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Abstract

Functional diversity of the highly polymorphic human leukocyte antigen class I (HLA-I) genes 

underlies successful immunologic control of both infectious disease and cancer. The divergent 

allele advantage hypothesis dictates that an HLA-I genotype with two alleles with sequences that 

are more divergent enables presentation of more diverse immunopeptidomes1–3. However, the 

effect of sequence divergence between HLA-I alleles—a quantifiable measure of HLA-I evolution
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—on the efficacy of immune checkpoint inhibitor (ICI) treatment for cancer remains unknown. In 

the present study the germline HLA-I evolutionary divergence (HED) of patients with cancer 

treated with ICIs was determined by quantifying the physiochemical sequence divergence between 

HLA-I alleles of each patient’s genotype. HED was a strong determinant of survival after 

treatment with ICIs. Even among patients fully heterozygous at HLA-I, patients with an HED in 

the upper quartile respond better to ICIs than patients with a low HED. Furthermore, HED 

strongly impacts the diversity of tumor, viral and self-immunopeptidomes and intratumoral T cell 

receptor donality. Similar to tumor mutation burden, HED is a fundamental metric of diversity at 

the major histocompatibility complex-peptide complex, which dictates ICI efficacy. The data link 

divergent HLA allele advantage to immunotherapy efficacy and unveil how ICI response relies on 

the evolved efficiency of HLA-mediated immunity.

Checkpoint blockade immunotherapies such as anti-PD-1, anti-PD-L1 and anti-CTLA-4 

have revolutionized the treatment of advanced-stage cancers, but only a minority of patients 

respond. A critical determinant of ICI response is tumor mutational burden (TMB), a proxy 

for the number of tumor-derived neoantigens that can be presented on the cell surface by 

major histocompatibility complex (MHC) molecules and subsequently recognized by 

cytotoxic T cells4–9. Another genetic factor that determines ICI response is heterozygosity at 

the highly polymorphic HLA-I loci10. According to heterozygote advantage, originally 

observed in studies of infectious diseases, heterozygous HLA-I genotypes facilitate 

presentation of a more diverse set of tumor antigens to T cells10–15.

Each individual’s HLA-I genotype consists of a pair of alleles at each of the classic class I 

genes—HLA-A, -B and -C—and their polymorphism is concentrated within their peptide-

binding domains16,17. The set of peptides bound by each MHC class I (MHC-I) molecule is 

collectively referred to as its immunopeptidome, and HLA-I alleles have different peptide-

binding specificities with varying overlap according to the physiochemical sequence 

divergence between alleles1,18,19. The concomitant diversity of HLA-I genotypes and 

peptide-binding specificities yields marked interindividual variability in immunopeptidome 

diversity1,19. This variation may affect the ability of each individual’s immune system to 

recognize tumor antigens, and thus may influence response to ICI. Furthermore, recent 

studies have shown that the HLA genotype shapes the landscape of oncogenic mutations 

observed in tumors, and that somatic loss of HLA-I is one possible mechanism by which 

tumors evade immune control10,20–23.

Motivated by the divergent allele advantage proposed three decades ago1,2, the present study 

hypothesizes that the effect of HLA-I heterozygosity on response to ICIs may be modulated 

by the amount of sequence divergence between the peptide-binding domains of patient 

HLA-I alleles. High sequence divergence between the alleles’ peptide-binding domains 

strongly affects the combined peptide-binding properties of the corresponding MHC-I 

molecules2,3,24,25. Thus, heterozygous patients with more divergent alleles may present a 

broader set of peptides for T cell recognition than heterozygous patients with less divergent 

HLA-I alleles2,3,25.

HED was first determined using HLA-I genotypes across multiple cohorts of patients with 

metastatic melanoma or non-small-cell lung cancer (NSCLC) treated with anti-CTLA-4 or 
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anti-PD-1/-PD-L1 (Fig. 1a, and see Supplementary Tables 1 and 2). For each patient, the 

HED was calculated at each of HLA-A, HLA-B and HLA-C by measuring the Grantham 

distance3,26 between the peptide-binding domains of the two alleles. The Grantham distance 

is a classic metric that allows quantification of physiochemical differences between protein 

amino acid sequences, taking into account composition, polarity and volume. To explore the 

landscape of HEDs in the dataset of the present study, hierarchical clustering of HED per 

HLA-I locus was performed for all pairwise allele combinations. Hierarchical clustering of 

HEDs demonstrated distinct clusters of high and low divergence between alleles (Fig. 1b and 

Extended Data Fig. 1), consistent with known interrelationships of HLA-A, HLA-B and 

HLA-C loci17,27. HLA-B pairwise divergences were higher relative to HLA-A and HLA-C 
(Fig. 1c), consistent with prior reports that HLA-B is the oldest and most diverse of the three 

HLA-I loci17,27. Moreover, HLA-C alleles had the lowest pairwise divergences, in line with 

prior studies that HLA-C has evolved most recently17,27,28 (Fig. 1c). Next, for each patient, 

the mean HED was calculated as the mean of the three pairwise divergences of HLA-A, 
HLA-B and HLA-C, assuming that each locus contributes equally to presentation of 

antigenic peptides. Mean HED distributions in patients from the cohorts in the present study 

were similar to those observed in The Cancer Genome Atlas (TCGA) (Fig. 1d,e). A prior 

comparison of the Grantham distance to other common metrics of sequence divergence 

showed that the Grantham distance best captured the functional properties of HLA-I 

molecules3. The Grantham distance is a well-recognized metric that has been applied to 

measure amino acid polymorphism in studies of comparative evolution, cancer, infectious 

disease and immunity29–34. Furthermore, in an analysis of HLA-I allele pairs and naturally 

eluted peptides derived from mass spectrometry and monoallelic cell lines35, an association 

was detected between HED and peptidome diversity (Supplementary Fig. 1). Taken together, 

these data verify that the Grantham distance is a suitable measure of HLA-I polymorphism 

in the patient cohorts.

Next it was asked whether HED is associated with the response to ICIs. Patients were 

stratified by mean HED in a cohort of 100 patients with melanoma treated with anti-

CTLA-48 (hereafter called cohort 1). Improved overall survival was observed after ICIs in 

patients with high mean HED, where high was defined as mean HED greater than or equal 

to the top quartile, and low was defined as mean HED less than the top quartile (P = 0.0072, 

hazard ratio (HR) = 0.47, 95% confidence interval (CI) = 0.26–0.82) (see Extended Data 

Fig. 2a). These results were similar across different metrics (that is, sum, median or 

geometric mean) used to combine pairwise divergences of HLA-A, HLA-B and HLA-C 
alleles (see Supplementary Table 3). It was also found that the effect of mean HED on 

survival was independent of TMB and other genomic and clinical variables, when these were 

included in a multivariable Cox regression model of survival (see Extended Data Fig. 2d). 

Finally, it was found that the effect of both high mean HED and high TMB on overall 

survival after ICIs was more pronounced than the effect of either alone, as reflected by the 

reduction in HR (commonly considered to be the effect size in survival analyses)36,37 when 

considering both variables (see Extended Data Fig. 2a-c).

Prior studies of divergent allele advantage have suggested that the diversity of 

immunopeptidomes of fully heterozygous HLA-I genotypes varies with sequence 

divergence1,3. Therefore, it was hypothesized that, even among patients fully heterozygous 
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at HLA-I, response to ICIs may also vary with HED. Strikingly, it was found that high mean 

HED was associated with improved survival after ICIs in the 78 fully heterozygous patients 

from cohort 1 (ref. 8) (P = 0.0094, HR = 0.43, 95% CI = 0.22–0.83) (Fig. 2a). In a second 

cohort of 76 fully heterozygous patients with NSCLC treated primarily with anti-PD-1 (refs. 
7,10), it was also found that high mean HED was associated with better overall survival (P = 

0.049, HR = 0.32, 95% CI = 0.10–1.06) (Fig. 2b). The same was observed in an additional 

third cohort of 95 fully heterozygous patients with metastatic melanoma treated with anti-

PD-1/-PD-L1 (refs. 10,38) (P = 0.025) (Fig. 2c). In a combined analysis of all three cohorts, a 

negative relationship was noted between mean HED and HR, indicating that, in general, an 

increase in mean HED corresponds to improved overall survival (see Extended Data Fig. 3). 

Beyond survival, clinical response to ICIs was also associated with a high mean HED when 

considering all patients (HLA-I homozygotes or heterozygotes) (57.4% versus 32.0%, P = 

0.003, odds ratio (OR) = 0.35) (Fig. 2d), or only fully heterozygous patients (55.6% versus 

35.3%, P = 0.03, OR = 0.44) (Fig. 2e) across all cohorts.

To determine whether HED might simply reflect a general prognostic factor in cancer, the 

association of HLA-I heterozygosity or HED with overall survival was examined among 

patients with melanoma and NSCLC who did not receive ICI therapy, and no effect was 

observed (see Extended Data Figs. 4 and 5). This suggests that mean HED is predictive of 

response to ICIs, and may not be prognostic in the setting of patients with advanced cancer 

not treated with ICIs.

All cohorts from Fig. 2 were examined to investigate the combined effect of mean HED and 

TMB on response to ICIs. It was found that the effect of mean HED on improved survival 

after ICIs (Fig. 3a) was independent of other clinical variables in multivariable Cox’s 

regression analysis (see Extended Data Fig. 6a), and that high HED did not co-occur with 

known mutations in genes that have been reported to impact response to ICIs (see Extended 

Data Fig. 7). Furthermore, it was found that the combined effect of high HED and high 

TMB on overall survival after ICIs was stronger than the effect of either alone, as evidenced 

by the reduction in the HR when stratifying patients by both variables36,37 (Fig. 3a–c). This 

combined effect was also observed when analyzing only fully heterozygous patients (Fig. 

3d–f, and see Extended Data Fig. 6b). Furthermore, the effect remained robust across a wide 

range of cut points for HED and TMB (Fig. 3g and see Extended Data Fig. 8a) used to 

stratify patients into groups for survival analysis. High HED at each of HLA-A and HLA-B 
was associated with improved survival after ICI administration, when considering all 

patients or only fully heterozygous patients (Fig. 3h). On multi- variable analysis, it was 

found that high HED at both HLA-A and HLA-B was independently associated with 

improved survival (see Extended Data Fig. 8b), suggesting that divergence at individual 

class I loci may differentially affect ICI efficacy. Moreover, the effect of high mean HED on 

improved overall survival after ICI was detected in an additional pan-cancer dataset of over 

1,000 patients (see Extended Data Fig. 9).

Next it was hypothesized that high HED may be associated with increased diversity of the 

neopeptide repertoire presented by HLA-I. In an exploratory analysis limited to patients 

fully heterozygous at each locus, it was found that the number of candidate neopeptides 

bound by heterozygous genotypes correlates with mean HED (Fig. 4a). Moreover, mean 
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HED did not correlate with TMB (Fig. 4b), indicating that the diversity in HLA-I peptide-

binding domains specifically reflects the diversity of the neopeptides bound to HLA-I 

molecules, rather than the diversity of all tumor mutations. Furthermore associations were 

detected between HED and diversity of the neopeptide repertoire at individual class I loci 

(see Extended Data Fig. 10a-c). Consistent with these results, HED was also correlated with 

the abundance of viral peptides derived from a number of pathogens (Fig. 4c, and see 

Extended Data Fig. 10d-f and Supplementary Table 4).

Next it was hypothesized that HED may be associated with the diversity of the total human 

self immunopeptidome, of which a fraction may potentially generate neoepitopes. All 

unique peptides of length nine from the entire human proteome were computationally 

generated to enable a common reference self-proteome across all patients, and HLA-I 

binding predictions performed. It was found that HED was correlated with the diversity of 

the predicted self immunopeptidome (Fig. 4d, and Extended Data Fig. 10g-i). Then HED 

was determined in an independent cohort of 18 individuals for whom HLA-A and HLA-B 
genotypes and naturally eluted peptide data were available39, and an association was 

observed between HED and self-immunopeptidome diversity (see Supplementary Fig. 2). 

An additional dataset of mass spectrometry-derived peptidomes from monoallelic cells was 

analyzed35, which includes peptide data for 10 HLA-A and 6 HLA-B alleles. HEDs and the 

number of peptides bound by all possible pairs of HLA-A and HLA-B alleles were 

computed (n = 120), and a signficant negative correlation was found between HED and the 

overlap of peptides bound by both alleles of a given pair (see Supplementary Fig. 1a). These 

data indicate that the more divergent HLA-I alleles are, the more distinct the peptides they 

present. A similar negative correlation was also detected when considering HLA-A alleles 

alone (see Supplementary Fig. 1b), or HLA-B alleles alone (see Supplementary Fig. 1c). 

Furthermore, it was found that HED was positively correlated with the abundance of 

peptides bound to pairs of alleles at each individual locus (see Supplementary Fig. 1d,e). 

Altogether, these data suggest that increased sequence divergence of an HLA-I genotype is 

associated with increased diversity of self, tumor and viral immunopeptidomes.

Next it was investigated whether the association of high HED with a broader neopeptide 

repertoire would increase the probability of neoantigen recognition by tumor-infiltrating T 

cells, and subsequently influence T cell clonal expansion. Accordingly, in a subset of 

patients treated with ICI therapy for whom next-generation deep sequencing of TCR 

complementarity-determining regions (CDR3s) was available40, a positive correlation was 

found between mean HED and clonality of TCR CDR3s (Fig. 4e). However, additional data 

will be required to validate this result. Importantly, as TCRs interact with self-peptides 

presented by each individual’s HLA-I molecules during thymic selection, HED may affect 

the diversity of the TCR repertoire of T cells in peripheral blood. Although blood for TCR 

sequencing was not available from the patients analyzed in the present study, it is hoped that 

this hypothesis will be evaluated in the near future.

Taken together, these data show that HED—as measured by sequence divergence between 

alleles of a HLA-I genotype—is associated with response to checkpoint blockade 

immunotherapy in patients treated for cancer, and with the diversity of tumor, viral and 

human immunopeptidomes. Compared with TMB, which can be challenging to accurately 
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estimate due to tumor purity or clonal fraction, HED can be reliably inferred from normal 

tissue DNA sequencing. Furthermore, the results of the present study suggest that patients 

with both high TMB and high HED are most likely to benefit from ICIs. Importantly, HED 

and TMB are both genetic variables that affect anti-tumor immunity. Critically, HED is 

different from neoantigen burden, which represents only a subset of tumor peptides that can 

potentially be presented by a patient’s MHC-I molecules. In addition, neoantigen burden 

estimates suffer from imperfect peptide-HLA-binding prediction algorithms. We propose 

that, unlike neoantigen burden, HED is a granular metric of functional HLA diversity and, 

together with TMB, determines the potential for T cell-mediated tumor control (Fig. 4f). 

Therefore, both TMB and HED should be considered in the design of future clinical trials. 

Further studies will investigate the effect of HED on tumor evolution and the host TCR 

repertoire.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of code and data 

availability are available at https://doi.org/10.1038/s41591-019-0639-4.

Methods

Description of patient cohorts.

Seven previously published cohorts of patients were used who had late-stage melanoma and 

NSCLC treated with anti-CTLA-4, or PD-1/PD-L1 blockade6–8,10,38,40,41. Ten patients from 

the Van Allen et al.8 cohort were excluded, because they achieved long-term survival after 

anti-CTLA-4 treatment with early tumor progression8. The NSCLC data are from patients 

with metastatic disease treated mainly with anti-PD-1 monotherapy. They are from a 

prospective trial that has been reported previously7 and from the New York-Presbyterian/

Columbia University Medical Center10. From these NSCLC cohorts, for the analyses 

involving combination of HED and TMB (see Fig. 3), only patients with exome sequencing 

data were included, because mutation data were not available for 66 patients with NSCLC. 

For the analyses involving HED only (see Fig. 2), all NSCLC patients were included, 

because HLA types were available for all patients. All patients were treated under 

institutional review-approved prospective protocols. Clinical characteristics of patient 

cohorts are provided in the original studies. The Cancer Genome Atlas (TCGA exome data 

for the patients with melanoma (n = 446) and lung cancer (n = 473) were obtained from 

TCGA (http://cancergenome.nih.gov).

Overall survival and clinical response.

Overall survival was defined as the length of time from treatment start to time of event 

(survival or censor). Response data were available for some cohorts7,8,10; clinical benefit 

was defined as complete response (CR), partial response (PR) or stable disease (SD), as 

indicated in previous studies7‘8‘10. No clinical benefit was defined as progressive disease. 

All clinical data, including overall survival and clinical response data, were obtained from 
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the original studies. Clinical data for TCGA patients with melanoma and NSCLC were 

obtained through TCGA data portal.

HLA-I genotyping.

HLA-I genotyping was performed as described previously10. Briefly, high-resolution HLA-I 

genotyping from germline normal DNA exome sequencing data was performed directly or 

using a clinically validated HLA typing assay (LabCorp). Patient exome data or targeted 

gene panels were obtained and the well-validated tool Polysolver was used to identify HLA-

I alleles with default parameter settings42. For the 66 patients with NSCLC and no available 

exome sequencing data, HLA-I typing was done at LabCorp. For quality assurance of HLA-

I genotyping using MSK-IMPACT (CLIA-approved hybridization-capture-based assay) with 

melanoma samples from anti-PD1-treated patients, HLA-I typing by Polysolver was 

compared across 37 samples that were sequenced with MSK-IMPACT and whole exome. 

The MSK-IMPACT panel successfully captured HLA-A, -B and -C reads and validation had 

previously been performed10. The overall concordance of class I typing between the MSK-

IMPACT samples and their matched whole-exome sequencing samples was 96%. To make 

sure that HLA-I genes have adequate coverage in MSK-IMPACT bam files, the bedtools 

multicov tool (http://bedtools.readthedocs.io/en/latest/content/tools/multicov.html) was also 

applied, which reports the count of alignments from multiple position-sorted and indexed 

BAM files that overlap with target intervals in a BED format. Only high-quality reads were 

counted and only samples with sufficient coverage were used. Patients were considered fully 

heterozygous at HLA-l if they have six different HLA-l alleles.

Calculation of patient HED.

HED was calculated as described in Pierini and Lenz3. Briefly, first the protein sequence of 

exons 2 and 3 of each allele of each patients HLA-I genotype was extracted; these sequences 

correspond to the peptide-binding domains. Protein sequences were obtained from the 

ImMunoGeneTics/HLA database43, and exons coding for the variable peptide-binding 

domains were selected following the annotation obtained from the Ensembl database44. 

Divergences between allele sequences were calculated using the Grantham distance 

metric26, as implemented in Pierini and Lenz3. The Grantham distance is a quantitative 

pairwise distance in which the physiochemical properties of amino acids, and hence the 

functional similarity between sequences, are considered26. Given a particular HLA-I locus 

with two alleles, the sequences of the peptide-binding domains of each allele are aligned45, 

and the Grantham distance is calculated as the sum of amino acid differences (taking into 

account the biochemical composition, polarity and volume of each amino acid) along the 

sequences of the peptide-binding domains, following the formula by R. Grantham26:

Grantham distance = ∑Dij

= ∑ α ci − cj
2 + β pi − pj

2 + γ vi − vj
2 1/2 (1)

where i and j are the two homologous amino acids at a given position in the alignment and D 

is the Grantham distance between them, c, p and v represent composition, polarity and 

volume of the amino acids, respectively, and α, β and γ are constants; all values are taken 

from the original study34. The final Grantham distance is calculated by normalizing the 
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value from Eqn (1) by the length of the alignment between the peptide-binding domains of a 

particular HLA-I genotypes two alleles. A prior analysis of multiple common sequence 

divergence measures showed that the correlation of Grantham distance with the number of 

peptides bound by both alleles of a heterozygous genotype exceeded that of the other 

distance measures3. Patient mean HED was calculated as the mean of divergences at HLA-
A, HLA-B and HLA-C.

Tumor mutational analysis pipeline.

For cohorts that received whole-exome sequencing, reads in FASTQ format were aligned to 

the reference human genome GRCh37 using the Burrows-Wheeler aligner (BWA 

v.0.7.10)46. Local realignment was performed using the Genome Analysis Toolkit (GATK 

v.3.7)47. Duplicate reads were removed using Picard v.2.13. To identify somatic single-

nucleotide variants (SNVs), a validated pipeline was used that integrates mutation calls from 

four different mutation callers: MuTect 1.1.7, Strelka 1.0.15, SomaticSniper 1.0.4 and 

Varscan 2.4.3 (refs.48–51). SNVs with an alternative allele read count <4, total coverage <10 

or corresponding normal coverage <7 reads were filtered out.

Computational identification of HLA-I-restricted neopeptides.

Each non-synonymous SNV was translated into a 17-mer peptide sequence, centered on the 

mutated amino acid. Adjacent SNVs were corrected using MAC52. Subsequently, the 17-mer 

was then used to create 9-mers via a sliding window approach for determination of HLA-I-

binding predictions for neopeptides using NetMHCpan-4.0 (ref.53). All peptides with a rank 

<2% were considered for further analyses.

Computational identification of HLA-I-restricted peptides from the human proteome and 
viral antigens.

Peptides from the entire human proteome that binds to patient-specific HLA-I alleles were 

identified. The human peptidome was downloaded from Ensembl44 (ftp://

ftp.ensembl.org/pub/grch37/update/fasta/homo_sapiens/pep//

Homo_sapiens.GRCh37.pep.all.fa). Only sequences annotated as 

gene_biotype:protein_coding and transcript_biotype:protein_coding were kept. Transcripts 

with identical sequences were de-duplicated. The resulting FASTA file was submitted to 

NetMHCpan 4.0 (ref.53) to determine HLA-I-binding predictions. All peptides from the 

human proteome with a rank <2% were considered for further analyses. For the correlation 

analyses in Supplementary Fig. 2, self-peptides were used that were identified via mass 

spectrometry and HLA-I genotypes from Pearson et al.39. For the correlation analyses in 

Supplementary Fig. 1, naturally eluted self-peptides were used that were derived from mass 

spectrometry and mono allelic cell lines from Abelin et al.35. All correlation analyses were 

limited to peptides of length 9. In addition, predicted viral peptides were generated from a 

number of antigens (see Supplementary Table 4).

TCR β-chain sequencing and analysis.

Next-generation sequencing of TCR β-chain CDR3s (TCR sequencing) (Adaptive 

Biotechnologies)54,55 was used from a subset of tumor samples collected pre-therapy from 
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responders (CR/PR/SD) in the Riaz et al. cohort40. Subsequently the clonality of the TCR 

CDR3 repertoire, defined as the complement of evenness (that is, 1 – evenness), was 

calculated. Evenness is defined as the observed Shannon entropy (H) divided by the 

maximum possible H, given the number of unique elements in a population. Correlation 

analyses were performed using Pearson’s r.

Genomic oncoprint.

The oncoprint displays mutated genes that have been reported to impact response to ICIs. 

The genes in the IFNG gene cluster on 9p are: IFNA1, IFNA10, IFNA13, IFNA14, IFNA16, 

IFNA17, IFNA2, IFNA21, IFNA22P, IFNA4, IFNA, IFNA6, IFNA7, IFNA8, IFNB1, IFNE, 

IFNW1. The Loss events were identified in the following manner: (1) rounded FACETS 

ploidy value to the nearest whole number; (2) used rounded ploidy value to correct total 

copy number (tcn.em) with: Corrected_TCN = tcn.em – rounded_ploidy; (3) if 

Corrected_TCN <= – 1, then marked as a “Loss” event. Note that this computation was 

performed for each FACETS56 segment on chromosome 9 and was assigned to individual 

genes with coordinates within the FACETS segment. Homozygous loss events were 

identified if tcn.em = 0 (ploidy-corrected TCN was not used). All losses were manually 

verified. For assessing loss of heterozygosity of HLA-I, copy number variation analysis was 

performed using FACETS 0.5.6 to determine allele-specific copy number56. Segments 

within the chromosome 6p locus were identified containing the HLA-A, HLA-B and HLA-C 
loci. Loss of heterozygosity was defined as a minor allele copy number estimate of 0 for any 

of the HLA-I loci using the expectation-maximization model56.

Peptide correlation analyses.

All HED-peptide correlation analyses were limited to patients heterozygous at each locus 

only. For the analyses of neo-, viral and self-peptides in Fig. 4, the y axes show the mean 

number of peptides bound uniquely to each allele for each of HLA-A, -B and -C. For the 

analyses of neo-, viral and self-peptides at individual loci in Extended Data Fig. 10, two 

patients had an HLA-C genotype (C*03:03,C*03:04) that bound 0 peptides. These patients 

were excluded from the plots for visualization purposes only. The correlations are significant 

regardless of whether these patients are included. The nonparametric Kendall’s correlation 

was used as shown in Pierini and Lenz3, because parameters were not normally distributed 

and ties could be detected in the data. For the analyses of neo- and viral peptides, one-sided 

P values—given the prior association of Grantham distance with diversity of nonself viral 

peptides shown by Pierini and Lenz3; it was hypothesized that a similar association would be 

observed for the neopeptide correlations. For the analyses of self-peptides from the human 

proteome, there was no prior hypothesis regarding the direction of the association between 

HED and peptide diversity; thus, two-sided P values were used.

Statistical analyses.

Comparisons of HED distributions across individual HLA-I loci were calculated using the 

Mann–Whitney test. Survival analyses were performed using the Kaplan–Meier estimator. 

For Figs. 2 and 3, all cutoffs for high germline HED and high TMB were determined using 

the top quartile, and for low HED and low TMB were defined as values less than the top 

quartile. For the pan-cancer analyses in Extended Data Fig. 9, cutoffs for high HED were 
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determined using the median or top quartile, and cutoffs for low HED were determined 

using all values less than the median or bottom quartile, respectively. For analyses in Fig. 3 

combining cohorts with whole-exome and targeted panel sequencing, the TMB of the 

whole-exome cohorts was divided by 30 to normalize per megabase38. The survival analysis 

was performed in the Van Allen et al.8 cohort (cohort 1) using the mean of divergences at 

HLA-A, -B and -C as well as the sum, median and geometric mean. Results were similar 

across all metrics used (see Supplementary Table 3). For the analysis in Extended Data Fig. 

3, each mean HED value in the dataset was used as a cut point for high mean HED in 

survival analysis, and HRs were calculated from univariable Coxs regression. These HRs 

were plotted against all mean HED values. For the analysis in Fig. 3g, each value of mean 

HED in the data was used as a cut point for high HED, and the same was done for TMB. 

When combining mean HED and TMB, patients were in the high group if their mean HED 

and TMB were both greater than the cut points for mean HED and TMB, and in the low 

group if both variables were less than their respective cut points. For all multivariable 

analyses, P values and HRs were calculated using Coxs regression. For all survival analyses, 

P values were calculated using the log-rank test, and HRs using univariable Coxs regression. 

For the analyses of clinical response data, P values and ORs were calculated using Fishers 

exact test (two-sided). All survival and correlation analyses were performed in the R 

Statistical Computing Environment v.3.5.0 (http://www.r-project.org)

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

The data from prior studies are available at the following accession numbers: dbGaP, 

phs001041.vl.pl (Snyder et al.6); dbGaP, phs000452.v2.pl (Van Allen et al.8); SRA, 

SRP067938 (Hugo et al.41) and SRP090294 (Hugo et al.41); dbGaP, phs000980.vl.pl (Rizvi 

et al.7); SRA, SRP095809 and BioProject, PRJNA359359 (Riaz et al.7); SRA, 

PRJNA419415 (Chowell et al.10), PRJNA419422 (Chowell et al.10) and PRJNA419530 

(Chowell et al.10); cBioPortal for Cancer Genomics, http://cbioportal.org/msk-impact.
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Extended Data

Extended Data Fig. 1 |. Hierarchical clustering of HLA-I evolutionary divergences at individual 
HLA class I loci.
a, Hierarchical clustering of HED at HLA-A using all HLA-A alleles from all patient 

cohorts. b, Hierarchical clustering of HED at HLA-B using all HLA-B alleles. c, 
Hierarchical clustering of HED at HLA-C using all HLA-C alleles. Heat maps shows z-score 

normalized HED across all alleles. Color gradient of blue to red indicates low HED between 

allele pairs to high HED between allele pairs, respectively.
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Extended Data Fig. 2 |. Mean HLA-I evolutionary divergence is associated with improved benefit 
from immune checkpoint inhibitors.
a, Association of high mean HED (red) with improved efficacy of anti-CTLA-4 treatment in 

a cohort of patients with metastatic melanoma; P = 0.0072; two-sided log-rank test. Density 

plots indicate the distribution of mean HED and cutoff used in the survival curves. T.Q.C. = 

top quartile cutoff, HR = hazard ratio, CI = confidence interval. b, Association of high (top 

quartile) tumor mutational burden (TMB) with overall survival after anti-CTLA-4 treatment; 

P = 0.20; two-sided log-rank test. c, Association of high mean HED and high TMB (red) 
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with improved overall survival after anti-CTLA4 treatment; P = 0.024; two-sided log-rank 

test. d, Multivariable Cox proportional-hazards model including mean HED and other 

clinical variables. Data show independent effect of mean HED associated with improved 

survival after anti-CTLA-4. HED, TMB, and fraction of copy number alterations (FCNA) 

are dichotomized into high (1) and low (0) groups based on the top quartile for each 

variable. P values calculated using two-sided log-rank test. Horizontal lines represent the 

95% confidence interval.

Extended Data Fig. 3 |. Effect of mean HLA-I evolutionary divergence on hazard ratio from 
survival across all possible cutpoints.
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Cutpoint analysis showing the relationship between mean HED and hazard ratio. Data show 

a negative relationship between mean HED and hazard ratio across all possible cutpoints for 

mean HED, indicating improved overall survival as mean HED increases.

Extended Data Fig. 4 |. Neither HLA-I heterozygosity nor HLA-I evolutionary divergence is 
associated with prognosis in TCGA melanoma patients.
a, Full heterozygosity at HLA-I (red) is not associated with prognosis in TCGA melanoma 

patients; P = 0.14, two-sided log-rank test. b, High patient mean HED (red) is not associated 

with prognosis in TCGA melanoma patients; P = 0.80, two-sided log-rank test. c, High mean 

HED (red) is not associated with prognosis in TCGA melanoma patients fully heterozygous 

at HLA-I; P = 0.54; two-sided log-rank test.
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Extended Data Fig. 5 |. Neither HLA-I heterozygosity nor HLA-I evolutionary divergence is 
associated with prognosis in TCGA lung cancer patients.
a, Full heterozygosity at HLA-I (red) is not associated with prognosis in TCGA lung cancer 

patients; P= 0.38, two-sided log-rank test. b, High mean HED is not associated with 

prognosis in patients from Extended Data Fig. 4a; P = 0.48, log-rank test. c, High mean 

HED (red) is not associated with prognosis in TCGA lung cancer patients fully heterozygous 

at HLA-I; P = 0.51, two-sided log-rank test
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Extended Data Fig. 6 |. The effects of mean HLA-I evolutionary divergence and tumor 
mutational burden are independent of cancer type and drug class.
a, Multivariable Cox proportional-hazards model including mean HED and other clinical 

variables using all patients. Data show independent effect of mean HED in predicting 

response to ICI. Drug class P = 8.14e-06. P values calculated using two-sided log-rank test. 

Horizontal lines indicate 95% confidence interval. b, Multivariable Cox proportional-

hazards model including mean HED and other clinical variables using patients fully 

heterozygous at HLA-I. Data show independent effect of mean HED associated with 

improved survival after ICI therapy. Mean HED P = 7.25e-04; Drug Class P = 9.32e-05. 
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HED and TMB are dichotomized into high (1) and low (0) groups using the top quartile for 

each variable. P values calculated using two-sided log-rank test. Horizontal lines represent 

the 95% confidence interval.

Extended Data Fig. 7 |. Oncoprint showing mutations in genes in our patient cohorts.
Data show no difference in proportion of patients with mutations in the presented genes 

between patients with high mean HLA-I evolutionary divergence (HED) and low mean 

HED. LOH = loss of heterozygosity at HLA-I.
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Extended Data Fig. 8 |. Combined effect of HED and TMB on survival after ICI administration 
and multivariable analysis of HED at individual loci.
a, Cutpoint analysis showing the association of both high mean HED and high TMB with 

improved survival after ICI (same distributions as Fig. 3g; n = 248). Data show a reduction 

in hazard ratio when combining HED and TMB compared to either variable alone. Green 

indicates two-sided log-rank p-value < 0.05; red indicates non-significant log-rank p-value. 

b, Multivariable cox regression analysis demonstrating the effect of HED at individual loci 

on overall survival after ICI administration. Data indicate that high HED at HLA-A and 
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HLA-B are each associated with improved overall survival after ICI. P values calculated 

using two-sided log-rank test. Horizontal lines represent the 95% confidence interval.

Extended Data Fig. 9 |. Effect of mean HLA-I evolutionary divergence and tumor mutational 
burden on efficacy of immune checkpoint inhibitor treatment in an independent set of patients.
a, Association of high mean HED (red) with improved overall survival after ICI in an 

independent pan-cancer dataset of patients described in Chowell et al. These patients do not 

overlap with those presented in Figs. 2 & 3. Cutoff was determined using the median mean 

HED across the cohort. P = 0.02; two-sided log-rank test. HR = hazard ratio, CI = 
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confidence interval. b, Association of high mean HED (red) with improved overall survival 

after ICI in an independent, pan-cancer dataset of patients described in Chowell et al. These 

patients do not overlap with those presented in Figs. 2 & 3. Patients in the red curve have 

mean HED greater than or equal to the top quartile; patients in the blue curve have mean 

HED less than or equal to the first quartile. P = 0.04; two-sided log-rank test c, Association 

of high mean HED (red) with improved overall survival after ICI in all patients described in 

Chowell et al. Cutoff was determined using the median mean HED across the cohort. P = 

0.0012; two-sided log-rank test. d, Association of high mean HED (red) with improved 

overall survival after ICI in all patients described in Chowell et al. Patients in the red curve 

have mean HED greater than or equal to the top quartile; patients in the blue curve have 

mean HED less than or equal to the first quartile. P = 0.0037; two-sided log-rank test. e, 
Multivariable Cox proportional-hazards model including mean HED and other variables. 

Data show independent effect of mean HED on improved survival after ICI administration 

when adjusting for TMB and cancer type. Mean HED is dichotomized into high (1) and low 

(0) groups using the median; TMB is treated as a continuous variable. TMB P = 0.0008. P 
values calculated using two-sided log-rank test. Horizontal lines represent the 95% 

confidence interval.
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Extended Data Fig. 10 |. Association of HLA-I evolutionary divergence at each class I locus with 
diversity of tumor and human immunopeptidomes.
a, Correlation of HED at HLA-A with number of unique neopeptides bound to HLA-A 
alleles of each patient genotype using all patients heterozygous at HLA-A from Fig. 2 (n = 

118) for whom neopeptide data were available; P = 0.15; one-sided Kendall’s rank 

correlation. b, Correlation of HED at HLA-B with number of unique neopeptides bound to 

HLA-B alleles of each patient genotype using patients heterozygous at HLA-B (n = 129); P 
= 0.001; one-sided Kendall’s rank correlation c, Correlation of HED at HLA-C with number 
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of unique neopeptides bound to HLA-C alleles of each patient genotype using patients 

heterozygous at HLA-C (n = 118); P = 0.03; one-sided Kendall’s rank correlation. d, 
Correlation of HED at HLA-A with number of unique viral peptides bound to HLA-A 
alleles of each patient genotype using patients heterozygous at HLA-A (n = 118); P = 0.01; 

one-sided Kendall’s rank correlation. d, Correlation of HED at HLA-B with number of 

unique viral peptides bound to HLA-B alleles of each patient genotype using patients 

heterozygous at HLA-B (n = 129); P < 0.0001; one-sided Kendall’s rank correlation. f, 
Correlation of HED at HLA-C with number of unique viral peptides bound to HLA-C alleles 

of each patient genotype using patients heterozygous at HLA-C; P < 0.0001. g, Correlation 

of HED at HLA-A with number of unique self peptides bound to HLA-A alleles of each 

patient genotype using patients heterozygous at HLA-A (n = 118); P = 0.79; two-sided 

Kendall’s rank correlation. h, Correlation of HED at HLA-B with number of unique self 

peptides bound to HLA-B alleles of each patient genotype using patients heterozygous at 

HLA-B (n = 129); P < 0.0001; two-sided Kendall’s rank correlation. i, Correlation of HED 

at HLA-C with number of unique self peptides bound to HLA-C alleles of each patient 

genotype using patients heterozygous at HLA-C (n = 118); P < 0.0001; two-sided Kendall’s 

rank correlation. Red line indicates line of best linear fit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Landscape of HEDs at HLA-A, -B and -C.
a, Schematic of experimental design. HEDs are calculated between peptide-binding domains 

using the Grantham distance and then used to stratify patients treated with ICI s. Predicted 

neopeptides are called using whole-exome sequencing from the patient’s tumor, counted and 

correlated with HED. Predicted viral and self peptides were also correlated with HED. b, 
Hierarchical clustering of HED at HLA-A, HLA-B and HLA-C (HLA-I). The heatmap 

shows z score-normalized HED across all alleles in all patient cohorts. The color gradient of 

blue to red indicates low HED between allele pairs to high HED between allele pairs, 

respectively. c, Distributions of HED for each HLA-A, HLA-B and HLA-C heterozygous 

genotype. HLA-A (n = 279 patients; minimum= 1.08, median = 7.62, maximum = 13.20) 

versus HLA-B (n = 300 patients; minimum = 0.53, median = 8.10, maximum = 14.33) (P = 

0.001); HLA-A versus HLA-C (n = 281 patients; minimum = 0.56, median = 5.60, 

maximum = 7.58; P < 0.0001); HLA-B versus HLA-C (P < 0.0001; two-sided Mann-

Whitney test). d, Distribution of patient mean HED across all melanoma cohorts treated with 

ICIs (ICI melanoma) and TCGA (TCGA melanoma). e, Distribution of patient mean HED 

across all lung cancer cohorts treated with ICIs (ICI lung) and TCGA (TCGA lung).
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Fig. 2 |. High mean HED is associated with improved response and survival to ICIs.
a, Association of high mean HED (red) with improved survival after anti-CTLA-4 treatment 

in a cohort of metastatic melanoma patients fully heterozygous at HLA-I (P = 0.0094; two-

sided log-rank test). Density plots indicate the distribution and cutoff for mean HED used in 

the survival curves. TQC, top quartile cutoff. b, Association of high mean HED (red) with 

improved survival after anti-PD-1 treatment in an independent cohort of patients with 

NSCLC fully heterozygous at HLA-I (P = 0.049; two-sided log-rank test). c, Association of 

high mean HED (red) with improved overall survival in an independent cohort of patients 

with melanoma fully heterozygous at HLA-I treated with anti-PDI (P = 0.025; two-sided 

log-rank test). d, Association of high patient mean HED with clinical response (red) to ICIs, 

including all patients (both homozygous and heterozygous at HLA-I) for whom clinical 

response data were available from a-c (P = 0.003; OR = 0.35; two-sided Fisher’s exact test). 

Numbers on pie charts indicate number of patients deriving clinical or no clinical benefit. e, 
Association of high mean HED with clinical response (red) to ICIs, including only patients 

fully heterozygous at HLA-I for whom clinical response data were available from a-c (P = 

0.03, OR = 0.44; two-sided Fisher’s exact test). Numbers on pie charts indicate number of 

patients deriving clinical or no clinical benefit.
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Fig. 3 |. Effect of high mean HED and high TMB on efficacy of ICI treatment.
a, Association of high mean HED (red) with improved overall survival after ICIs in all 

patients (HLA-I homozygous or heterozygous) from Fig. 2 for whom the TMB was 

available (P = 0.0034; two-sided log-rank test). Density plot indicates the distribution and 

cutoff for mean HED used in the survival curves. b, Association of high TMB (red) with 

improved overall survival after ICIs among all patients P = 0.03; two-sided log-rank test). 

The density plot indicates the distribution and cutoff for TMB used in the survival curves. c, 
Survival of patients with both high mean HED and high TMB (red) after ICI treatment 

among all patients (P = 0.01; two-sided log-rank test). d, Association of high mean HED 

(red) with improved overall survival after ICIs in patients fully heterozygous at HLA-I from 

Fig. 2 for whom TMB was available (P = 0.001; two-sided log-rank test). e, Association of 

high TMB with improved overall survival after ICIs among fully heterozygous patients (P = 
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0.02; two-sided log-rank test). f, Survival of patients with both high mean HED and high 

TMB after ICI treatment among fully heterozygous patients (P = 0.007; log-rank test). g, 
Cut-point analysis showing the association of both high mean HED and high TMB with 

improved survival after ICIs (n = 248; high mean HED: minimum = 0.27; median = 0.67; 

maximum= 1.01; high TMB: minimum = 0.42; median = 0.64; maximum = 2.38; high mean 

HED and TMB: minimum = 0.11; median = 0.47; maximum = 1.02). Data show a reduction 

in HR when combining HED and TMB compared with either variable alone. h, Univariable 

Cox regression analysis showing the association of high HED (top quartile) at individual 

HLA-I loci with improved survival after ICIs (‘all’, HLA-I homozygous or heterozygous; 

‘fully het.’, fully heterozygous at HLA-I; n = number of patients). P values were calculated 

using a two-sided log-rank test. Horizontal lines represent 95% Cl.
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Fig. 4 |. Mean HED is positively correlated with diversity of the tumor, viral and human 
immunopeptidomes.
a, Correlation of mean HED with number of unique neopeptides bound to alleles of each 

patient genotype using all patients fully heterozygous at HLA-I from Fig. 2 for whom 

neopeptide data were available (n = 103; P = 0.04; one-sided Kendall’s rank correlation). 

Each point represents a patient HLA-I genotype (HLA-A, -B and -C); the y axis depicts the 

mean number of neopeptides bound across HLA-A, -B and -C (see Methods). b, Correlation 

of mean HED with TMB (n = 103; P = 0.46; two-sided Kendall’s rank correlation). c, 
Correlation of mean HED with number of unique viral peptides bound to alleles of each 

HLA-I genotype (n = 103; P = 2.41 × 10−9; one-sided Kendall’s rank correlation). d, 
Correlation of mean HED with number of unique self-peptides from the human proteome 

bound to alleles of each HLA-I genotype (n = 103; P = 6.46 × 10−6; two-sided Kendall’s 

rank correlation). The y axis depicts the mean number of self-peptides bound across HLA-A, 
-B and -C. e, Association of mean HED with intratumoral TCR CDR3β clonality (n = 19; P 
= 0.02; two-sided Pearson’s correlation). The red line indicates the line of best linear fit. f, 
Schematic depicting the effects of HED and TMB on imunopeptidome diversity and 

response to ICIs. One representative HLA-I locus with high HED between the alleles is 

depicted.
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