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Abstract

Protein rotamers refer to the conformational isomers taken by the side-chains of amino acids to 

accommodate specific structural folding environments. Since accurate modeling of atomic 

interactions is difficult, rotamer information collected from experimentally solved protein 

structures is often used to guide side-chain packing in protein folding and sequence design studies. 

Many rotamer libraries have been built in the literature but there is little quantitative guidance on 

which libraries should be chosen for different structural modeling studies. Here, we performed a 

comparative study of six widely used rotamer libraries and systematically examined their 

suitability for protein folding and sequence design in four aspects: (1) side-chain match accuracy, 

(2) side-chain conformation prediction, (3) de novo protein sequence design, and (4) 

computational time cost. We demonstrated that, compared to the backbone-dependent rotamer 

libraries (BBDRLs), the backbone-independent rotamer libraries (BBIRLs) generated 

conformations that more closely matched the native conformations due to the larger number of 

rotamers in the local rotamer search spaces. However, more practically, using an optimized 

physical energy function incorporated into a simulated annealing Monte Carlo searching scheme, 

we showed that utilization of the BBDRLs could result in higher accuracies in side-chain 

prediction and higher sequence recapitulation rates in protein design experiments. Detailed data 

analyses showed that the major advantage of BBDRLs lies in the energy term derived from the 

rotamer probabilities that are associated with the individual backbone torsion angle subspaces. 

This term is important for distinguishing between amino acid identities as well as the rotamer 

conformations of an amino acid. Meanwhile, the backbone torsion angle subspace-specific 

rotamer search drastically speeds up the searching time, despite the significantly larger number of 

total rotamers in the BBDRLs. These results should provide important guidance for the 

development and selection of rotamer libraries for practical protein design and structure prediction 

studies.

*Corresponding Author: Tel.: +1 734 647 1549. Fax: +1 734 615 6443. zhng@umich.edu. 

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.9b00812.
Text S1, Tables S1–S7, and Figures S1–S3, as mentioned in the text (PDF)

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Chem Inf Model. Author manuscript; available in PMC 2021 March 08.

Published in final edited form as:
J Chem Inf Model. 2020 January 27; 60(1): 410–420. doi:10.1021/acs.jcim.9b00812.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/doi/10.1021/acs.jcim.9b00812?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00812/suppl_file/ci9b00812_si_001.pdf


Graphical Abstract

INTRODUCTION

Protein structures and their stabilities are essentially determined by the packing interactions 

of the side-chains of amino acids along the sequence. Protein side-chain packing (PSCP) is 

thus of great significance in computational and structural biology, e.g., protein structure 

prediction,1,2 structure-based protein and enzyme design,3–5 and structure refinement.6 The 

three key components of a typical PSCP method are (1) a rotamer library, (2) an energy 

function, and (3) an optimization algorithm. Solving a PSCP problem involves identifying a 

sequence of rotamers from a rotamer library that minimizes the folding energy calculated by 

the energy function using an optimization algorithm. Over the past few decades, many 

studies have been dedicated to the PSCP problem, but the emphases have been mainly 

focused on the latter two components,7–17 with only a handful of studies specifically 

addressing the rotamer library construction.18–21 Overemphasis on the energy functions and 

searching methods has seemingly undervalued the importance of the rotamer libraries. In 

fact, the quality of a rotamer library significantly affects the PSCP performance.22 

Unfortunately, to the best of our knowledge, there is no systematic and quantitative study on 

how rotamer libraries impact PSCP and which rotamer library is most suitable for this task.

Historically, there have been backbone-independent rotamer libraries (BBIRLs)20,22,23 and 

backbone-dependent rotamer libraries (BBDRLs).18,19,21 Good PSCP performance was 

achieved using BBIRLs in the earlier years.7,23 BBDRLs were first proposed by Dunbrack 

and Karplus18 and have been more popular and widely used ever since. The latest Dunbrack 

BBDRL21 was released in 2010, and many PSCP programs use this library.14,15,17 These 

programs achieve quite similar performance on side-chain torsion angle prediction by 

correctly predicting 84~86% of the χ1 dihedral angles and 71~75% of the χ1+2 using a 

tolerance criterion of 40°. Meanwhile, the overall side-chain root-mean-square-deviation 

(RMSD) between the predicted and native conformations range from 1.46 to 1.65 Å14,15,17 

Using a very detailed BBIRL consisting of more than 7000 rotamers, Xiang and Honig22 

reported that 87% and 74% of χ1 and χ1+2 angles were predicted to be within a stricter 

cutoff of 20° to the native angles and the overall predicted RMSD was 1.32 Å. Peterson et al.
24 showed that the packing accuracy reached 89% for χ1 and 78% for χ1+2 using the 40° 
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criterion and an overall RMSD of 1.27 Å by using a BBIRL that had more than 50 000 

rotamers. Therefore, from the viewpoint of prediction accuracy, the performance reported 

for using high-resolution BBIRLs is even more impressive than that reported for using 

BBDRLs. In a protein–ligand interaction redesign study, Boas and Harbury25 found that the 

design algorithm could predict protein sequences that bound well with the target ligand only 

when they used a detailed BBIRL consisting of more than 5449 rotamers. It was also 

reported that the catalytic geometries of native enzyme active sites could be reproduced only 

when a BBIRL containing more than 7000 or even 11000 rotamers was used.26,27 Pupo and 

Moreno28 performed an extensive statistical comparison of ten rotamer libraries (e.g., 

including the Dunbrack 2002 BBDRL29 and the detailed Honig BBIRLs22), excluding the 

influence of energy functions and searching methods; their results showed that only the 

Honig BBIRLs were able to correctly reproduce the experimental side-chain conformations 

for most of the analyzed residues on peptidic ligands using a strict criterion of 20°.28 

However, side-chain reproduction rates between the newer Dunbrack 2010 BBDRL21 and 

the detailed Honig BBIRLs on a set of experimental protein structures have not been 

compared. Moreover, the performance of the two kinds of rotamer libraries on side-chain 

prediction and protein sequence design has never been quantitatively compared.

In this work, we systematically compared the Dunbrack 2010 BBDRL and two of its 

derivatives to the Honig BBIRLs in four aspects: (1) capability of reproducing native residue 

side-chain conformations, which was independent of the energy function and searching 

method, (2) ability to perform side-chain prediction, (3) native sequence recapitulation 

performance through de novo protein sequence design, and (4) running time for 2 and 3. To 

accomplish tasks 2 and 3, we utilized a simulated annealing Monte Carlo (SAMC) based 

searching method30 and a physics- and knowledge-based energy function (EvoEF231), 

which was extended from the previously developed EvoEF.3 To compare the quality of 

sequences designed using different libraries, we used the state-of-the-art protein structure 

prediction suite, I-TASSER,32 to examine the foldability of the designed sequences.

METHODS

Data Set Construction.

We collected a set of monomeric structures from previous PSCP14 and protein design 

studies,3,26,33 excluding structures with discontinuous chains or missing atoms. To remove 

redundancy, the protein sequences were clustered using CD-HIT34 with a sequence identity 

cutoff of 30% and the duplicated sequences in each cluster were removed. A total of 136 

structures were retained and this set of proteins was used for side-chain reproduction 

analysis, side-chain prediction, and de novo sequence design in this work; the proteins in 

this data set shared <30% sequence identity with every member from the data set used to 

train EvoEF2.31 To check if the data set was biased for side-chain reproduction by a rotamer 

library, we also collected another larger set of single-chain structures from the Top8000 

database,35 where the members shared <70% sequence identity with each other. Proteins 

with discontinuous chains or missing atoms were discarded and a larger set of 3719 

structures was retained for side-chain reproduction analysis.
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Definition of Core and Surface Residues.

It has been shown that the side-chain prediction accuracy is quite different for residues 

located in distinct regions (e.g., core and surface residues) of a protein.1,15,17,22 In this work, 

the core and surface residues were defined using criteria similar to that used in refs 36 and 

37. Specifically, we defined core residues as those positions that had more than 20 Cβ atoms 

within 10 Å of the Cβ atom of the residue of interest, while the surface residues were 

required to have less than 15 Cβ atoms within the same region. Cα atoms were counted for 

glycine.

Evaluation of Side-Chain Reproduction.

We used two metrics to evaluate the ability of a rotamer library to reproduce the native side-

chain conformations. First, we considered that a rotamer library was able to reproduce a 

given set of side-chain χ angles from a native residue if it contained at least one rotamer that 

had all of its corresponding χ angles within 20° of the native values. Second, to evaluate the 

performance of each rotamer library to reproduce the native residue geometries, we 

generated all of the possible conformations using the rotamer dihedral angles defined in 

rotamer libraries L1–L6 and calculated the RMSDs between each residue and its 

corresponding set of rotamers from each library, keeping the lowest RMSD value. The 

RMSDs were only calculated for side-chain, non-hydrogen atoms, excluding Cβ atoms. 

There are two ways to calculate RMSD among a set of proteins: overall and average RMSD. 

The overall RMSD is calculated by summing over all of the residues in all of the proteins, 

while the average RMSD is simply the average value of the sum of RMSDs for each of the 

proteins from the set. The value of overall RMSD is usually larger than that of average 

RMSD and was used in this work. The symmetry of residues Asp, Glu, Phe, Arg, and Tyr 

were considered for RMSD calculation. Alanine and glycine were excluded from analysis, 

as they are not rotatable.

EvoEF2 Energy Function and Parametrization.

The EvoEF231 energy function was extended from EvoEF, which was first proposed and 

implemented in our evolutionary profile-based protein design algorithm, EvoDesign.3 

EvoEF consists of five energy terms, including van der Waals energy, electrostatic 

interactions, orientation-dependent hydrogen-bonding interactions, desolvation energy, and 

the reference energy:

EEvoEF = EVDW + EELEC + EHB + EDESOLV − EREF
= ∑

i, j
[wvdwEvdw(i, j) + welecEelec(i, j) + whbEhb(i, j)

+ wdesolvEdesolv(i, j)] − ∑
l = 1

L
Eref(aal)

(1)

Here, EVDW, EELEC, EHB, EDESOLV, and EREF represent the total van der Waals, 

electrostatic, hydrogen bonding, desolvation, and reference energy terms for a protein 

system, respectively. The protein reference energy term, EREF, is used to model the energy 

of a protein in its unfolded state and is calculated as the sum of amino acid-specific 

reference energy values. Evdw(i, j), Eelec(i, j), Ehb(i, j), and Edesolv(i, j) are the pairwise 
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interactions between nonbonded atoms i and j, where wvdw, welec, whb, and wdesolv are their 

relative weights. Eref(aal) is the amino acid-specific reference energy used to model the 

energy of an amino acid in the unfolded state, where aal is the amino acid identity at position 

l. The detailed mathematical equations for Evdw(i, j), Eelec(i, j), Ehb(i, j), and Evdw(i, j) are 

identical to what was previously described3 and are listed in Text S1 to provide a complete 

description of the energy function.

In EvoEF2, the above terms were preserved, but the weights and reference energies were 

optimized using an improved method. Moreover, four new terms were introduced to make 

EvoEF2 capable of tackling more difficult design cases and to fully utilize the structural 

information present in a given protein backbone. First, disulfide bonds exist in many 

proteins, but in EvoEF there is no term to model the possible formation of disulfide bonds. 

Since the length of a disulfide bond is around 2 Å, which is much less than the sum of the 

van der Waals radii of two sulfur atoms, possible disulfide-bond configurations in EvoEF 

may incur large clash penalties. Hence, we consider explicitly modeling disulfide bonds in 

EvoEF2. Second, the 20 canonical amino acids have different side-chain groups, and for the 

same amino acid, there may exist different rotamers. The different amino acids and rotamers 

exhibit distinct propensities and may occur at various frequencies at different protein 

backbone positions. To model this propensity, we introduced amino acid propensity, 

Ramachandran, and rotamer probability terms into EvoEF2. The complete EvoEF2 energy 

function is written as

EEvoEF2 = EVDW + EELEC + EHB + EDESOLV + ESS
+ EAAPP + ERAMA + EROT − EREF

(2)

Here, ESS describes the disulfide bonding interactions, which are modeled as follows:

ESS = ∑
i, j

wSS[0.8(1 − e−10(dij
Sγ1Sγ2 − 2.03))

2
+ 0.005(θij

Cβ1Sγ1Sγ2 − 105°)
2

+ 0.005(θij
Cβ2Sγ2Sγ1 − 105°)

2
+ (cos(2χij

Cβ1Sγ1Sγ2Cβ2) + 1) + 1.25sin
(χij

Cα1Cβ1Sγ1Sγ2 + 120°) − 1.75 + 1.25sin(χij
Cα2Cβ2Sγ2Sγ1 + 120°) − 1.75]

(3)

where wSS is the weight factor, atom pair i and j represent the two Sγ atoms from two 

different cysteines, dij
Sγ1Sγ2 is the distance between them, θij

Cβ1Sγ1Sγ2 is the angle between 

atoms Cβ1, Sγ1, and Sγ2, θij
Cβ2Sγ2Sγ1 is the angle between atoms Cβ2, Sγ2, and Sγ1, 

χij
Cβ1Sγ1Sγ2Cβ2 is the torsion angle between atoms Cβ1, Sγ1, Sγ2, and Cβ2, χij

Cα1Cβ1Sγ1Sγ2 is 

the torsional angle between atoms Cα1, Cβ1, Sγ1, and Sγ2, and χij
Cα2Cβ2Sγ2Sγ1 is the 

torsional angle between atoms Cα2, Cβ2, Sγ2, and Sγ1. The distance dij
Sγ1Sγ2 must be within 

[1.95, 2.15] in order to calculate ESS(i, j), and ESS(i, j) = 0 if ESS(i, j) > 0 or 

dij
Sγ1Sγ2 ∉ 1.95, 2.15 .
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EAAPP represents the energy for calculating amino acid propensities at given backbone 

angles (ϕ/ψ) by

EAAPP = ∑
1 ≤ l ≤ L

−waapp lnP (aal ϕl, ψl)
P (aal) (4)

where waapp is the weight parameter, l is the design position, aal and (ϕl, ψl) are the amino 

acid type and backbone torsional angles at position l, respectively. P(aal|ϕl, ψl) and P(aal) are 

the probabilities of observing amino acid aal at a given (ϕl, ψl) and any backbone torsional 

angle, respectively. The statistics were obtained from the Top8000 data set35 using a grid 

step of 10° for ϕ and ψ. Following a similar strategy to ref 14 for the N-terminal residue and 

other residues whose ϕ angle cannot be determined by the backbone (due to missing 

backbone atoms), ϕ is set to −60°, and similarly, for the C-terminal residue and other 

residues whose ψ angle cannot be determined by the backbone (due to missing backbone 

atoms), ψ is set to 60°. This is also applicable to the calculation of ERAMA and EROT.

ERAMA is the Ramachandran term for choosing specific backbone angles (ϕ, ψ) given a 

particular amino acid:

ERAMA = ∑
1 ≤ l ≤ L

−wrama ln P (ϕl, ψl aal) (5)

where wrama is the weight parameter. This term is used to calculate how suitable the 

backbone (ϕl, ψl) is given aal. The statistics were obtained using the same data set and grid 

step mentioned above.35

Finally, EROT is the energy term for modeling the rotamer probabilities from a Dunbrack 

BBDRL:

EROT = ∑
1 ≤ l ≤ L

−wrot ln P (rotl ϕl, ψl) (6)

where wrot is the corresponding weight, l is the design position, (ϕl, ψl) is the backbone 

torsional angle at position l. P(rotl|ϕl, ψl) is the probability of seeing rotamer rotl at a given 

(ϕl, ψl) for an amino acid type, which is directly taken from the Dunbrack 2010 BBDRL21 

without further modification. To evaluate EROT for a native rotamer (see Results), we 

calculate its side-chain dihedrals and check if they are reproduced by the rotamer dihedrals 

taken from the BBDRL. If reproduced, the native rotamer is assigned the probability of the 

library rotamer. If not, a very low probability of 10−7 is assigned to the native rotamer, which 

results in a large positive EROT value. EROT = 0 for rotamers from the Honig BBIRLs 

because no rotamer probability information can be obtained from these libraries.

EvoEF was originally optimized and tested on two large sets of thermodynamic mutation 

data,3 but we found that using this strategy to optimize EvoEF resulted in poor performance 

on de novo sequence design. We therefore reoptimized EvoEF2 for protein design using a 

procedure similar to the one-at-a-time approach used by Rosetta.38 Specifically, the weights 

for each energy term and the 20 reference energies were determined by maximizing the 
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product of e−Emin(AAnat|w)/∑e−Emin(AAi|w) across all of the residues positions on a training set 

of 222 monomers using a gradient descent optimization procedure, where Emin(AAnat|w) 

was the energy of the best rotamer for the native amino acid, AAnat, given the weight set, w, 

Emin(AAi|w) was the energy of the best rotamer for amino acid AAi using the same weight 

set, w, and the partition function was over all 20 amino acids at each position. The 222 

monomers shared <30% sequence identity to any of the 136 test monomers in this work. The 

rotamers were taken from the Dunbrack 2010 BBDRL L3 (see Results)21 or the Honig 

BBIRL L4 (see Results).22 The energies for the rotamers at each position were calculated in 

the context of fixed surrounding residues. The determined weights and reference energies 

were then refined based on the results of complete sequence design for the same training 

proteins to reduce the deviation of the 20 amino acid distributions between the designed 

sequences and the native sequences. Similarly, optimization of the weights for interchain 

interactions was first determined by maximizing the product of e−Emin(AAnat|w)/∑i e
−Emin(AAi|w) over the interface residues positions on a training set of 132 dimers, where the 

weights for the monomeric energy terms and reference energies were fixed. The weights 

were also refined by complete PPI sequence design simulations for the 132 dimers. The 

EvoEF2 energy weights and reference energies for the BBDRLs and BBIRLs are listed in 

Tables S1 and S2, respectively. The source code for EvoEF2 and the SAMC searching 

method (see below) for side-chain prediction and de novo sequence design, as well as the 

benchmark data sets are available free of charge at https://zhanglab.ccmb.med.umich.edu/

EvoEF/.

Protein Sequence Design and Assessment.

We extended the EvoDesign Monte Carlo (MC) pipeline3 to test the ability of EvoEF2 to 

perform protein design. Starting from a random sequence, a SAMC30 procedure was used to 

explore the sequence space for fixed protein backbones, where an MC move consisted of 

exchanging one rotamer for another at a randomly chosen position. All amino acid types 

were considered at each design position and their side-chain conformations were taken from 

any of the rotamer libraries L1–L6. A move was accepted or rejected according to the 

Metropolis rule, where the acceptance probability for an unfavorable energy increase, ΔE, 

was e−ΔE/T. The temperature T was varied from Thigh = 5 to Tlow = 0.01 with a decrease 

factor of 0.8, and three SAMC cycles were performed for the sake of convergence. We did 

not use a protein length-dependent temperature because ΔE did not exhibit strong length 

dependency. The number of MC moves at each temperature was set to 50 000. Because MC-

based methods do not guarantee the global optimum solution, for a given scaffold, we 

performed five independent simulations starting from different random sequences and 

selected the lowest energy sequence as the final design and compared it with the native. The 

SAMC simulation procedure converged well and in almost all cases the sequences obtained 

from different runs shared >85% sequence identity with similar energies, and the designed 

sequences in the core regions were nearly identical.

The ability to produce nativelike sequences is an important metric for a protein design 

algorithm. Therefore, we calculated the sequence identity between each designed sequence 

and its native counterpart and evaluated the native sequence recapitulation rates for all 20 
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amino acid types and residues in all, core and surface regions. To further test the design 

quality, we used I-TASSER32 to examine the foldability of the designed sequences.

Protein Side-Chain Prediction and Assessment.

The protein side-chain prediction procedure was similar to the protein sequence design 

strategy described above. The major difference between the two is that the amino acid types 

were held constant and only the side-chain conformations could change at each position for 

side-chain prediction. Rotamers were taken from libraries L1–L6. We performed five 

independent side-chain prediction trials and reported the average accuracies and standard 

deviations.

The accuracy of side-chain prediction is usually assessed in terms of dihedral angle 

deviations or RMSD values between the predicted and native conformations. Most of the 

time, the two metrics are not consistent with each other, so both were used in this work. 

When analyzing dihedral angle deviations, usually only the χ1 and χ1+2 dihedral angles are 

considered and a dihedral angle is regarded as being predicted correctly if its value is within 

40° of that of the native structure. However, it seems to be relatively easy to achieve a good 

accuracy (>85% for χ1 and >70% for χ1+2 with this loose criteria,1 covering up the 

difficulty of the side-chain prediction problem. Here, we employed the same criteria used to 

analyze side-chain reproduction to examine the side-chain prediction accuracy. Specifically, 

we considered all dihedral angles (χ1 for Cys, Ser, Thr, and Val, χ1+2 for Asp, Phe, His, Ile, 

Leu, Asn, Pro, Trp, and Tyr, χ1+2+3 for Glu, Met, and Gln, χ1+2+3+4 for Lys and Arg) and a 

side-chain was regarded as being predicted correctly if all of its dihedral angle values were 

within 20° of that of the native structure. The calculation of RMSD between the predicted 

and native conformations was also identical to that for the side-chain reproduction analysis 

and the overall RMSDs are reported.

RESULTS

Rotamer Libraries.

The original Dunbrack 2010 BBDRL and two derivatives of it, as well as three detailed 

Honig BBIRLs were used in this study (Table 1). The libraries are denoted with shorter 

codes for enhanced clarity (L1–L6). The original Dunbrack 2010 BBDRL (L1) has 726 939 

rotamers when considering all 1296 10° × 10° ϕ/ψ bins, with on average 561 rotamers per 

bin. Two derivatives were created by removing the rotamers whose probabilities were below 

1% and 3%, as given in the library, and denoted as L2 and L3, respectively. Here, the 

strategy of excluding rarely seen rotamers is similar to refs 33 and 36, where it was reported 

that removal of these rotamers had a negligible effect on protein design accuracy but showed 

much faster speed. L2 and L3 had 260 500 and 157 190 rotamers in total (on average 201 

and 121 per bin), respectively. For the BBDRLs, since each position is indexed into one 10° 

× 10° bin depending on the ϕ/ψ angles at that position, in a protein design problem, the total 

number of rotamers for any give position is about 561, 201, or 121 when using L1, L2, or 

L3, respectively. The three Honig libraries are denoted as L4–L6 and consist of 3222, 7421, 

and 11 810 rotamers, respectively. It is worth noting that the Honig BBIRLs do not contain 

rotamer probabilities or deviations of side-chain dihedral angles as the Dunbrack libraries do 
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because the two classes of libraries were constructed using different approaches and the 

rotamers in the Honig libraries do not always lie at local energy minima.22 In this study, we 

did not expand rotamer libraries L1–L6 by varying the χ1 and χ1+2 dihedral angles as 

reported in some other studies.39–41

Native Side-Chain Reproduction.

The native side-chain reproduction accuracy, in terms of dihedral angle deviation and side-

chain RMSD for the 136 structures, is shown in Figure 1. The BBDRL L3 and BBIRL L6 

showed the lowest and highest reproduction rates for all, core and surface residues, 

respectively, where L4–L6 reproduced almost all of the side-chains (Figure 1a), which is in 

agreement with the statistics by Pupo and Moreno.28 The difference between the 

reproduction rates for the three categories is quite large for libraries L1–L3 but is negligible 

for L4–L6. For each rotamer library, the highest reproduction rates were observed in the 

core, while the lowest were observed at the surface, probably because core residues are more 

constrained and, thus, more easily recapitulated. The original Dunbrack BBDRL, L1, 

reproduced 88.5%, 93.8%, and 83.8% of all, core, and surface residues, respectively, where 

the reproduction rates decreased across all three categories when rotamers whose 

probabilities were <1% (L2) or <3% (L3) were excluded. Using L2, the reproduction rates 

decreased by 1.6% in the core and 4.4% at the surface, while using L3 caused the rates to 

decrease by 5.1% and 10.4% in the core and surface, respectively, suggesting that rare 

rotamers more frequently occur on the surface of proteins. The Honig BBIRLs L4–L6 

showed much higher reproduction rates at the expense of considerably increasing the 

number of rotamers at each position. The largest BBIRL, L6, reproduced 99.4%, 99.8%, and 

99.0% of all, core, and surface residues, respectively, in terms of side-chain dihedral angles.

Having significant dihedral angle deviation does not necessarily imply that there are 

significant differences in spatial geometrical coordinates, since in some cases the individual 

differences in χ angles may compensate for each other, rendering the overall position of the 

calculated side-chains close to the native. Therefore, we also measured the minimum overall 

RMSD that could be achieved between the native geometry and a rotamer from each library. 

As shown in Figure 1b, the BBIRLs L4-L6 reproduced the side-chain geometrical 

coordinates much better than BBDRLs L1-L3 with lower RMSDs. For example, the 

minimum side-chain RMSDs obtained by L6 were less than half those achieved by L1.

To check whether the above statistics were biased due to the relatively small number of 

structures tested (136 proteins), we tested the side-chain reproduction performance of each 

library using another larger set of 3719 structures, where the results are presented in Figure 

S1. Similar results were obtained in terms of both χ angle deviation and RMSD, suggesting 

the statistics for the 136 proteins are representative. Therefore, we conclude that the selected 

BBIRLs (L4–L6) are more complete than the BBDRLs (L1–L3) for native side-chain 

reproduction.

Protein Side-Chain Prediction.

The reproduction rate by a rotamer library can be regarded as the maximum accuracy level 

achievable by a PSCP algorithm using an identical library, due to the fact that identical 
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criteria is used to evaluate side-chain reproduction and prediction in this work. For instance, 

the maximum level of dihedral angle recovery should be ≤88.5%, 93.8%, and 83.8% for all, 

core, and surface residues, respectively, when library L1 is used. Meanwhile, the overall 

RMSD between the packed structures and native should be ≥0.53, 0.48, and 0.57 Å for all, 

core, and surface residues, respectively. It is desirable to approach these limits for a side-

chain prediction task. To the best of our knowledge, we are the first to use both the strict 

criterion of 20° and consider the recovery of all side-chain dihedral angles at the same time. 

To know where our method stands, as a comparison, we performed side-chain prediction 

using three state-of-the-art programs, SCWRL4,14 CISRR,15 and RASP,17 which were 

specifically developed for this task; all of them use library L1 for PSCP.

The prediction accuracy in terms of dihedral angle recovery and side-chain RMSD are 

summarized in Table 2. Overall, the performance of SCWRL4, CISRR, and RASP are 

comparable; SCWRL4 achieved the highest overall χ angle recovery rate of 62.3%, while in 

the core CISRR performed the best with a recovery rate of 81.4%. It can be seen that the two 

metrics are not always consistent as mentioned above (Table 2), i.e., the highest χ angle 

recovery rate does not always correspond to the lowest RMSD. Among the three programs, 

CISRR achieved the lowest RMSDs for all, core and surface residues. With a stricter 

criterion of 20° and all χ angles considered, the overall dihedral angle recovery rates 

obtained here are much lower than those reported in literature,14,15,17 where a loose criterion 

of 40° and only χ1 and χ1+2 were considered. A huge gap exists between the overall 

dihedral angle recovery rates (61.1–62.3%) and the maximum achievable reproduction rate 

(88.5%) using library L1. Similarly, the lowest overall RMSDs obtained by CISRR were 

much higher than the best reproduced RMSDs by L1 (e.g., 1.68 vs 0.53 Å for all residues, 

0.91 vs 0.48 Å for core residues and 2.15 vs 0.57 Å for surface residues). It seems that the 

difficulty of the side-chain prediction problem has been underestimated using loose criteria 

for success. The current state-of-the-art PSCP programs are in general good but not perfect.1

The side-chain prediction performances using libraries L1–L3 were significantly better than 

those obtained using L4–L6, with much higher dihedral angle recovery rates and lower 

RMSDs (Table 2), although L4–L6 showed much higher completeness (Figure 1). For 

example. The worst BBDRL, L3, achieved an overall dihedral angle recovery rate of 58.5% 

and an RMSD of 1.76 Å, while the best BBIRL, L5, obtained a dihedral angle recovery rate 

of 37.8% and an RMSD of 1.82 Å. L1 yielded the best performance among the BBDRLs, 

while L5 performed the best among the BBIRLs, suggesting it is necessary to include the 

rare rotamers to achieve better accuracy. The best side-chain prediction accuracy for 

EvoEF2, in terms of dihedral angle recovery rates, was achieved by employing library L1, 

where 60.0%, 79.1%, and 44.2% of all, core, and surface residue side-chains were 

recapitulated. These values were quite comparable to those achieved by SCWRL4, CISRR, 

and RASP (Table 2) and, in fact, EvoEF2 obtained even lower overall side-chain RMSDs 

than the other three state-of-the-art methods (e.g., EvoEF2: 1.66 Å, CISRR: 1.68 Å, 

SCWRL4: 1.70 Å, and RASP: 1.72 Å), suggesting that EvoEF2 captures the overall PSCP 

geometries slightly better than them. It is worth pointing out that EvoEF2 was optimized for 

sequence design rather than side-chain prediction, as the other programs were, but our 

results demonstrate that EvoEF2 is generally applicable to side-chain prediction.
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Native Sequence Recapitulation.

Native sequence recapitulation is an important metric for evaluating the performance of 

protein design algorithms.33,36,38,40–44 We used EvoEF2 to perform de novo sequence 

design simulations on the 136 selected proteins using rotamer libraries L1–L6 and compared 

the sequence design performance for each library. The native sequence recapitulation results 

are described in Figure 2a. Remarkably, a high percentage (>27%) of all residues were 

identical to the amino acids in the corresponding positions in the native sequences for 

libraries L1–L6, which is quite comparable to or even better than the performance achieved 

by some other programs for de novo sequence design.36,45–47 However, all of these 

algorithms use more informative BBDRLs, and to our knowledge, this work is the first to 

report the ability to recapitulate the native sequences to such a high extent using both 

BBDRLs and BBIRLs, supporting the accuracy of our energy function and protein design 

method.

The BBDRLs outperformed BBIRLs by recapitulating more naturally occurring residues. 

The highest overall sequence recovery rates were achieved by library L1, followed by L2 

and L3 (Figure 2a). Using L1, EvoEF2 recapitulated 34.2%, 48.5%, and 24.8% of all, core, 

and surface residues, respectively, which is comparable to the state-of-the-art protein design 

software, Rosetta,40 when subrotamers are not included. We also evaluated the sequence 

identity between the designed and native sequences (Table S3), which is a different metric 

than the sequence recapitulation rate. The statistical distribution of sequence identities by 

libraries L1–L6 are illustrated in Figure 2b. The median sequence identity was close to the 

native sequence recapitulation rate for all residues (e.g., the median sequence identity for L1 

was 34.8%), and the distribution of sequence identities by L1–L3 was quite similar. With 

respect to the BBIRLs, L5 yielded the highest native sequence recapitulation rates by 

recovering 28.7%, 39.0%, and 22.9% of all, core, and surface residues, respectively, with a 

median sequence identity of 29.0%.

Foldability Assessment of the Designed Sequences.

Protein design aims to create new protein molecules that adopt specific folds and perform 

desired biological functions. Therefore, it is important to examine to what extent a designed 

sequence can fold into the scaffold structure on which the design was performed. High 

native sequence similarity does not necessarily guarantee the designs are of high quality. To 

further examine the design quality, we used the state-of-the-art protein structure prediction 

suite, I-TASSER,32 to test the foldability of the designed sequences and to examine how 

close the predicted models were to the native scaffolds. The sequences designed using 

libraries L1–L6 with the lowest EvoEF2 predicted free energies were modeled by I-TASSER 

in order to assess their foldability. A test protein was defined as foldable if the designed 

sequence was predicted to fold into a structure with a TM-score48 to the native scaffold 

structure greater than a specified threshold, where a TM-score >0.5 indicates that two 

structures share a similar fold topology.49 Alternatively, RMSD was also used to calculate 

the similarity between two structures, and generally, two structures share a similar fold when 

the RMSD is <4 Å.47 The TM-scores and RMSDs between the 136 predicted and native 

proteins for libraries L1–L6 are listed in Tables S4 and S5, respectively. The TM-scores and 
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RMSDs as a function of sequence identity between the designed and native sequences are 

illustrated in Figures S2 and S3, respectively.

We used three TM-score thresholds, >0.5, >0.7, and >0.9 and three RMSD cutoffs, <4, <2, 

and <1 Å for the foldability assessment, where the results are summarized in Table 3. 

Generally, more than 96% of the proteins designed using libraries L1–L6 were predicted to 

fold into structures with TM-scores >0.5 or, alternatively, RMSDs < 4 Å to their native 

counterparts, thereby suggesting that all of the tested libraries are reasonably good for 

sequence design. Nevertheless, on average, higher percentages of proteins designed using 

BBDRLs were predicted to be foldable, and this became more evident when using stricter 

RMSD thresholds. For example, when we set the RMSD threshold to <2 Å, which is a 

reasonable upper bound for regarding protein design as successful,50,51 94.1%, 93.4%, 

94.1%, 86.0%, 90.4%, and 91.9% of the designs using libraries L1–L6 passed this criterion, 

respectively. Moreover, about 20% less of the designs were predicted to fold into structures 

within 1 Å of their corresponding native scaffold on which design was performed. 

According to the I-TASSER assessment results, BBDRLs are better at producing foldable 

designs than BBIRLs. It is worth noting that different protein structure prediction packages 

have different search algorithms and energy functions,52–55 which may lead to discrepancies 

in terms of foldability assessment. One important reason for using I-TASSER in this study is 

that the designed sequences shared very high sequence identities to their native counterparts 

and, therefore, template-based structure modeling from methods such as I-TASSER should 

be relevant for such assessments.

Computational Time.

The trade-off between accuracy and speed should be considered for PSCP. When not using 

the native conformer, the best side-chain prediction and de novo sequence design accuracy 

was obtained by L1 for the BBDRLs and L5 for the BBIRLs. In general, the larger the 

rotamer library is, the longer time it takes to perform PSCP. The computational time 

required to perform side-chain prediction and de novo sequence design on the 136 proteins 

using libraries L1–L6 is presented in Figure 3; each structure was repacked and completely 

designed using a single 2.50 GHz Intel Xeon CPU on the Extreme Science and Engineering 

Discovery Environment (XSEDE) cluster.56

The median time required for side-chain prediction using L1–L3 were 0.9, 0.6, and 0.4 min, 

respectively, which were all much shorter than the time consumed by L4–L6 for the same 

task (Figure 3a). Although it is very efficient for EvoEF2 to repack the residue side-chains of 

a structure using L1–L3, it is still much slower than SCWRL4, CISRR, and RASP, which 

were specifically designed for this task. The most efficient method, RASP, can finish 

repacking each of the 136 structures within one second, while still yielding quite reasonable 

results. These packing programs use very simple energy functions and efficient heuristic 

optimization strategies to search for good solutions instead of exhaustively probing the 

global energy minimum using a global optimization technique like SAMC. With respect to 

de novo sequence design, the median times used to completely design the 136 structures 

were 13.8, 7.5, and 5.1 min using BBDRLs L1, L2, and L3, respectively, which were all 

much shorter than the times required to perform sequence design using BBIRLs L4–L6 
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(Figure 3b). Additionally, the SAMC optimization method used here is much faster than 

deterministic searching algorithms (e.g., dead-end elimination7 and mixed-integer linear 

programming26) for protein design. In short, when using EvoEF2, BBDRLs are more 

advantageous than BBIRLs for efficient and effective side-chain prediction and protein 

design.

Advantage of Using Rotamer Probabilities from BBDRLs.

From the above results, we can see that the BBDRLs considerably outperformed the 

BBIRLs in both side-chain prediction and de novo sequence design with shorter 

computational time following the same computational procedure. We note that a big 

difference between the BBDRLs and the detailed BBIRLs is that the BBDRLs provide 

rotamer probabilities as well as the rotamer dihedral angle values. In the side-chain 

prediction and sequence design experiments with BBDRLs, an energy term (i.e., EROT in 

EvoEF2) derived from rotamer probabilities was utilized and the weight of this term was a 

nonzero value, suggesting rotamer probabilities are important for these experiments. To 

check the impact of rotamer probability, we also performed side-chain prediction and 

sequence design for the 136 structures using libraries L1–L3 by disabling the EROT term, 

and the results are shown in Table 4 and Figure 4, respectively. The sequence identities 

between the native and designed sequences achieved using L1–L3 with EROT disabled are 

listed in Table S6. For all three BBDRLs L1–L3, the side-chain prediction performance was 

worse when the rotamer probability term was disabled in terms of both the dihedral angle 

recovery rate and overall side-chain RMSD (Tables 2 and 4), suggesting that the rotamer 

probability term is important to identify the correct conformations that are close to native. 

The impact on prediction performance was greater by removal of EROT for a larger library 

(e.g., L1), partly because a larger rotamer library may result in higher difficulty 

discriminating correct from incorrect conformations.

In terms of dihedral angle recovery rate, L1 performed the worst without EROT (Table 4), 

while it yielded the best performance when this term was considered (Table 2). From Table 

4, L1 obtained the lowest RMSD for the core residues but the highest RMSD for the surface 

residues, while in Table 2, L1 consistently outperformed L2 and L3 by achieving lower 

RMSDs for residues in all three categories. Bear in mind that libraries L2 and L3 are subsets 

of L1 with less rotamers, thus all the conformations in L2 and L3 are also included in L1, 

but L1 has some rare rotamer conformations that are excluded from L2 and L3. Due to the 

removal of EROT, all rotamers in the libraries were considered equally probable, and thus, 

whether or not a rotamer was chosen at a position was completely determined by the 

physical interactions between the rotamer and its surrounding context. Since core residues 

are more constrained and have more contacts with spatially adjacent residues than surface 

residues, the rotamer conformations of core residues are easier to correctly position based on 

the physical interactions with one another. In this situation, the library with more abundant 

rotamers (e.g., L1) yielded lower RMSDs and this explanation can also be partly 

demonstrated by the side-chain prediction results directly using BBIRLs L4—L6. On the 

other hand, surface residues, which are more exposed to the bulk solvent, have fewer 

contacts with other residues and their conformations are not easily determined by the 

physical energy alone because the solvent molecules are not explicitly modeled in the energy 
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function. In this situation, the near-native conformations were not well identified and usually 

much higher overall RMSDs were obtained for surface residues whether or not EROT was 

considered (Tables 2 and 4). Another interesting finding is that, compared with libraries L4

—L6, the predicted side-chain RMSDs obtained using L1—L3 by removal of EROT were 

quite comparable to those achieved using libraries L4—L6 (Tables 2 and 4).

For protein sequence design, the performance of recapitulating native residues also became 

much worse using libraries L1—L3 when the rotamer probability term was disabled (Figures 

2 and 4). For example, the best performance achieved by L3 with EROT disabled, resulted in 

27.6%, 40.0%, and 20.2% of all, core, and surface residues being predicted to be identical to 

the naturally occurring amino acids at the same design positions. But when EROT was 

included, using library L3, the native sequence recapitulation rates for all, core, and surface 

residues were 33.6%, 47.1%, and 24.7%, respectively. These results emphasize that the 

energy term derived from rotamer probabilities also plays a significant role in distinguishing 

amino acid identities for protein sequence design as well as discriminating different rotamer 

conformations of an amino acid for protein side-chain prediction.

Limitations of Current Rotamer Libraries.

A huge gap exists between the real side-chain prediction performance achieved and the 

maximum accuracy level attainable. It has been argued that energy functions are the main 

obstacle to achieving better accuracy.1 From a different perspective, we show that rotamer 

libraries have significant influence on the PSCP accuracy (Table 2 and Figure 2). Can we 

continue improving the PSCP accuracy if we have a better rotamer library? To answer this 

question, we repeated the side-chain prediction and sequence design experiments using 

libraries L1—L6 but added the native conformer at each position, where the results are 

presented in Table 5 and Figure 5, respectively. The sequence identities between the native 

and designed sequences using experimental rotamers is listed in Table S7.

Remarkably, the side-chain prediction and native sequence recapitulation performance 

drastically improved when the native conformers were included. For example, using the 

BBDRL L1, the dihedral angle recovery rate for side-chain prediction improved from 60.0% 

to 72.6% for all residues. Similarly, the native sequence recapitulation rate for all residues 

improved from 34.2% to 58.2%, which is the highest native sequence recapitulation rate 

reported to date. Similarly, using the BBIRL L4, the dihedral angle recovery rate for side-

chain prediction improved from 34.4% to 45.7% for all residues, while the native sequence 

recapitulation rate for all residues improved from 27.2% to 31.8%.

These results demonstrate that the current rotamer libraries are still limited, as the 

introduction of native rotamers significantly improved the performance. This can be 

explained by the fact that non-negligible side-chain deviations were observed between 

rotamers from libraries and the native conformers (Figure 1). Moreover, in many protein 

design studies,33,40 better results were achieved by varying the χ1 and χ1+2 dihedral angles, 

suggesting the original rotamer libraries were not perfect. Unlike the experiments without 

native conformers, where better performance was achieved with larger rotamer libraries 

(e.g., L1 for the BBDRLs and L5 for the BBIRLs), the best performance was obtained using 
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the smallest libraries (e.g., L3 for the BBDRLs and L4 for the BBIRLs) when the native 

conformers were added.

DISCUSSION

A rotamer library is one of the three key components of the PSCP problem, which is of great 

significance in computational and structural biology. Many rotamer libraries have been 

developed for PSCP applications in protein structure prediction and protein design.7,18–22 

Generally good results have been reported using each of these rotamer libraries.
3,14,15,17,40,41 This raises the question of which rotamer library yields the best PSCP 

performance. Additionally, since there is a trade-off between accuracy and speed, which 

rotamer library should be chosen for effective and efficient PSCP? Although Dunbrack 

suggested using BBDRLs for protein structure prediction and protein design rather than 

BBIRLs,29 there was no quantitative support demonstrating that BBDRLs outperform 

BBIRLs. Moreover, the statistical analysis by Pupo and Moreno28 showed that only the 

high-resolution Honig BBIRLs could reproduce the experimental geometries for most of the 

peptidic ligands and the atomic interactions between the peptidic ligands and their receptors. 

Therefore, up until this point, it seemed that it may be more advantageous to use the detailed 

BBIRLs.

To answer the above questions, we systematically assessed and compared six rotamer 

libraries in four aspects. In the side-chain reproduction assessment, we found that the 

detailed Honig BBIRLs considerably outperformed the Dunbrack 2010 BBDRLs by 

reproducing higher percentages of side-chain dihedral angles using a strict criterion of 20° 

and achieving lower side-chain RMSDs, suggesting that the BBIRLs are more complete and 

show broader coverage. This is probably because the Honig BBIRLs were derived to use a 

small portion of a complete rotamer library to represent a large fraction of the native side-

chain conformations that were observed in a set of proteins;22 the approach of creating these 

BBIRLs is more relevant to the side-chain reproduction task than the method to build 

BBDRLs by conformational clustering.14 In the side-chain prediction and de novo sequence 

design tests, which are more important for real applications, the BBDRLs considerably 

outperformed the BBIRLs by recovering more side-chain conformations with better 

geometries and recapitulating more native residue identities. The independent foldability 

assessment by I-TASSER32 also suggests that BBDRLs show a better ability to produce 

proteins that can fold into the same structure as their native counterparts. Moreover, it takes 

much less time to perform PSCP studies using BBDRLs than BBIRLs. Therefore, it seems 

that the BBIRLs are only better for side-chain reproduction statistics but not as good as 

BBDRLs for real side-chain prediction and protein design applications.

This raises the question of why the broader coverage of BBIRLs does not benefit the side-

chain prediction and de novo sequence design tasks. A major difference between BBIRLs 

and BBDRLs is that the rotamer probability information is not considered in BBIRLs 

because of the different strategies used for library construction and the existence of high-

energy rotamers,22 which may be physically unfavorable.29 Moreover, the detailed BBIRLs 

are very likely to be highly redundant as they include a large number of geometrically 

similar conformations. The high redundancy and large sizes of BBIRLs can result in great 
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difficulty when it comes to discriminating near-native rotamers from non-native rotamers at 

a given position, as demonstrated by the decrease in performance when using the larger 

library L6 as opposed to L5. Therefore, the quality of the BBIRLs may not be as good as the 

Dunbrack BBDRLs, even though they include more rotamers for any given position in a 

protein. When the native conformers were added to libraries L1—L6, where all libraries had 

identical and complete side-chain coverage but different sizes, the performance of each 

library on side-chain prediction and protein design improved remarkably, where the best 

performance was achieved using the smallest BBDRL L3 and BBIRL L4. This finding 

implies that the current libraries tested are limited and confirms that large library sizes can 

increase the difficulty identifying native conformations and may weaken their performance.

CONCLUSION

Our quantitative benchmark results demonstrate that, for real applications like side-chain 

prediction and de novo protein sequence design, the Dunbrack 2010 BBDRLs significantly 

outperform the Honig BBIRLs with better prediction performance as well as faster speed, 

and specifically, compared with the best BBIRL, the overall side-chain dihedral angle 

prediction rate and native sequence recapitulation rate improve by more than 20% and 5%, 

respectively, using the best BBDRL. The advantage of using a BBDRL is largely due to the 

introduction of an energy term derived from the rotamer probabilities given in the library. 

Therefore, at present, we suggest using the Dunbrack BBDRL for a PSCP task, and in 

practice, this library has been found very useful for protein structure modeling. Nevertheless, 

we also report that the current state-of-the-art Dunbrack 2010 BBDRL is still limited 

because many native-like conformations are missing from the library and introduction of 

these conformations can improve the side-chain dihedral angle recovery rate and native 

sequence recapitulation rate by more than 10% and 20%, respectively. With the rapidly 

increasing number of experimental protein structures, it may be necessary to build new 

BBDRLs by clustering the side-chain conformations from a larger set of elaborated 

structures.
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ABBREVIATIONS

PSCP protein side-chain packing

RMSD root-mean-square-deviation
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BBDRL backbone-dependent rotamer library

BBIRL backbone-independent rotamer library

MC Monte Carlo

SAMC simulated annealing Monte Carlo
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Figure 1. 
Dihedral angle (χ1–4) reproduction rates (a) and the minimal side-chain RMSD achievable 

(b) using rotamer libraries L1—L6 on 136 proteins.
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Figure 2. 
Native sequence recapitulation (a) on 136 proteins and the distribution of sequence identities 

(b) between the native and designed sequences obtained using rotamer libraries L1—L6.
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Figure 3. 
Average CPU time for side-chain prediction (a) and de novo sequence design (b) on 136 

proteins.
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Figure 4. 
Native sequence recapitulation (a) on 136 proteins and the distribution of sequence identities 

(b) between the native and designed sequences obtained using rotamer libraries L1—L3 

when the rotamer probability term (EROT) was disabled.
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Figure 5. 
Native sequence recapitulation (a) on 136 proteins and the average sequence identity (b) 

between the native and designed sequences achieved by adding native conformers to rotamer 

libraries L1—L6.
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Table 1.

Overview of the Six Rotamer Libraries Used in This Work

rotamer library number of rotamers refs

L1: Dunbrack2010BBdep 726939 (561 per bin) Shapovalov and Dunbrack21

L2: Dunbrack2010BBdep1per 260500 (201 per bin) Shapovalov and Dunbrack21

L3: Dunbrack2010BBdep3per 157190 (121 per bin) Shapovalov and Dunbrack21

L4: Honig3222 3222 Xiang and Honig22

L5: Honig7421 7421 Xiang and Honig22

L6: Honig11810 11810 Xiang and Honig22
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Table 3.

Percentage of Designed Sequences That Were Predicted to Fold within the Given TM-Score and RMSD 

Thresholds Using Rotamer Libraries L1—L6
a

Success Rate (%)

TM-score RMSD

library >0.5 >0.7 >0.9 <4 Å <2 Å <1 Å

L1 100.0 98.5 89.7 98.5 94.1 74.3

L2   98.5 98.5 89.0 98.5 93.4 73.5

L3 100.0 98.5 91.1 99.3 94.1 72.8

L4   98.5 95.6 86.0 96.3 86.0 66.9

L5   98.5 97.8 89.0 96.3 90.4 72.1

L6   98.5 97.1 89.0 97.1 91.9 69.1

a
The best performance in each column is shown in bold.
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