unbalanced between positive and negative.
For the weighted softmax cross entropy, the reciprocal
of the ratio of the number of images in the class to the
total number of images was set for each class. As the
optimizing method, adaptive moment estimation
(Adam), which has a fast convergence speed and can
easily obtain good accuracy without parameter tuning,
was used with an empirically determined hyper-
parameter (a ¼ 1.0 � 10�7). All original images were
resized to 224 � 224 pixels for the CNN input.

At the time of CNN training, data augmentation was
applied to randomly rotate (0�, 90�, 180�, and 270�) and
invert the images. The losses for the training and
validation data were calculated for each epoch. The
training was stopped at the point at which the loss of
the validation data did not decrease for at least 50
continuous epochs.

Python3 was used as the programming language,
and Chainer (version 4.0.0) was used as the deep
learning library. The calculations were performed us-
ing NVIDIA DGX-1 (OS: Ubuntu 16.04, main memory:
515 GB, CPU: Intel Xeon CPU E5-2698 v4, GPU: 8 Tesla
V100-SXM).

Concordance Evaluation Between the CNN

Score and Clinicians’ Score

For the features for which the ROC–AUC for the test
data exceeded 0.9, this study compared the CNN’s
predictive score with the 5 clinicians’ scores for the
concordance data and performed error analysis. More-
over, to perform the error analysis visually and to help
understand the CNN’s properties, gradient-weighted
class activation mapping24 (Grad-CAM) was applied
for the concordance data; it is a technique that ex-
presses the CNN’s focusing point using a heat map
calculated by summing up the intermediate gradient of
the CNN for each channel.

RESULTS

Concordance Between Clinicians

Table 4 lists the results of the Cohen k coefficient of the
5 clinicians for the 98 images. The average k coefficient
Kidney International Reports (2021) 6, 716–726
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Define the score of “EP”
as “Impossible to score.”
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Yes

No

No

No

No

No

Focus on the capillaries.

Evaluate the extracapillary lesion.

Instruction: Instruct clinicians to focus on certain areas of images. 

Branch: Go to a different node according to this node’s assessment by clinicians.  

Manual Annotation: Clinicians create the score of the feature manually.  

Automatic Scoring: The scores of the feature are automatically determined. 

a

Figure 1. (a, b) Flowcharts of the annotation for an image of a glomerulus. These 2 flowcharts represent the order followed to create a feature
score. AAH, afferent/efferent arteriolar hyalinosis; Adh, adhesion; CC, capillary collapse; C-Cre, cellular crescent; EP, endocapillary prolifer-
ation; F-Cre, fibrous crescent; Fc-Cre, fibrocellular crescent; IMM, increased mesangial matrix; IVVP, increased vasculature around the
vascular pole; MesHyper, mesangial hypercellularity; MLysis, mesangiolysis; Scl, sclerosis.
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Evaluate the extracapillary lesion.
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as “Impossible to score.”

Focus on Bowman capsule.

Can Bowman
capsule be seen 

in the image?

Create score for “Adh.”

Focus on the vascular pole.

Can a vascular 
pole can be seen 

in the image?

Define score of “IVVP”
as “Impossible to score.” Create score for “IVVP.”

Can an afferent 
or efferent 

arteriole be seen 
in the image?

Define score of “AAH”
as “Impossible to score.” Create score for “AAH.”
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No
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Instruction: Instruct clinicians to focus on certain areas of images. 

Branch: Go to a different node according to this node’s assessment by clinicians.  

Manual Annotation: Clinicians create score of the feature manually.  

Automatic Scoring: The scores of the feature are automatically determined. 

b

Figure 1. Continued
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Table 2. Breakdown of data used for the convolutional neural
network (CNN)
Score
Feature Negative Positive

Ratio of negative
to positive

CC None, Impossible to score Segmental, Global
8893 1209 7.36

IMM (�), Impossible to score (þ)
2782 7320 0.38

MLysis (�), Impossible to score (þ)
9990 112 89.20

F-Cre (�) (þ)
8611 1491 5.78

IVVP (�), Impossible to score (þ)
9958 144 69.15

Each number shows the number of images contained in the score. CC, capillary
collapse; F-Cre, fibrous crescent; IMM, increased mesangial matrix; IVVP, increased
vasculature around the vascular pole; MLysis, mesangiolysis.

Table 3. Phi coefficient among the 5 features
CC 1.00

IMM –0.50 1.00

MLysis –0.04 0.04 1.00

F-Cre 0.67 –0.36 –0.02 1.00

IVVP –0.03 0.03 0.00 –0.03 1.00

CC IMM MLysis F-Cre IVVP

This table shows the phi coefficient between the 2 features among the 5 features. Each
number shows the phi coefficient between the 2 features. The phi coefficient ranges
from �1 to 1, where 1 represents a perfect positive correlation, �1 represents a perfect
negative correlation, and 0 represents no correlation at all. CC, capillary collapse; F-Cre,
fibrous crescent; IMM, increased mesangial matrix; IVVP, increased vasculature
around the vascular pole; MLysis, mesangiolysis.

Table 1. Breakdown of the annotated images
Feature Score

CC (�) Segmental Global Impossible to score
8837 187 1022 56

Scl (�) Segmental Global Impossible to score
8499 448 82 1083

MesHyper Normal Mild Moderate Severe Impossible to score
5411 1874 726 878 1213

IMM (�) (þ) Impossible to score
1569 7320 1213

MLysis (�) (þ) Impossible to score
8777 112 1213

EP (�) Segmental Global Impossible to score
8409 496 34 1163

F-Cre (�) (þ)
8611 1491

Fc-Cre (�) (þ)
9413 689

C-Cre (�) (þ)
9733 369

Adh (�) (þ) Impossible to score
6826 1925 1351

IVVP (�) (þ) Impossible to score
2160 144 7798

AAH (�) (þ) Impossible to score
798 235 9069

For each of the 12 features that were made, the distribution of the scores for all of the
10,102 images are listed. Each number represents the number of images scored for
each score. AAH, afferent/efferent arteriolar hyalinosis; Adh, adhesion; C-Cre, cellular
crescent; CC, capillary collapse; EP, endocapillary proliferation; F-Cre, fibrous crescent;
Fc-Cre, fibrocellular crescent; IMM, increased mesangial matrix; IVVP, increased
vasculature around the vascular pole; MesHyper, mesangial hypercellularity; MLysis,
mesangiolysis; Scl, sclerosis.
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ranged from 0.28 to 0.50, and was $0.40 (moderate
agreement) for the 5 features (CC, IMM, MLysis, F-Cre,
and IVVP).

CNN Performance

Table 5 summarizes the ROC–AUC and the F1 score for
the validation data, test data, and concordance data.
The ROC–AUC for the test data varied from 0.65 to
0.98. Among the 5 features, CC and F-Cre demonstrated
high ROC–AUCs of 0.98 and 0.91, respectively.

Concordance Between the CNN Score

and Clinicians’ Score

As shown in Table 5, there were 2 features (CC and F-
Cre) with ROC–AUCs for the test data that exceeded 0.9
(CC and F-Cre). Error analysis was conducted for these
2 features. Tables 6 and 7 present the comparisons for
CC and F-Cre, respectively. As shown in Table 6, for
CC, there are 13 completely true-positive (cTP) images
that the CNN predicted to be positive, and all 5 clini-
cians scored them positively. In addition, there were no
completely false-positive (cFP) images that the CNN
predicted to be negative; however, no clinician scored
these images positively. There were 33 completely true-
negative (cTN) images that the CNN predicted to be
negative, and no clinician scored them as positive.
There was 1 completely false-negative (cFN) image that
the CNN predicted to be negative; however, all of the
Kidney International Reports (2021) 6, 716–726
clinicians scored it as positive. Table 7 demonstrates
that for the F-Cre, there are no cTP images but there are
20 cFP images, 37 cTN images, and 1 cFN image.

Visualization of the CNN’s Focusing Point

We show the 3 images of Grad-CAM to understand the
properties of the CNN qualitatively. Figure 3 depicts a
cTP image for CC where the CNN and all 5 clinicians
scored it as positive. In this figure, the focus of the
CNN was on the collapsed capillary, which is an actual
pathological lesion. On the other hand, Figures 4 and 5
show the cFP images for the F-Cre where the CNN
scored it as positive but none of the 5 clinicians scored
it as positive. In Figure 4, the focus of the CNN was the
extracapillary lesion, which is an actual pathological
lesion of the Fc-Cre; however, the CNN misclassified it
as F-Cre. In Figure 5, the focus of the CNN was not the
extracapillary lesion but the collapsed capillary lesion.

DISCUSSION

Clinicians’ Concordance

As listed in Table 4, the k coefficient ranged from 0.28
to 0.50, which indicates a fair-to-moderate concor-
dance. The study about concordance in the Oxford
classification for IgA nephropathy15 measured the
concordance by using intraclass correlation coefficients
(ICCs), and their ICCs ranged from 0.03 to 0.90. The
721



Images for CNN training and validation

Images from WSIs (n = 10 202)

Images for CNN development (n = 10 102)

Training Training Training Validation

Training Training Validation Training

Training Validation Training Training

Validation Training Training Training

Concordance images
(n = 100)

Test images

1st fold 

2nd fold 

3rd fold 

4th fold 

Evaluation
(ROC-AUC, F1 score)

Figure 2. Schematic representation of the cross-validation. This figure shows how all images were divided for training, validation, testing, and
concordance. First, 10,202 glomerular images were collected from the whole slide images (WSIs). Next, 100 glomerular images were chosen for
the concordance data. Finally, the remaining 10,102 images were divided into 5 groups, 1 for the test data and the other 4 groups as the training
data and validation data that were used for convolutional neural network training. ROC�AUC, receiver operating characteristic�area under the
curve.
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same variety of ICCs were also reported in the Japanese
cohort study using the Oxford classification for IgA
nephropathy where the ICCs ranged from 0.26 to
0.89.25 Because the ICCs are analogous with the k co-
efficient,26 the discordance was also reported in those
studies.

As for the feature of MesHyper, the k coefficient is
0.35, whereas the k coefficient for the mesangial
hypercellularity reported in the NEPTUNE scoring
system16 was 0.54 to 0.64. Even though a direct com-
parison is difficult because of differences in the 2 study
designs, the difference in the number of classes (5 for
this study and 2 for NEPTUNE) might have led to the
difference in the k score.
Table 4. Results of Cohen k coefficient by the 5 clinicians for the conco
A/B A/C A/D A/E B/C

CC 0.33 0.30 0.50 0.35 0.51

Scl 0.18 0.36 0.46 0.44 0.46

MesHyper 0.44 0.37 0.35 0.37 0.42

IMM 0.45 0.52 0.62 0.45 0.43

MLysis 0.54 0.48 0.68 0.53 0.25

EP 0.19 0.38 0.54 0.35 0.18

F-Cre 0.59 0.50 0.20 0.64 0.72

Fc-Cre 0.34 0.20 0.30 0.23 0.72

C-Cre 0.47 0.57 0.24 0.33 0.44

Adh 0.16 0.58 0.26 0.37 0.18

IVVP 0.40 0.40 0.45 0.56 0.41

AAH 0.25 0.16 0.41 0.47 0.35

The rows indicate the features, and the column indicate the pairs of clinicians (e.g., A/B implies
The Cohen k coefficient ranges from �1 to 1, where 1 represents perfect concordance, �1
adhesion; AAH, afferent/efferent arteriolar hyalinosis; C-Cre, cellular crescent; CC, capillary
crescent; IMM, increased mesangial matrix; IVVP, increased vasculature around the vascular

722
One possible reason that may have caused discor-
dance is that single-stained WSIs were used for scoring
the images. In some cases, clinicians see the WSIs for
several stains, and they try to assign a score for an image.
Combining other stained WSIs, such as PAM or Azan,
might improve the concordance between clinicians.

CNN Performance

As shown in Table 5, the ROC–AUC for the CNN for the
test data exceeded 0.9 for the CC and the F-Cre. The 2
features may have demonstrated a high performance
due to the positive-to-negative ratio (described in
Table 2), and the width of the pathological lesions were
not so narrow. In contrast, features such as IVVP with a
rdance images
B/D B/E C/D C/E D/E Average

0.51 0.40 0.44 0.35 0.41 0.41

0.31 0.26 0.52 0.38 0.44 0.38

0.27 0.28 0.29 0.36 0.35 0.35

0.42 0.45 0.53 0.45 0.42 0.47

0.39 0.41 0.45 0.56 0.56 0.49

0.30 0.41 0.34 0.35 0.51 0.36

0.04 0.59 0.02 0.50 0.28 0.41

0.39 0.56 0.12 0.44 0.33 0.36

0.26 0.45 0.22 0.53 0.40 0.39

0.29 0.23 0.08 0.28 0.33 0.28

0.55 0.56 0.56 0.46 0.63 0.50

0.46 0.37 0.39 0.26 0.60 0.37

clinicians A and B) and their average value. Each number shows the Cohen k coefficient.
represents perfect discordance, and 0 represents completely no concordance. Adh,
collapse; EP, endocapillary proliferation; F-Cre, fibrous crescent; Fc-Cre, fibrocellular
pole; MesHyper, mesangial hypercellularity; MLysis, mesangiolysis; Scl, sclerosis.
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Table 5. Overall results of the convolutional neural network (CNN)
performance

Feature

Validation data Test data Concordance data

ROC--AUC F1 score ROC--AUC F1 score ROC--AUC F1 score

CC 0.97 0.79 0.98 0.79 0.84 0.59

IMM 0.82 0.82 0.79 0.79 0.76 0.72

MLysis 0.87 0.12 0.76 0.08 0.37 0.04

F-Cre 0.90 0.61 0.91 0.63 0.69 0.53

IVVP 0.62 0.04 0.65 0.05 0.47 0.04

Each number shows the average receiver operating characteristic–area under the
curve (ROC–AUC) or the F1 score over the 4 folds by each feature. CC, capillary
collapse; F-Cre, fibrous crescent; IMM, increased mesangial matrix; IVVP, increased
vasculature around the vascular pole; MLysis, mesangiolysis.

Table 6. Comparison between the convolutional neural network
(CNN) predictive score and the clinicians’ feature for the capillary
collapse (CC)

No. of clinicians out of 5 who scored positive

0 1 2 3 4 5

CNN’s predictive
score over 4 folds

0.75–1.00 0 a 2 2 5 7 10b

0.50–0.75 0a 2 2 2 2 3b

0.25–0.50 9c 5 0 0 1 1d

0.00–0.25 24d 11 4 2 4 0d

This confusion matrix shows the comparison between the CNN’s predictive score and
the clinicians’ feature for the CC. Rows show the CNN’s predictive score for an image,
calculated as an average of the CNN’s softmax probability over the 4 folds. Columns
show the number of clinicians out of 5 who scored it as positive. Each number rep-
resents the number of images.
aImages in which the CNN predicted it to be positive but no clinician scored it as
positive (the CNN’s completely false-positive result).
bImages in which the CNN predicted it to be positive and all of the clinicians scored it
as positive (the CNN’s completely true-positive result).
cImages in which the CNN predicted it to be negative and no clinician scored it as
positive (the CNN’s completely true-negative result).
dImages in which the CNN predicted it to be negative but all of the clinicians scored it
as positive (the CNN’s completely false-negative result).

Table 7. Comparison between the convolutional neural network
(CNN) predictive score and the clinicians’ feature for the fibrous
crescent (F-Cre)

No. of clinicians out of 5 who scored
positive

0 1 2 3 4 5

CNN’s predictive score
over 4 folds

0.75–1.00 9a 4 2 7 6 0b

0.50–0.75 11a 5 1 2 1 0b

0.25–0.50 20c 2 1 3 0 1d

0.00–0.25 17c 4 1 0 1 0d

This confusion matrix shows the comparison between the CNN predictive score and the
clinicians’ feature for the F-Cre. Rows show the CNN’s predictive score for an image,
which was calculated as an average of the CNN’s softmax probability over the 4 folds.
Columns show the number of clinicians out of 5 who scored it as positive. Each number
shows the number of images.
aImages in which the CNN predicted it to be positive, but no clinician scored it as
positive (CNN’s completely false-positive result).
bImages in which the CNN predicted it to be positive and all of the clinicians scored it
as positive (the CNN’s completely true-positive result).
cImages in which the CNN predicted it to be negative and no clinician scored it as
positive (the CNN’s completely true-negative result).
dImages in which the CNN predicted it to be negative, but all clinicians scored it as
positive (the CNN’s completely false-negative result).
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low performance demonstrated a high ratio of negative
to positive, and a small pathological lesion may have
caused the low performance. To improve the accuracy,
the data should be collected to improve the class bal-
ance with the resampling methods.

As displayed in Table 5, there is a difference in the
performance between the concordance data and the test
data for some features. This seems to be due to the
sampling method. Specifically, the test data were
selected to have a good representation of the whole
dataset by the stratified folding method; however, the
concordance data were intentionally selected to contain
“hard-to-score” images.

Concordance Between the CNN and Clinicians

As shown in Tables 6 and 7, for the CC, there was no
cFP case and only 1 cFN case out of 98 images. Mean-
while, for the F-Cre, there were 20 cFP cases and 1 cFN
case. F-Cre has more cFP images compared with CC. The
reason why there are so many cFP images for the F-Cre
is discussed in the next section.

Visualization of CNN’s Focusing Point

A visualization of the cTP case for the CC is illustrated
in Figure 3, and the cFP cases for F-Cre are presented in
Figures 4 and 5. In Figure 4, the CNN cannot distin-
guish between the 2 different features, which are F-Cre
and Fc-Cre. It is hypothesized that F-Cre and Fc-Cre
have a similar crescentic structure but different tex-
tures. On the other hand, in Figure 5, the CNN cannot
distinguish between CC and F-Cre, which tended to
occur simultaneously in this dataset (as depicted in
Table 3). This is because during the training process,
the CNN merely focuses on the frequently occurring
lesion, which is not always a true pathological lesion.
This phenomenon has been reported as an inherent bias
derived from the dataset.24 By correcting the balance of
co-occurrence between the 2 different features, this
may enable the CNN to focus on the appropriate
pathological lesion and to make the correct
classification.
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Except for the CC and F-Cre, there are several other
strong correlations between the features of the renal
pathology in terms of pathogenesis. For example, in
most cases of IgA nephropathy, endocapillary prolif-
eration tends to accompany mesangial hyper-
cellularity.27 To avoid the inherent bias caused by this
correlation, it is suggested that instead of classifying
the features directly, the glomerular image should be
divided into different lesions according to its struc-
tures, such as the capillary lesion, the mesangial lesion,
and the extracapillary lesion, and semantic segmenta-
tion28 can be applied to extract the lesions from the
glomerular image.

In conclusion, this study established the annotation
criteria and an annotation flowchart to automatically
classify the glomerular images using CNNs. The anno-
tation criteria included 12 features and the degree of
723



Figure 3. Example of the true positive score of the convolutional neural network (CNN) for the capillary collapse (CC). (Left) One of the periodic
acid�Schiff (PAS)�stained images from the concordance data. The CNN diagnosed this image as “capillary collapse is positive,” and all 5
clinicians scored it as “capillary collapse is positive.” (Center) The blue lines depict the collapsed capillary, and the yellow lines show the
fibrous crescents. (Right) Visualization of the CNN’s focusing points using the Gradient-weighted Class Activation Mapping when the CNN
diagnosed the capillary collapse as positive or negative. Red lesions are the CNN’s focusing points. This shows that the CNN was focused
correctly on the capillary area.

Figure 4. Example of the false-positive case of the convolutional neural network (CNN) for the fibrous crescent (F-Cre). (Left) One of the periodic
acid�Schiff (PAS)�stained images from the concordance data. The CNN diagnosed this image as “F-Cre is positive,” but none of the 5 cli-
nicians scored it as “F-Cre is positive,” whereas 4 of the 5 clinicians scored it as “Fibrocellular Crescent (Fc-Cre) is positive.” (Center) The
yellow line shows the area of Fc-Cre. (Right) Visualization of the CNN’s focusing points using the gradient-weighted class activation mapping
when the CNN diagnosed the F-Cre as positive or negative. The red lesions are the CNN’s focusing points. This shows that the CNN focused
correctly on the extracapillary area but “misdiagnosed” it as “F-Cre is positive.”

Figure 5. Another example of the false-positive case of the convolutional neural network (CNN) for the fibrous crescent (F-Cre). (Left) One of the
periodic acid�Schiff (PAS)�stained images from the concordance data. The CNN diagnosed this image as “F-Cre is positive” but none of the 5
clinicians scored it as “F-Cre is positive.” (Center) The blue line shows the area where the capillary was collapsed and obsoleted, and the
yellow line depicts the fibrocellular crescent area. (Right) Visualization of the CNN’s focusing points using the gradient-weighted class acti-
vation mapping when the CNN diagnosed the F-Cre as positive or negative. The red lesions are the CNN’s focusing points. This reveals that the
CNN accidentally focused on the capillary area although it needs to focus on the extracapillary lesion.
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concordance. This was indicated by the average k co-
efficient among the 5 clinicians for each feature that
ranged from 0.28 to 0.50. One clinician annotated
10,102 images and the performance of the CNN for the
5 features that were evaluated. The ROC–AUC values
for the test data ranged from 0.65 to 0.98. In particular,
CC and F-Cre demonstrated high ROC–AUC values of
0.98 and 0.91, respectively. The error analysis indi-
cated that the CNN cannot distinguish features that
have a similar visual structure or are likely to occur
simultaneously. To address this problem, labeling
every pixel with the structure class such as mesangial
lesions or capillary lesions and applying semantic seg-
mentation might improve the performance of the
glomerular classification.

One of the limitations of this study is that the
annotation criteria should be validated by other clini-
cians, and more images for concordance evaluation are
desirable. Another limitation is that the images for the
CNN development were annotated only by 1 clinician.
Thus, there should be unintended bias in the dataset,
and the results of the CNN performance might not be
extrapolated to the other datasets.

This study has 3 important implications for future
research on automatic glomerular classification. The
first implication is that the discordance among the
clinicians is similar to what has been reported in the
literature. The second implication is that the width of
the pathological lesion seems to affect the performance
of the CNN. The third implication is that providing the
predictive score and visualizing the focus of the CNN
would support clinicians in diagnosing renal pathol-
ogy, which would improve the quality of the clini-
cians’ assessment.
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TRANSLATIONAL STATEMENT

When diagnosing kidney diseases, scoring every glomer-

ulus is important but time-consuming; hence, scoring re-

quires the support of a computer. This study

demonstrates the performance of a convolutional neural

network when classifying the glomerular features. This

study visually demonstrated that there are cases where

the convolutional neural network cannot distinguish 2

different features that had a similar visual structure, or

they occurred simultaneously. This result suggests the

need to divide the glomerular image into different lesions

according to its structures for computers to perform a

proper assessment.
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