
“Automatic Ingestion Monitor Version 2” – A Novel Wearable 
Device for Automatic Food Intake Detection and Passive Capture 
of Food Images

Abul Doulah [Student Member, IEEE],
The University of Alabama, Tuscaloosa, AL 35401 USA. He is now with the Department of 
Electrical and Electronics Engineering, University of Liberal Arts Bangladesh, Dhaka, 
Bangladesh.

Tonmoy Ghosh [Student Member, IEEE],
Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 
35401 USA.

Delwar Hossain,
Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 
35401 USA.

Masudul H Imtiaz,
Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 
35401 USA.

Edward Sazonov [Senior Member, IEEE]
Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 
35401 USA.

Abstract

Use of food image capture and/or wearable sensors for dietary assessment has grown in popularity. 

“Active” methods rely on the user to take an image of each eating episode. “Passive” methods use 

wearable cameras that continuously capture images. Most of “passively” captured images are not 

related to food consumption and may present privacy concerns. In this paper, we propose a novel 

wearable sensor (Automatic Ingestion Monitor, AIM-2) designed to capture images only during 

automatically detected eating episodes. The capture method was validated on a dataset collected 

from 30 volunteers in the community wearing the AIM-2 for 24h in pseudo-free-living and 24h in 

a free-living environment. The AIM-2 was able to detect food intake over 10-second epochs with a 

(mean and standard deviation) F1-score of 81.8 ± 10.1%. The accuracy of eating episode detection 

was 82.7%. Out of a total of 180,570 images captured, 8,929 (4.9%) images belonged to detected 

eating episodes. Privacy concerns were assessed by a questionnaire on a scale 1–7. Continuous 
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capture had concern value of 5.0 ± 1.6 (concerned) while image capture only during food intake 

had concern value of 1.9 ±1.7 (not concerned). Results suggest that AIM-2 can provide accurate 

detection of food intake, reduce the number of images for analysis and alleviate the privacy 

concerns of the users.

Index Terms—

Food intake detection; wearable sensors; dietary assessment; energy intake; food imagery

I. Introduction

THE emergence of chronic diseases such as obesity, overweight, and cardiovascular disease 

has prompted extensive research efforts to study the contributing factors towards the 

development of these diseases [1], [2]. One important direction is the study of the food 

intake of the individuals. Traditional methods of monitoring individual food intake through 

self-report such as food records [3], food frequency questionnaires [4], 24-hours food recall 

[5], have proven to be highly inaccurate [6] and not capable to assess metrics such as eating 

episode microstructure [7].

In a typical eating episode, a bite is followed by a sequence of chews and swallows, and this 

process is repeated until eating a portion of food to satisfy appetite. Accurate and objective 

assessment of food intake may be helped by automatic detection of food intake, recognition 

of consumed food items, estimation of portion size, and energy content [8]. Over the past 

decade, various methods of automatic detection and monitoring of food intake have been 

proposed, including image-based methods utilizing either smartphones or wearable cameras. 

The image capturing can be categorized into two methods – active and passive.

Active methods rely on the user to capture the food image by a hand-held camera (such as a 

smartphone camera), typically, before and after an eating episode. The analysis of acquired 

images is typically performed in either of two ways: manual annotation or automatic image 

recognition. During manual annotation, food images are analyzed by an expert nutritionist to 

identify different types of foods, their portion size, and the energy content [9]. Methods 

employing automatic image recognition use computer vision techniques to segment food 

images, recognize foods, estimate portion size/volume and compute energy content [10]–

[13].

Major advantages of active methods include reduction of reporting burden compared to 

traditional self-report and inclusion of food images (initial state and leftovers) that help 

nutrition analysis of the eating episodes. Apart from these advantages, they also provide 

detailed information about the timing, location, and duration of eating episodes. While 

providing advantages, active methods also involve some limitations. The image capture of 

all eating episodes requires active participation from the participants. Some of the methods 

are required to place fiducial markers (known as dimensional and color references) in the 

food image to assist manual review/computer [10], [14].
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Food images can also be acquired by a “passive” method using wearable devices that 

captures images continuously (both food and non-food) without the active participation of 

the user [15], [16]. The passive methods minimize the burden of active capture through the 

use of a wearable camera. Due to continuous capture, passive methods produce large 

datasets and introduce privacy concerns. The large image data sets make the manual image 

review tedious and time-consuming. To lessen the burden of image review, deep-learning-

based image processing was investigated to automatically differentiate between food and 

non-food images [17], however, this approach results in a high number of false positives. 

The algorithm may pick foods in the field of user’s view that is not consumed by the user. 

Another limitation of passive capture is that the device may take unwanted images that can 

raise privacy concerns and potential ethical issues. The wearer inadvertently might collect 

inappropriate images, such as adjusting clothing in front of a mirror, using the bathroom, 

browsing internet/social networking sites, reading confidential documents, unwanted images 

of surroundings – getting undressed/ faces of family members without consent [18]. 

Therefore, methods relying on wearable cameras should deal with these situations.

Various wearable sensors have been proposed to detect different stages of eating, i.e. bites, 

chewing and swallowing of food. Wrist-worn wearables have been used to detect food-

related-gestures [19]–[21]. The chewing detection has been done via chewing sounds [22]–

[26], muscle movement during chewing using strain sensors [27]–[30], or EMG and force 

sensors [31]–[33]. Swallowing detection was performed using microphones or surface 

electromyography on the throat [34]–[36]. Recently, the authors in [37] proposed a method 

of detecting an elderly person’s chewing motion using a glasses mounted accelerometer. The 

method utilized a single accelerometer and extracted limited feature sets to recognize 

chewing motion. Our research group previously proposed an “Automatic Ingestion Monitor 

(AIM)” [27], [28], [38], [39], which relied on an adhesive strain sensor mounted below the 

outer ear. The sensor described in this manuscript is the next generation of the device, 

relying on a different set of sensors.

A few publications proposed food intake monitoring systems that utilize wearable sensors to 

detect food intake events and trigger food image capture. In a study of [40], the authors 

proposed to trigger an over-ear camera to capture a video sequence when a chewing sound is 

detected. The study [41] investigated a smartwatch camera to take images of the food 

consumption, suggesting that hand-to-mouth gestures may be used to trigger the smartwatch 

camera. Overall, no completely viable sensor-driven passive food intake capture system was 

demonstrated in literature.

As a separate note, sensor-based approaches of food intake detection face a major challenge 

of validation in the free-living environment as there is no gold standard available. Most of 

the studies [9], [10], [17], [19], [20], [39], [42]–[44] were validated with the self-report 

which is subject-dependent and prone to error. Therefore, there is still a need for a robust 

method for validation of sensor-based food intake detection in a free-living environment.

In this paper, we propose a novel wearable sensor system (Automatic Ingestion Monitor 

version 2, AIM-2) that attempts to address some of these challenges. The major 

contributions of the proposed work are: (1) AIM-2 uses a combination of acceleration and 
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temporalis muscle sensors for accurate detection of food intake and triggering of a wearable 

camera; (2) The proposed gazed-aligned camera mounted on eyeglasses reliably captures the 

food being consumed; (3) AIM-2 provides a potential solution to significantly reduce the 

number of images captured; (4) this study suggests and tests a method for validation of 

sensor-based food intake detection sensor in free-living against images captured by a 

wearable camera; and (5) This study demonstrates that capture of images only during 

detected food intake significantly reduces privacy concerns of both the users and nearby 

people.

II. Material and Methods

A. Sensor System

In this study, a novel wearable sensor system (Automatic Ingestion Monitor, AIM-2) was 

used. AIM-2 consists of a sensor module which housed a miniature 5 Megapixel camera 

with 120- degree wide-angle gaze-aligned lens, a low-power 3D accelerometer (ADXL362 

from Analog Devices, Norwood, MA, USA) and a bending sensor (SpectraSymbol 2.2” flex 

sensor). The sensor module was connected to the frame of eyeglasses by a heat-shrink tube 

(Fig. 1) in a location such that the maximum curvature of the sensor touched the skin over 

the temporalis muscle where the strongest muscle contraction during chewing was palpated. 

The camera continuously captured images at a rate of one image per 15-second interval as a 

way to validate sensor-based food intake detection against captured images. The flex sensor 

was used to capture the chewing events. To protect the sensor from perspiration, 

commercially available polyurethane coating was used over the top layer of the flex sensor. 

Data from the accelerometer and flex sensor were sampled at 128 Hz. All collected sensor 

signals and captured images were stored on an SD card and processed off-line in MATLAB 

(Mathworks Inc., Natick, MA, USA) for algorithm development and validation.

B. Study Design and Data Collection Protocol

A cross-sectional observational study was conducted to develop the classification algorithms 

and assess the accuracy of food intake detection. The study consisted of pseudo-free-living 

part (food consumption in the lab with otherwise unrestricted activities of daily living) and 

free-living part (unrestricted food intake and activities of daily living), performed on two 

consequtive days.

Thirty volunteers were recruited (20 male and 10 female, mean± SD age of 23.5 ± 4.9 years, 

range 18–39 years, mean body mass index (BMI) 23.08 ± 3.11 kg/m2, range 17.6 to 30.5 

kg/m2) from August 2018 through February 2019. The University of Alabama’s Institutional 

Review Board approved the study. Participants did not have any medical conditions that 

would impact their chewing or eating. The sample size for this study was determined based 

on a power analysis using data from our previous study [39]. The power analysis was 

performed based on the mean accuracy (F1-score) 87.9% with standard deviation of 13.8% 

under the null hypothesis (H0) and the expected accuracy of 95% under alternative 

hypothesis (HA). Power analysis indicated that a sample of 30 participants was sufficient to 

detect the difference between food intake detection mean accuracy with a power 86.6% 

using a t-test with a significance level of 0.05. Participants came to the laboratory for four 
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visits over two days. The laboratory was instrumented with two high-definition cameras 

(Contour Roam2 LLC, USA, and GW- 2061IP, GW Security, Inc. CA, USA) to record the 

experiment. Prior to the experiment, the participants made their first visits to the laboratory. 

They went through the screening process and were given a summary of the experimental 

protocol as Table I. Each participant signed an informed consent form. After consent was 

acquired, the sensor system (AIM-2) was affixed to eyeglasses of the participants (if the 

participants had the corrective lens, they were instructed to bring their spare eyeglasses) or 

non-prescription eyeglasses (if the participants had no corrective lens, they chose from the 

eyeglasses available at the lab). The eyeglasses mounted with a sensor system for each 

participant were kept in the lab until the next visit. During the visit, the participants were 

also trained to report dietary intake and activity using the mobile applications Automated 

Self-Administered 24-Hour (ASA24®) Dietary Assessment Tool [45] and aTimeLogger 

[46], respectively. On the first day of the experimental protocol, the participants came to the 

laboratory three times (visits 2–4). Several participants were invited to the laboratory at the 

same time to simulate social eating. For the second visit, the participants were instructed to 

arrive at the laboratory in the morning (between 7:00 AM – 9:00 AM) after an overnight 

fast. Upon the arrival, participants were given the AIM-2 device and were reminded about 

the instructions for the experiment. Each participant had a full eating episode (breakfast) 

purchased from the university food court. The participants chose the type and quantity of 

food items that they wanted to consume. Research assistants weighed each food item and 

used a nutrition software “Food Processor” [47] to enter the weight and other details about 

the food items. After selection of foods for the meal, participants were required to perform 

the eating episode at the laboratory. There was no restriction on the time required to finish 

the eating episode.

During the food consumption in the lab, participants used the foot pedal connected to a USB 

data logger to mark ingestion of solid and liquid food items. They were asked to press the 

pedal the moment the food was placed in their mouth (a bite), and hold the pedal until the 

last swallow for this bite. For beverages, they were asked to press and hold the button from 

the moment they brought the liquid to mouth until the last swallow. When the participants 

had finished eating, the research assistant weighed leftovers and updated the amount 

consumed in the nutrition software. Then, the participants left the laboratory and continued 

carrying out their usual daily activities in the free-living environment. Visits three and four 

were made on the same day to eat lunch and dinner following a similar protocol. Since the 

eating episodes were consumed at the laboratory, other daily activities were not restricted 

and the participants were free to take the device home, the first day of study was considered 

to be conducted in the pseudo-free-living environment.

After the completion of the first day, the participants continued with free-living for 24 hours. 

During this period, the participants had virtually no restrictions on the types of activities 

performed. They continued their normal daily routine with three exceptions: to take the 

AIM-2 off during 1) taking a shower or other water activities that may damage the device, 2) 

any moments where the device could impact privacy and 3) sleeping. The participants were 

also asked to self-report all of their laboratory and eating episodes using the ASA24 mobile 

app (a food diary). They were also asked to self-report major activities from the set of 

sleeping, eating, sedentary, and physically active through the aTimeLogger application. 
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After completing the free-living part of the study, the participants reported to the laboratory 

to return the AIM-2.

C. Sensor Signal Processing and Annotation

Before extracting features from sensor signals, the raw sensor data from the accelerometer 

and flex sensor were preprocessed. A high-pass filter with a cutoff frequency of 0.1 Hz was 

applied to remove the DC component from the signals. To adjust inter-subject variations, the 

signals were then normalized [28]. The flex sensor signal was demeaned. As the typical 

chewing frequency is in the range of 0.94 to 2 Hz, therefore, a low-pass filter with a cutoff of 

3Hz was used to remove unwanted noise from the flex sensor [48]. Next, the signals were 

divided into non-overlapping 10s fixed time segments called ‘epochs’. Fig. 2 shows the 

accelerometer signals, flex sensor signals, and corresponding foot pedal accelerometer 

signal.

D. Feature Extraction

A set of 38 time and frequency domain features reported in our previous studies [28], [38] 

was utilized in this work. The accelerometer sensor signal contains chewing information in 

the frequency range 1.25–2.5 Hz, physical activity in the 2.5–10 Hz range and speech in the 

range 10–30 Hz [39]. For each of 3 axes of the accelerometer and net acceleration, 38 

features were computed on 10s epoch data. For the flex sensor signal, the same 38 features 

were computed, plus five additional correlation-based features. The entire feature list is 

listed in Table II and details about the features can be found in [28], [38]. Aggregating all 

features, 195 features were computed for each epoch.

E. Feature Selection and Classification

To reduce the computational burden and redundancy in the computed features, a two-stage 

feature selection procedure was used. First, a ranking of computed features was carried out. 

To rank the feature based on mutual information, an algorithm called minimum Redundancy 

and Maximum Relevance (mRMR) was applied on the computed features [49]. Secondly, a 

Forward Feature Selection (FFS) was applied to the top-ranked 40 features selected by 

mRMR to get an optimal feature set. To avoid introducing bias into classification models 

that might result in overfitting, feature selection was done on an independent dataset 

(collected from four pilot subjects following the same protocol, who were not a part of the 

population for this study).

Foot pedal signals were used as a source of labels for the development of signal processing 

and pattern recognition algorithms. If more than 50% of an epoch belonged to food intake, 

the epoch i was assigned a label Epi = ‘1’ (food intake), otherwise the label Epi = ‘−1’ (no 

food intake). A group classification model based on Support Vector Machine (SVM) was 

trained to identify food-intake and non-food intake epochs. Linear SVM is a supervised 

learning technique that has demonstrated excellent results for the classification problem. The 

primary advantages of SVM are good generalization and speed [50]. Training of the model 

was performed using Classification Learner tool in MATLAB 2018 (from Mathworks Inc.).
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To reliably detect food intake, a two-stage classification algorithm was adopted. As the flex 

sensor was placed on the temporalis muscle of the user, the signal strength and quality varied 

depending on the chewing strength of user. The first stage of two-stage classification 

algorithm was to check the strength (amplitude) of flex sensor signal. When the peak to peak 

amplitude and energy of the flex sensor signal fell under 40 and 3, respectively, the second 

stage classification used features only from the accelerometer. Otherwise, the classification 

was performed using features from both from the flex sensor and accelerometer (further 

referred as sensor fusion classifier). For comparison, the classification performances using 

features from only flex sensor and only accelerometer were also investigated.

For laboratory eating episodes, the performance of the classification model was evaluated as 

in per-epoch classification accuracy in a leave-one-subject-out cross-validation. The SVM 

model was trained with data from 29 participants and tested on data from the remaining 

participant. The procedure was repeated 30 times such that each participant was used for 

testing once. The accuracy for each iteration was assessed as F1 score:

F1 = 2 * Precision * Recall
Precision+Recall (1)

Precision = TP
TP + FP (2)

Recall = TP
TP + FN (3)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively. 

The performance of the proposed method was also compared to the method with limited 

feature set of Mertes et al.[37].

The group model trained from laboratory eating episodes (day-1) was utilized to detect free-

living eating episodes. For free-living eating episodes, the participants did not report each 

chewing sequence as in the lab, thus not allowing for the same measure of accuracy to be 

used. Instead, the number of correctly detected eating episodes obtained from the image 

review was used as the reference for evaluation. Additionally, the self-reported number of 

eating episodes was compared with detected free-living eating episodes. The following 

parameters were defined for performance evaluation:

No. of eating episode from image review = NIR

Number of eating episode accurately detected by AIM-2 = NAIM2

Accuracy of sensor detection (NAIM2/NIR) = Acc (%)

Number of self-reported eating episode = Nself

Number of false positives by AIM-2 = NFP

Number of undetected eating episode by AIM-2 = NFN

Eating episode containing solids/semi-solid food items = EEpisol
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Eating episode containing liquid food items only = EEpiliq

Number of EEPisol = Nsol

Number of EEpiliq = Nliq

F. Image Capture, Manual Review, and Validation method

In this validation study, the AIM-2 captured images every 15 seconds and potentially could 

capture unwanted images. Therefore, the participants were given the opportunity to review 

and delete them before the research assistant viewed them.

The images captured by AIM-2 were used for validation of sensor-based food intake 

detection in free-living. The complete set of captured images was reviewed to detect the 

eating episodes, including episodes that were missed by the sensor-based food intake 

detection algorithm. The sensor-based eating episodes were detected using method in [7], 

where a Gaussian smoothing kernel applied to the food intake epochs detected from sensor 

fusion model, was used to determine the boundaries of each episode. The width of the kernel 

of 150s [7] was used. The start and end points of each eating episode were determined by 

the intersection of the food intake epochs and Gaussian-smoothed signals. Then, the 

accuracy of eating episode detection was computed as the ratio of the number of sensor-

detected eating episodes to the number of image-detected eating episodes.

Another goal of image review was to estimate the number of false positives in sensor-based 

food intake detection. All sensor-detected eating episodes and corresponding images were 

reviewed. If no images of food item were detected in a sensor-detected eating episode, then 

it was counted as false positive.

The third goal was to quantify the reduction in the number of images captured by the 

“passive” device. For each participant-day, the total number of images, the total number of 

food images in sensor-detected eating episodes and the percentage of food images of all 

captured images were computed.Finally, the time spent on image review was recorded. The 

information was utilized to evaluate if the sensor detection of eating episodes would 

significantly save review time.

G. Privacy Concerns Survey

Since the participants did not have any control over the passive image capture from AIM-2, 

there exist possible privacy concerns. To assess the privacy concerns of participants, a survey 

[51] was conducted after the experiment. The participants were presented with the following 

questions and asked to answer using a scale of 1 to 7, where ‘1–2’ means ‘not concerned’; 

‘3–5’ means ‘somewhat concerned’; ‘6’ means ‘concerned’; ‘7’ means ‘extremely 

concerned’:

• How concerned are you about your privacy if the device captures images 

continuously throughout the day?

• How concerned are you about your privacy if the device captures images only 

during eating events?
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The responses were recorded. To analyze the responses, the mean and standard deviation of 

the recorded score for both cases were computed. In addition, the percentage of participants 

in each of the four privacy concern categories was computed. All analyses were done using 

Microsoft Excel 2018 (from Microsoft Inc.).

H. Statistical Analysis

To determine the impact of sensors on classification performance, student’s t-test was 

investigated to compare between accelerometer only, flex only and sensor fusion methods. 

To compare the number of eating episodes estimated by image review, sensor-detected and 

self-report, a non-parametric Friedman test was examined. All statistical analyses were done 

using MATLAB 2018 (from Mathworks Inc.).

III. Results

Nine features were selected for the sensor fusion classifier (utilizing features from both 

accelerometer and flex sensors) of the two-stage classification algorithm (Section II.E). 

Eighteen features were selected for training of accelerometer-only classifier. When training 

the flex sensor-only classifier, eight features were selected. The selected features for all the 

classifiers are listed in Table III. Results of the leave one- out cross-validation procedure for 

the laboratory environment are shown in Table IV. The best average F1-score metric of food 

intake detection for 10-sec epochs was found 81.84 ± 10.1% for sensor fusion method in lab 

eating episodes. The method with limited set of features [37] yielded F1-score of 59.13 ± 

25.5%. Statistical results showed that the sensor fusion method was significantly different 

from accelerometer only method (p-value = 0.0008) and flex sensor only method (p-value = 

0.0006).

The accuracy of eating episode detection both in the laboratory (day-1) and free environment 

(day-2) is provided in Table VI. The mean accuracy of sensor-detected eating episodes was 

97% in lab eating episodes and 76.1% in free-living eating episodes, suggesting that the 

AIM-2 captured most of the ingested eating episodes. Manual review of all captured images 

revealed that 4 and 34 drinking episodes were missed in day-1 and day-2 respectively.

Additionally, the manual review of images detected 38 and 55 false positives in sensor-

detected eating episodes in day-1 and day-2 respectively.

While the AIM-2 was worn, 180,570 images were captured, with 8,929 images of food and 

beverage consumption during sensor-detected events. The total time spent on eating and 

free-living activities were 37.2 hours and 715.2 hours respectively. Fig. 3 shows selected 

food and non-food images captured by AIM-2.

Table VI demonstrates image statistics captured by AIM-2 in day-1 and day-2 respectively. 

For each participant day, on average 5 % of all images were food images. This result 

indicates that the number of images for analysis can be significantly reduced. The amount of 

food images also bolsters the fact that the system may provide a potential solution to privacy 

concerns.
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The average time required to review all images captured by AIM-2 was ~22 mins and ~27 

mins in day-1 and day-2 respectively. In case of reviewing all the images, a reviewer needed 

to review on an average 3,043 images for day-1 and 2,975 images for day-2. On the other 

hand, in case of reviewing food intake detection only images, a reviewer needed to review on 

an average 165 (5.49% of all images) images for day-1 and 133 (4.50% of all images) 

images for day-2.

All participants responded to the privacy concerns questionnaire. Results show that the 

image capture only during food intake reduced privacy concerns from 5.0 ± 1.6 (somewhat 

concerned to concerned, continuous capture) to 1.9 ± 1.7 (not concerned, food only capture). 

Fig. 4 demonstrates the distribution of scores of privacy concerns.

Results of the non-parametric Friedman test shows that at least two number of eating 

episodes (N) computed from image-review (NIR), sensor-detection (NAIM2) and self-report 

(Nself) were significantly different (p-value <0.05). Post hoc Tukey–Kramer test exhibited 

that the NIR showed significant differences from both NAIM2 and Nself. No significant 

differences were found between NAIM2 and Nself.

IV. Discussions

The main objective of the present work was to develop and validate a wearable sensor 

system that automatically detects food intake and passively captures food images.

Following the main objective, this work first demonstrated the method for the detection of 

food intake in both laboratory and free-living settings. The best F-1 measure of 81.8% was 

obtained for the sensor fusion method in the laboratory environment. This result shows a 

good but not perfect match to the eating bouts self-reported by a foot pedal, which is 

expected. The results were also compared with a recent method proposed in [37] where the 

authors used a single accelerometer to detect chewing motion of elderly person. The average 

F1-score was found 59.1% on the current dataset. One potential reason of the low F1-score 

could be the target group since the method in [37] was developed on elderly individuals. 

Another possibility could be that the current study proposed the use of sensor fusion which 

led better performance compared to the method in [37]. Results suggest that the sensor 

fusion model achieved higher average F1-score (81.8%) compared to accelerometer only 

(76.7%) and flex only (64.8%) models.

In the free-living part, the performance was evaluated in terms of the eating episodes: 

NAIM2, NFP, NFN, EEpisol, EEpiliq. Table V shows that of on an average 97% of lab eating 

episodes and 76.1% of free-living eating episodes were correctly detected by AIM-2.

Since the AIM-2 sensor detects chewing, the question is how well it recognizes the intake of 

liquids and solid foods. In laboratory eating episodes, AIM-2 recognized 100% of eating 

episodes that consisted of solid and semi-solid food items. In free-living eating episodes, the 

system failed to detect 2 eating episodes out of all eating episodes that consisted of solid and 

semi-solid food items. The food items in those two eating episodes were bread with milk 

and yogurt. The system failed to recognize 4 (out of 99 total) and 34 (out of 132 total) 

beverage consumption episodes in laboratory and free-living environment, respectively. 
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Most of the beverage intake episodes were water consumption, with 8 episodes of wine, 

beer, and milk/juice consumption. Thus, some purely liquid/drinking episodes were not 

recognized, the fact which can attributed to use of chewing for food intake detection. 

However, the liquid episodes could be recognized by computer vision methods and our 

research group is working on merging computer vision and sensor-based detection in the 

upcoming work.

Results of the non-parametric Friedman test exhibited that NIR showed significant 

differences from both NAIM2 and Nself. The results are expected since the image-review 

detected some liquid episodes those were missed by the sensor and/or self-report.

This work explored an approach that significantly reduces the number of images to be 

analyzed by considering only the images where the sensors detected food intake event. 

Tables V show that during a typical day on an average of only ~5% images are food images. 

Apart from the number of images to be reviewed, the time required for review drastically 

reduces if only sensor-detected images are reviewed. On day-1, on an average 22 mins was 

spent to review 3,043 images. Similarly, the reviewer spent around 27 mins to review 2,975 

images in day-2. When reviewing the images of food intake detection only in day-1, the 

required review time would be on an average 1.19 mins. Similarly, the review time in day-2 

would be on an average 1.21 mins. Therefore it indicates the sensor would drastically save 

the review time and effort. The proposed method would also benefit method utilizing image 

recognition by limiting the number of false positives (foods in the image not being 

consumed). A combination of sensor-driven and image-driven food intake recognition 

presents an appealing direction for future development of the technology. Another advantage 

of the proposed sensor system is that unlike the “active” image capture methods, that use 

two images, before and after the eating episode, the proposed system provided images for 

the full duration of the eating episode, describing the eating episode progression and 

detecting food items that may not be added to the plate in the process of eating.

Given our state-of-the-art research setting and growing use of technology, protection of 

privacy for research participants is a great challenge. Any compromise in privacy concerns 

violates the basic rights of participants and potentially pose risk to participants. In this paper, 

the results from privacy concerns questionnaire bolster the fact that the majority of 

participants would feel more secure if the device captured images only during food intake.

The proposed system explores the potential to implement sensor-guided image capture. The 

results suggest that sensor-driven image capture may improve battery life and/or reduce the 

size of the battery by capturing images only during food intake. Another advantage of the 

proposed method is that the image review of allowed for validation of sensor-detected eating 

episodes.

A limitation of the presented system is that it couldn’t detect some of the solid/semi-solid 

and purely liquid food intake. The reason is that the sensor used in AIM-2 is detecting food 

intake by using chewing as a proxy. Chewing is not present during intake of some liquids, 

however, this does mean that all liquids are missed. Some liquids are consumed mixed with 

solids, some liquids (e.g. drinking through a straw) generate sucking jaw movements that are 
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very close to that of chewing. A limitation of the study is that the accuracy of self-report 

using foot pedal was not evaluated formally due to significant time effort required. However, 

the self-report by the pedal has shown very good correlation with in-person observation of 

the eating bouts. Research is needed to investigate indicators of liquid consumption in the 

motion of the jaw. Unlike the self-reported methods, automatic detection methods may also 

introduce issues such as possible modifications of eating behaviours during food intake. 

Future works should investigate the alteration of eating behaviours during food intake. 

Finally, the evaluation of the images could be improved for future work (such as energy 

intake estimation) by capturing cooking episodes to figure out food contents (such as butter, 

sauces etc.) that are impossible to locate in the image.

V. Conclusion

In this paper, we propose a novel wearable sensor system that can detect eating instances and 

demonstrate the number of images can be reduced significantly by analyzing the images 

during food intake event only. In leave-one-subject-out cross-validation experiments, an 

average of 81.8% accuracy in food intake detection. Detection of most of the eating episodes 

and the number of food images compared to all captured images provide the promise to 

develop a sensor-triggered image capture system. Further works are needed to both 

implement the system and validate more participants in a free-living environment.
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Fig. 1. 
AIM-2. The sensor module is attached to the temple of off-the-shelf wearable eyeglasses 

with heat shrink tubes.
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Fig. 2. 
Signals from 3-axes of the accelerometer are shown on the top segment. The middle segment 

demonstrates the flex sensor signal. The foot pedal signal marked by the participants is 

shown on the bottom segment. Here ‘1’ indicates food intake and ‘−1’ indicates no food 

intake.
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Fig. 3. 
Examples of AIM-2 images, (top) selected non-food images (bottom) selected food images 

from several image-detected eating episodes.
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Fig. 4. 
Level of privacy concerns for image capture.
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TABLE I

Experimental protocol

Day Activity Description Duration

Initial interview, the signing of the informed consent, completing a food 
frequency questionnaire, AIM-2 sensor preparation

20 mins

Prior to experiment 1st visit Training on mobile apps 15 mins

Training on portion size estimation 20 mins

Testing on portion size estimation 15 mins

1 2nd visit to lab Eat a meal (eating episode -1) As required

1 3rd and 4th visits to the lab Carry out usual daily activities, except for 2 eating episodes to be consumed 
at the laboratory

As required

2 Free-living Carry out usual daily activities and eating the usual diet. 1 day
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TABLE II

Feature sets computed from both accelerometer sensor and flex sensor epochs

Features Signal Total

38 time and frequency domain features:
Mean absolute value (MAV), root mean square (RMS), maximum value (MAX), median value (MED), ratio of 
MAV to RMS (RMVR), ratio of Max to RMS (RMR), ratio of MAV to Max (RMVM), ratio of Med to RMS 
(RMER), signal entropy (EN), number of zero crossings (ZC), mean time between ZC (MZC), number of peaks 
(NP), average range (AVR), mean time between peaks (MNP), ratio of NP to ZC (RNZ), ratio of ZC to NP 
(RZN), waveform length (WL), number of slope sign changes (SSC), frequency spectrum energy (SE), energy 
spectrum in chewing range (EC), entropy of spectrum chewing range (ENC), ratio of chew_energy to 
spec_energy (RCS), energy spectrum in walking range (EW), entropy of spectrum walking range (ENW), ratio of 
walk_energy to spec_energy (RWS), energy spectrum in talking range (ET), entropy of spectrum talking range 
(ENT), ratio of talk_energy to spec_energy (RTS), ratio of chew_energy to walk_energy (RCW), ratio of 
chew_entr to walk_entr (RCWen), ratio of chew_energy to talk_energy (RCT), ratio of chew_entr to talk_entr 
(RCTen), ratio of walk_energy to talk_energy (RWT), ratio of walk_entr to talk_entr (RWTen), fractal dimension 
(FD), peak frequency in chewing range (PCS), peak frequency in walking range (PWS), peak frequency in 
talking range (PTS).

Acc x-axis
Acc y-axis
Acc z-axis
Net-acceleration
Flex sensor

38*5 = 
190

5 correlation related features:
correlation coefficient, the 1st autocorrelation function coefficient, fundamental frequency, pitch period, value of 
autocorrelation at zero lag

Flex sensor 5
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TABLE III

Selected Features for Two Classifiers

Classifier Selected Features

Acc-only Acc_x : MAV; Acc_y : MAX, PTS, RMS; Acc_z : NP, RWS, RTS, AVR, MAV, RWT, ENW, EC; Acc_net: MAX, SSC, 
RMER, NP, EC, RCS

Flex-only Flex : NP, RZN, RMVR, ZC, FD, SSC, ENC, EC

Sensor fusion Acc_y : RTS; Acc_z : NP, WL; Acc_net : PCS; Flex : NP, RZN, RMVR, FD, EC
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TABLE IV

Average Performance Matrices for 10s epochs for Laboratory Experiments (Day-1)

Method Precision (%) Recall (%) F1-score (%)

Mertes et.al [37] 76.41 ± 23.82% 53.49 ± 28.79% 59.13 ± 25.54%

Proposed – Acc sensor only 78.36 ± 12.05% 78.84 ± 12.30% 76.69 ± 9.65%

Proposed – Flex sensor only 72.40 ± 24.04% 65.43 ± 30.80% 64.82 ± 29.33%

Proposed –Sensor fusion 82.74 ± 14.07% 83.25 ± 12.98% 81.84 ± 10.14%
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TABLE V

Summary of eating episodes

Day NIR NAIM2 Acc (%) NFN NFNsol NFNliq NFP Nself

1 99 95 97.0* 4 0 4 38 93

2 132 96 76.1* 36 2 34 55 102

(*)
indicates average
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TABLE VI

Image statistics captured by AIM-2

Day Total hours data collected 
(hours)

Total number of 
Images Food Images % of food images Time spent on image 

review (min)

1
Total 371.90 89257 3996 799.72

Mean ± SD 12.4 ± 1.5 2975.2 ± 362.3 133.2 ± 59.6 4.50 ± 1.9 26.66 ± 7.9

2
Total 380.5 91313 4933 658.8

Mean ± SD 12.68 ± 1.4 3043.7 ± 337.2 164.4 ± 55.7 5.49 ± 2.04 21.96 ± 12.2
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