
Tam et al. BMC Med Inform Decis Mak           (2021) 21:91  
https://doi.org/10.1186/s12911-021-01441-w

RESEARCH ARTICLE

Combining structured and unstructured 
data in EMRs to create clinically‑defined 
EMR‑derived cohorts
Charmaine S. Tam11,131,2*  , Janice Gullick3, Aldo Saavedra1,4, Stephen T. Vernon5, Gemma A. Figtree2,5, 
Clara K. Chow6,7, Michelle Cretikos9, Richard W. Morris1,2, Maged William10, Jonathan Morris2,8 
and David Brieger12

Abstract 

Background:  There have been few studies describing how production EMR systems can be systematically queried to 
identify clinically-defined populations and limited studies utilising free-text in this process. The aim of this study is to 
provide a generalisable methodology for constructing clinically-defined EMR-derived patient cohorts using struc-
tured and unstructured data in EMRs.

Methods:  Patients with possible acute coronary syndrome (ACS) were used as an exemplar. Cardiologists defined 
clinical criteria for patients presenting with possible ACS. These were mapped to data tables within the production 
EMR system creating seven inclusion criteria comprised of structured data fields (orders and investigations, proce-
dures, scanned electrocardiogram (ECG) images, and diagnostic codes) and unstructured clinical documentation. 
Data were extracted from two local health districts (LHD) in Sydney, Australia. Outcome measures included examina-
tion of the relative contribution of individual inclusion criteria to the identification of eligible encounters, comparisons 
between inclusion criterion and evaluation of consistency of data extracts across years and LHDs.

Results:  Among 802,742 encounters in a 5 year dataset (1/1/13–30/12/17), the presence of an ECG image (54.8% of 
encounters) and symptoms and keywords in clinical documentation (41.4–64.0%) were used most often to identify 
presentations of possible ACS. Orders and investigations (27.3%) and procedures (1.4%), were less often present for 
identified presentations. Relevant ICD-10/SNOMED CT codes were present for 3.7% of identified encounters. Similar 
trends were seen when the two LHDs were examined separately, and across years.

Conclusions:  Clinically-defined EMR-derived cohorts combining structured and unstructured data during cohort 
identification is a necessary prerequisite for critical validation work required for development of real-time clinical deci-
sion support and learning health systems.
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Background
The widespread adoption of electronic medical records 
(EMR) offers unprecedented opportunities to rap-
idly ascertain and examine clinical data at large-scale 
and low cost; such information is essential for applica-
tions such as audit and feedback, near real-time clinical 
decision support as well as supporting research objec-
tives through cohort studies, registries and large-scale 
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pragmatic clinical trials [1–3]. Administrative coding sys-
tems such as International Classification of Diseases and 
Related Health Problems (ICD)-10 provide a translation 
of healthcare diagnoses, procedures, medical services, 
and medical equipment into universal codes [4], however 
do not provide a granular view of a patient’s presenta-
tion, severity of disease and clinical sequence during an 
episode of care [4–6] and have variable accuracy [7]. As 
such, improved computational methods which maximise 
the depth and accuracy of information extracted from 
production-level EMR systems are essential to fulfil the 
promise of real-time clinical decision support which rely 
on a reliable knowledge base to guide clinical decision 
making within a learning health system [8].

The development of robust methodologies that enable 
identification of clinical-defined cohorts from the overall 
patient population captured in production EMR systems 
(e.g. Cerner, Epic) are a critical first step [9]. The most 
straightforward approach is to use clearly defined events 
or procedure codes (e.g. type of surgery, cancer diagno-
sis) associated with the hospitalisation to identify cohorts 
[10, 11]. However, diagnostic codes alone are insufficient 
for identifying clinical EMR-derived cohorts due to strict 
rules adhered to for coding, underreporting and the 
complexity of diseases being assigned a single code [12]. 
The cohort identification process becomes even more 
challenging when diseases and conditions have hetero-
geneous aetiology and a spectrum of severity [13–15]. 
Approaches to data extraction from production EMR sys-
tems also have to consider whether there is ready access 
to production-level EMR environments (e.g. live systems, 
back-ups, copies of the production EMR etc.) which may 
limit the granularity and timeliness of information that is 
available for cohort identification as well as the opportu-
nity for iteration during the cohort identification process.

There have been few reports describing how pro-
duction EMR systems can be systematically queried to 
identify and reliably extract information from a clinically-
defined cohort of interest and limited studies leveraging 
the > 70% of the EMR that is captured in free-text during 
this process [16–20]. Furthermore, previous studies have 
used structured data fields (e.g. ICD-10 code) to iden-
tify the population for data extraction which may lead 
to eligible patients being missed during data extraction 
if an ICD-10 code was absent or mis-coded [21, 22] or 
cohort identification has occurred after the data has been 
extracted from the production EMR system, which would 
also result in missed eligible patients [12, 23]. Mis-coding 
would lead to measurement error and missing data would 
contribute to selection bias and counteract the statistical 
power available from leveraging data housed in EMRs.

The aim of this study was to develop a generalisable 
methodology used within production EMR systems for 

creating high-fidelity clinically-derived EMR cohorts for 
complex diseases/conditions which cannot exclusively 
use diagnostic or procedure codes to identify a cohort of 
interest. Patients with possible acute coronary syndrome 
(ACS) were selected as an exemplar given its heteroge-
neous aetiology and spectrum of severity during pres-
entation. This approach can be applied to other complex 
diseases/conditions including but not limited to mental 
illness, asthma, rheumatoid arthritis, chronic kidney dis-
ease [13–15, 19].

Methods
Source population
The eight metropolitan and seven rural/regional Local 
Health Districts (LHD) in New South Wales (NSW), 
Australia are responsible for managing public hospitals 
and health institutions and for providing health services 
within a geographical area. The source population pre-
sented to health care facilities in Northern Sydney LHD 
and Central Coast LHD, two of the eight metropolitan 
LHDs in NSW. Within Northern Sydney LHD and Cen-
tral Coast LHD, there were eight publicly-funded hos-
pitals that admitted patients with possible ACS. This 
included two tertiary hospitals with 24-h percutaneous 
coronary intervention capability and six referral hospi-
tals; all of which used Cerner Millennium information 
systems. These two LHDs had a combined estimated 
resident population of 1.26 million people [24]. In this 
protocol paper, we followed the guidelines developed in 
the RECORD statement for reporting studies conducted 
using observational, routinely-collected health data [25].

Study inclusion criteria and rationale
The methodology for cohort identification is summa-
rised in Fig.  1. A multi-disciplinary team consisted of 5 
clinicians (cardiologists, population health physicians, 
nurses) and 5 electronic data experts (data engineers, 
business analysts, data analysts, analytics translator). 
The multidisciplinary team varied in experience from 
early career through to professor level with career stages 
equally represented (Step 1, Fig.  1). In a series of initial 
meetings, the cardiologists defined clinical criteria to 
identify patients presenting with possible ACS (Step 2, 
Fig.  1). The data experts then mapped the clinical cri-
teria to discrete data tables within the Cerner Millen-
nium EMR system to locate the data elements required 
for identification of patients using these clinical criteria 
(Step 3, Fig. 1). This mapping process was discussed and 
agreed upon at iterative meetings over a 3-month period 
with the multi-disciplinary team (Step 4, Fig.  1). This 
approach of using a multi-disciplinary team to define 
clinical criteria which can then be mapped to discrete 
data tables in the EMR can be applied to any condition/
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disease of interest. During this process, we considered 
the previously described phenotype algorithm model 
workflow model for portable algorithms [26], against 
existing technological constraints for extracting data 
from Cerner EMR systems within our health jurisdiction 
(Steps 5–7, Fig. 1). The next steps would involve valida-
tion of a clinically-defined EMR cohort against a gold 
standard to estimate sensitivity and specificity for a diag-
nosis. Depending on whether the sensitivity and specific-
ity results were deemed clinically acceptable, the script 

would then be implemented in a production EMR envi-
ronment to support identification of clinical cohort for 
learning health systems (Steps 8–9, Fig. 1). The methods 
of such validation studies and implementation into pro-
duction EMR systems are beyond the scope of the cur-
rent study but are a critical step prior to implementation 
within learning health systems.

For the current study, seven inclusion criteria to iden-
tify possible ACS were developed to identify the cohort 
of interest (Table 1). If any of the seven inclusion criteria 

Fig. 1  General methodology for creating clinically-defined cohorts using structured and unstructured data in production EMR systems

Table 1  Study inclusion criteria

Inclusion 
criteria

Definition

1 The “Reason for Visit” (free text field) for the presentation contained any of the ACS-related symptoms or keywords described in Additional 
file 1: Information Part 1

2 The patient was placed on a cardiac pathway care plan OR the information collected during emergency department triage (free-text), 
separate to the Presenting Information field above, contained any of the list of ACS-related symptoms or keywords (Additional file 1:  
Information Part 1)

3 Orders were placed in the EMR for a troponin test OR a 12 lead ECG OR for any of the following investigations: coronary angiogram, exercise 
stress test, stress echocardiogram, sestamibi scan, CT coronary angiogram, CT pulmonary angiogram

4 The patient’s EMR contained a “Cardiac Monitoring” form, meaning that the patient had been placed on a cardiac monitoring pathway

5 The patient had a result recorded in the EMR from a sestamibi scan, CT coronary angiogram, CT aortic angiogram or CT pulmonary angio-
gram

6 Any of the ICD-10 Australian Modification codes recorded for an encounter started with “I21”, “I22”, “I23”, “I24” or “I25” OR the episode of care 
had any of the following diagnoses (SNOMED CT) recorded in the EMR: “acute myocardial infarction”, “acute non-ST segment elevation”, 
“acute ST segment elevation”, “acute non-q wave infarction”, “angina”

7 The encounter contained a scanned 12-lead ECG image
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were met for an encounter during the study period, the 
encounter (termed an “eligible” encounter) was deemed 
eligible for inclusion into the study population. An 
encounter was defined as an electronically recorded 
interaction between a patient and healthcare provider, 
characterised by a unique identifier and admission time. 
Once an encounter met any of the seven inclusion crite-
ria, all clinical, biochemical and demographic informa-
tion contained within the EMR were extracted. This also 
included information from “reference” encounters for the 
individual patient dating back to 2002 when the EMR 
system was first implemented in the health district.

For criteria (1) and (2), an initial list of ACS-related 
symptoms, keywords and abbreviations, for patients pre-
senting with possible ACS was developed in consultation 
with the clinical reference group. The list was extended 
by manual review of ~ 50 Emergency Department tri-
age forms in patients with an ICD-10 code for STEMI 
(I21.0, I21.1, I21.2, I21.3) or NSTEMI (I21.4). Next, we 
examined the frequency of each of the search terms for 
relevant data fields within a subset of ED triage forms 
obtained from a 3-month test extract (n ~ 30,000 encoun-
ters between 1/4/17 to 30/6/17). Given the unstructured 
nature of free-text, we also identified and included mis-
spellings and abbreviations for each of the terms explic-
itly due to the text processing limitations of Cerner 
Command Language (CCL) used to extract the data; 
regular expressions were not able to be used in CCL. If 
the keywords were present at least 20 times (chosen as 
an arbitrary cut-off) in the subset of 30,000 ED Triage 
forms, they were then included in the final list of search 
terms of ACS-related symptoms and keywords.

EMR data extraction
Data extraction was performed for a single continu-
ous five-year time period between 1/1/13 and 31/12/17. 
Encounters were extracted through the execution of a 
bespoke CCL script which contained seven functions 
(representing the seven inclusion criteria) which were 
designed to identify eligible encounters. Data extrac-
tion was performed by an external party (MKM Health, 
Chatswood, NSW) and in line with the HREC approval, 
the study investigators had no direct access to the EMR 
information systems or contained within the EMR. The 
external party wrote the CCL script which was then run 
on the production EMR system. Then, flat data tables 
were created, de-identified and extracted from the pro-
duction EMR for the research team for analyses (Fig. 2). 
Approaches for ensuring data quality and the operational 
framework of the study (data management, security and 
governance) are described in Additional file 1: Informa-
tion, Part 2.

Outcome measures
EMR data extracts were processed and analysed using R 
(Version 4.0.0). Outcome measures included 1) examina-
tion of the relative contribution of individual inclusion 
criteria to the identification of eligible encounters, 2) 
associations between the use of diagnostic codes alone 
(ICD-10/SNOMED Clinical Terms (CT)) and other 
inclusion criteria and 3) examination of consistency 
across LHDs and time. First, we developed a computa-
tional method to check the composition of inclusion cri-
teria met by each encounter. Each encounter received a 
score between 0 and 7 indicating how many of the inclu-
sion criteria were met. Any encounter with a score 31 
was deemed eligible and included in the index cohort. 
Encounters that did not meet any of the inclusion crite-
ria were assigned a value of ‘0’ and referred to as “refer-
ence” encounters (i.e. they are not eligible encounters). 
Next, we examined the proportions of encounters identi-
fied using diagnostic codes alone vs. other inclusion cri-
teria, and vice-versa and a correlation matrix was used to 
calculate the associations between each of the inclusion 
criteria. Finally, we examined consistency in the compo-
sition of inclusion criteria across time and local health 
districts.

Results
Examination of the relative contribution of individual 
inclusion criteria to eligible encounters
The 5-year extract (1/1/13–31/12/17) consisted of 
802,742 eligible and 5,418,466 reference encounters. Out 
of the 802,742 eligible encounters, scanned ECG images 
(54.8% of encounters) and symptoms and possible ACS-
related keywords in clinical documentation (41.4–64.0%) 
were used most often to identify presentations of possible 
ACS. Orders and investigations (27.3%) and procedures 
(1.4%), were less often present for identified presenta-
tions. Relevant ICD-10/SNOMED CT codes were pre-
sent for 3.7% of identified encounters.

To further examine the composition of inclusion cri-
teria in eligible encounters, UpSet plots [27] were used 
to represent the frequency of each inclusion criterion 
and the numbers of encounters that met each combina-
tion of inclusion criteria in 2017, the most recent data 
in our 5-year data extract. Figure 3 shows 185,414 eligi-
ble encounters in 2017 with similar findings as the total 
5  year dataset. Individually, the presence of a scanned 
ECG image (72.0%), the presence of keywords captured 
in the presenting information in the ED triage form 
(60.0%) and the presence of keywords in the “Reason for 
visit” for the presentation (38.2%) identified the majority 
of eligible encounters. Orders and investigations (25.6%) 
and procedures (1.2%), were less often present for eligible 
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encounters. Only 3.1% of encounters had the presence 
of a relevant diagnostic code (ICD-10 or SNOMED CT) 
for ACS. The presence of a cardiac monitoring form 
was not an informative criterion for identifying eligible 
encounters.

We found 59 unique combinations of inclusion cri-
teria met by encounters (Fig.  3). The most frequent 

combinations were encounters that only had the pres-
ence of a scanned ECG image (26%; 47,514 of 185,414), 
encounters that only had a keyword match in triage 
information (18%; 33,865 of 185,414) and encounters 
that had the presence of an ECG, keyword match in 
triage information and a relevant order (12%; 22,160 
of 185,414). Similar trends were seen in UpSet plots 
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Fig. 2  Visual representation of data tables extracted from Cerner Millenium EMR systems. Cerner EMR systems were extracted as data tables which 
are linked by encounter key. Data tables were linked by encounter key and include information about encounters, diagnoses (ICD-10 and SNOMED 
CT), pathology, forms (e.g. ED triage assessments, medication forms, discharge letters), notes (e.g. progress notes) and many more. Encounter level 
information were further linked to person level information by person key and included patient medical history and social history. The size of the 
raw file associated with each table is shown next to the table name. The data tables are listed in order of file size with the biggest files related to 
free-text information and scanned ECG images. The figure represents data extracted for a single 3 month time period (1/4/17–30/6/17)
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performed for the other years (2013–6; Additional 
file 2: Figure S1).

Comparisons between diagnostic codes and other 
inclusion criteria
In the 5-year extract, we examined the proportion of 
encounters that contained a relevant diagnostic code 
within each cohort of encounters met by each inclu-
sion criterion. Given the broad inclusion criteria 
developed for this study, diagnostic codes comprised a 
minor component of each individual inclusion criteria 
cohort (Fig.  4). Note that 0.1% (858/802.742) of eligi-
ble encounters were identified using diagnostic codes 
alone. A correlation matrix examining associations 
between each of the inclusion criteria found a strong 
correlation between diagnostic code and relevant pro-
cedures (Pearson’s correlation coefficient = 0.9), with 
small to moderate associations with the other inclu-
sion criteria (Additional file 3: Figure S2).

Consistency across local health districts and time
To examine consistency of the methodology, we exam-
ined the frequency of each inclusion criterion for each 
year in our 5 year extract (Table 2). Individually, the pres-
ence of a scanned ECG image (15–36%), the presence of 
keywords captured in the presenting information in the 
ED triage form (19–25%) and the presence of keywords 
in the “Reason for visit” for the presentation (30–40%) 
identified the majority of eligible encounters. Orders and 
investigations (13–17%) and procedures (< 1%), were less 
often present for eligible encounters. 2–3% had the pres-
ence of a relevant diagnostic code (ICD-10 or SNOMED 
CT) for ACS. Similar trends were observed when the two 
LHDs were examined separately, with a diagnostic code 
being present in 2–3% of eligible encounters (Fig. 5).

Discussion
Our study demonstrates that informatics approaches 
combining structured EMR data, such as orders for 
pathology testing, investigations and diagnostic codes, 

Fig. 3  UpSet plot showing the number of encounters meeting individual (bottom left hand side) and multiple inclusion criteria (right-hand side). 
This UpSet plot represents 317,719 eligible encounters from Cerner information systems in two local health districts that met at least one of the 
study inclusion criteria in 2017. Inclusion criteria were described in Table 1. The histogram on the bottom left-hand side represents the total number 
and percentage of encounters that met each inclusion criterion. The plot on the top right-hand side represents the number and percentage 
of encounters that met each unique combination of inclusion criteria, depicted by the black circle(s) and lines. For example, the most frequent 
combinations were encounters that only had the presence of a scanned ECG image, followed by encounters that only had a keyword match in 
triage information
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with symptom and keyword text mining in narrative free-
text during the data extraction process in production 
EMR systems, can create high fidelity clinical-defined 
patient cohorts. This inclusive approach to EMR data 
extraction enables subsequent datasets for EMR-derived 
cohorts to be readily created and updated as new condi-
tions/diseases emerge and clinical definitions are updated 
[28], as well as the extraction of clinically-relevant infor-
mation enabling future validation studies of diagnostic 
and procedure codes, which are essential for real-time 
clinical decision support and secondary use of EMR data 
[11, 29, 30]. This is particularly significant for diagnoses 
which have a diverse range of presenting problems (e.g. 

ACS, mental illness, sepsis) [31]. The use of diagnostic 
codes alone during this process would likely have led to 
relevant patients not being captured [32] as evidenced by 
the finding that < 1% of eligible encounters contained an 
ACS-related diagnostic code [29].

Our design approach for data extraction from the pro-
duction EMR system balanced pragmatic and technologi-
cal constraints against the broader study goal of creating 
a comprehensive EMR data platform that could be inter-
rogated for a range of cardiovascular-related questions 
and other use cases in the future. For example, despite 
widespread use of regular expression and advances in 
natural language processing which would enable more 

Fig. 4  Percentage of eligible encounters with diagnostic codes (ICD-10/SNOMED CT) for each inclusion criteria, by year

Table 2  Percentage of encounters that met each inclusion criteria in the 5 year cohort

Year Presenting 
problem, n (%)

Triage information, n (%) Related order, n (%) Related 
procedures, 
n (%)

ICD-10/
SNOMED CT, 
n (%)

Scanned ECG 
image, n (%)

2013 (n = 135,511) 61,529 (45.4) 98,045 (72.3) 41,629 (30.7) 2296 (1.7) 6240 (4.6) 36,902 (27.2)

2014 (n = 143,108) 65,668 (45.8) 99,661 (69.6) 42,839 (29.9) 2259 (1.6) 5778 (4.0) 46,437 (32.5)

2015 (n = 163,008) 66,428 (40.8) 100,048 (61.4) 42,734 (26.2) 2099 (1.3) 5613 (3.4) 101,363 (62.2)

2016 (n = 175,701) 68,286 (38.9) 105,428 (60.0) 45,180 (25.7) 2353 (1.3) 5987 (3.4) 121,575 (69.2)

2017 (n = 185,414) 70,878 (38.2) 111,275 (60.0) 47,566 (25.7) 2243 (1.2) 5768 (3.1) 133,429 (72.0)
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thorough identification of presenting symptoms in free-
text [33, 34], this was not available in the Cerner EMR 
implementation at the LHDs in this study. As such, these 
techniques were not able to be used production EMR 
systems, although there is progress to integrate them in 
the future [35]. Machine learning methods require access 
to specialist libraries and often high performance com-
puting and tend to only able to be implemented after data 
has been extracted from production EMR systems. This 
study also served as a proof-of-concept for demonstrat-
ing to the organisation that data housed within EMR sys-
tems could be readily extracted for clinical utility.

Our work builds on earlier studies combining struc-
tured and unstructured free-text EMR data for iden-
tifying cohorts after data has been extracted from 
production EMR systems, demonstrating that diagnostic 
codes alone are insufficient for disease case detection. 
Penz et al. found that ICD-9 and current procedure ter-
minology (CPT) codes identified less than 11% of the 
cases in a study of detecting adverse events related to 
central venous catheters, while natural language process-
ing methods achieved a sensitivity of 0.72 and specific-
ity of 0.80 [36]. Similar findings have been observed for 
detecting colorectal cancer cases [12]. Our study find-
ings demonstrate that similar approaches for identifying 

cohorts are required within production EMR systems 
themselves, which have also been demonstrated by 
large collaborative research networks (e.g. PCORnet, 
eMERGE, ODHSI) [37].

The generalisable methodology described in this study 
is essential for curation of high-fidelity clinical data from 
EMR systems enabling continuous, routine monitoring 
and reporting on the quality of care and outcomes for 
an unselected cohort of patients across large health care 
treatment and referral networks or populations, as well 
as providing clinical decision-making guidance. Moni-
toring and reporting could be performed against agreed 
care standards and benchmarked outcomes for specific 
conditions, which would supplant the need for develop-
ing and maintaining labour intensive, condition-specific 
population-based observational cohort studies and clini-
cal registries. A critical step of the methodology not fully 
described in this current paper is the requirement for 
validation studies comparing the clinically-defined EMR 
cohort definition against a gold standard to estimate 
sensitivity and specificity, prior to implementation into 
the production EMR. The gold standard depends on the 
context of how the EMR data will be used and could be 
clinician diagnosis if used for clinical decision support, 
or clinical registries or validation against ICD10 codes 

Fig. 5  Percentage of total encounters in each local health district that met each inclusion criteria in a 5 year dataset. LHD 1 refers to Northern 
Sydney Local Health District and LHD 2 refers to Central Coast Local Health District.
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as previously performed in other conditions such as 
heart failure, post-traumatic stress disorder, Charleston 
Co-morbidity index, etc. [30, 38, 39]. A validation study 
estimating sensitivity and specificity for acute coronary 
syndrome comparing clinician diagnosis against ICD10 
codes was performed in a 3 month EMR dataset from our 
current study; those results are currently under review 
[40].

The overarching strength of the research is the liberal 
nature of the data extraction process enabling future vali-
dation work critical for secondary use of EMR data, flex-
ibility for creating new EMR-derived cohorts as clinical 
definitions and guidelines get updated as well as being 
able to identify and extract information on patients based 
on presenting symptoms and investigations, rather than 
diagnostic code. For example, using this generalisable 
methodology (Fig. 1) we can create EMR-derived cohorts 
for stroke, heart failure patients, etc. To our knowledge, 
this is also the first time that clinically-relevant informa-
tion for diagnosing ACS has been collated from EMR 
data extracts (Additional file 1: Table S1). Limitations of 
the research include that the study period was restricted 
to extracted data from one information system (Cerner 
Millenium), chosen as it was the main EMR system, 
from only two of the fifteen local health districts in New 
South Wales and due to restricted access to the produc-
tion EMR system, we were unable to iterate on the cohort 
identification process; this is possible when data extrac-
tion can occur on non-production EMR environments 
(i.e. clinical data warehouses) which are available at many 
sites in the UK and USA. Nevertheless the principles of 
this robust methodology can be applied to any EMR data 
extraction process and generalised to other diseases/
conditions. Extending data extraction processes across 
health jurisdictions and for other conditions will enable 
further validation of the methodology.

Conclusion
This paper demonstrates that clinically-defined EMR 
cohorts created using a broad strategy utilising struc-
tured and unstructured free-text in production EMR 
systems, are likely to identify relevant cohorts of patients 
and enable critical validation work required for real-time 
clinical decision support and secondary use of EMR data.
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