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SUMMARY

Connectivity webs mediate the unique biology of the mammalian brain. Yet while cell circuit 

maps are increasingly available, knowledge of their underlying molecular networks remains 

limited. Here we applied multi-dimensional biochemical fractionation with mass spectrometry and 

machine learning to survey endogenous macromolecules across the adult mouse brain. We defined 

a global ‘interactome’ comprised of over one thousand multi-protein complexes. These include 

hundreds of brain-selective assemblies that have distinct physical and functional attributes, show 

regional and cell-type specificity, and have links to core neurological processes and disorders. 

Using reciprocal pulldowns and a transgenic model, we validated a putative 28-member RNA-

binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated 

function in alternative splicing in disease progression. This Brain Interaction Map (BraInMap) 

resource facilitates mechanistic exploration of the unique molecular machinery driving core 

cellular processes of the central nervous system. It is publicly available and can be explored here 

https://www.bu.edu/dbin/cnsb/mousebrain/.

Graphical Abstract
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eTOC Blurb

In this ground-breaking work, Pourhaghighi et al. have carried out a survey of over one thousand 

multi-protein complex interactions in the mouse brain using a platform they have named 

BraInMap (for Brain Interaction Map). This approach uses computer learning to reconstruct 

protein interactions from brain tissues that have been extensively purified. This important resource 

will allow neuroscientists to explore important neurobiological questions and identify pathways 

that are adversely affected in disease.

INTRODUCTION

The mammalian brain consists of intricate physical and functional protein interaction 

networks whose compositions are largely uncharacterized. These circuits support essential 

functions of a vast interconnected array of neurons, glial, oligodendrocytes and other cell 

types (Elmer and McAllister, 2012; Grant and O’Dell, 2001; Migaud et al., 1998; Sherman 

and Brophy, 2005; Slepnev and De Camilli, 2000; Small and Petsko, 2015; Zhu et al., 2016). 

Proper synaptic formation and activity resulting from these networks is essential for core 

brain functions, such as neurotransmission, synaptic plasticity, and memory. These 

molecular circuits are perturbed in neurological syndromes by genetic variants and 

environmental factors, resulting in behavioral, cognitive and neurodegenerative impairments. 

For example, abnormal protein-protein interactions among tau and α-synuclein lead to 

pathological accumulation preceding neurodegeneration (Forman et al., 2004; Ross and 
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Poirier, 2004; Vanderweyde et al., 2016). Disease-causing disruptions in macromolecular 

assemblies have also been documented in amyotrophic lateral sclerosis (ALS) and 

Frontotemporal Dementia (FTD) (Dormann et al., 2010) as well as Parkinson’s disease (PD) 

(Carrion et al., 2017; Malty et al., 2017). Hence, mapping the global physical cartography of 

brain protein interaction networks is essential to understanding normal neuronal functions, 

the causal mechanisms driving disease, and for discovery of new targets as a basis for more 

effective and selective clinical therapies. Whereas large-scale physical interaction maps have 

been reported for transformed human cell lines (Havugimana et al., 2012; Hein et al., 2015; 

Huttlin et al., 2017; Wan et al., 2015), to our knowledge, no direct large-scale experimental 

study of the mammalian brain regional protein circuity, or ‘interactome’, has ever been 

reported, thwarting clinically actionable mechanistic understanding of neuronal processes 

and dysfunction.

To fill this gap, we systematically isolated and characterize endogenous protein assemblies 

on a global scale from mammalian brain lysates. Given its experimental tractability, 

widespread use in the neurobiology field, and the short post-mortem intervals enabled by 

animal studies, we opted to study mouse as a model. Multi-protein complexes were 

biochemically resolved and their cognate components identified by mass spectrometry based 

on their reproducible co-fractionation over orthogonal separations. Using an integrative co-

complex scoring pipeline, we then generated a high-resolution survey, termed the BraInMap, 

representing the largest experiment-based protein interaction network for the central nervous 

system (CNS) to date and to the best of our knowledge. BraInMap comprises hundreds of 

putative macromolecular assemblies, most of which are conserved in human and expressed 

in a regional and cell-type specific manner.

To illustrate the utility of BraInMap, we explore the functional and biophysical properties of 

brain-specific assemblies with significant associations to core neurological functions and 

disorders in humans. We provide evidence that disease-associated processes and genetic 

variants disrupt the physical interfaces between components of neuronal protein assemblages 

critical for normal brain physiological homeostasis, suggesting a common causal basis for 

diverse neuropathies. Particularly prevalent were assemblies enriched for RNA-binding 

proteins (RBPs) whose physical associations are fundamentally linked to the etiology and 

pathogenesis of progressive neurological disorders such as Alzheimer’s disease (AD), ALS 

and FTD. While toxic gain-of-function and loss-of-function mutations in certain RBPs have 

previously been reported to elicit deleterious effects on splicing and RNA homeostasis 

(Arnold et al., 2013; Fratta et al., 2018), BraInMap describes their normal physical 

interactions in healthy adult brain, and therefore serves as a useful resource to bridge the gap 

between macro-level cell-cell connectivity studies, neuronal cell biology and 

epidemiological genetics, opening up new research avenues in molecular systems 

neuroscience.
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RESULTS

Biochemical fractionation and precision mass spectrometry reveals brain selective protein 
assemblies

As illustrated schematically in Figure 1A, soluble protein extracts were prepared from 

homogenized adult whole brain CD1 mice using gentle isolation procedures (STAR 

Methods). The lysates were subject to extensive non-denaturing biochemical fractionation 

followed by mass spectrometry to identify and quantify stably associated proteins 

reproducibly co-eluting together. To maximize resolution and coverage, we deployed 

multiple orthogonal workflows to separate native macromolecules from functionally 

unrelated constituents (i.e., to mitigate ‘chance’ co-elution). This included two-dimensional 

separations combining isoelectric focusing (IEF) with mixed-bed ion exchange high 

performance liquid chromatography (IEX-HPLC). In parallel, we performed repeat IEX-

HPLC-based separations using alternate chromatography procedures to selectively enrich for 

cytoskeletal, nuclear, membrane-bound and synaptic protein assemblies (STAR Methods).

Altogether, 550 biochemical fractions were collected in total across nine different 

fractionation experiments, which included replicate runs as a test for reproducibility. After 

trypsinization, each fraction was analyzed by nanoflow liquid chromatography coupled to 

quantitative (Orbitrap) mass spectrometry. The spectra were subject to stringent database 

searching and filtering (false discovery rate <1% at both the peptide- and protein-level) 

using multiple search algorithms, which on integration (STAR Methods) resulted in 8,389 

high-confidence protein identifications (Table S1). Hierarchical clustering of the recorded 

protein profiles, covering two-thirds (5505 of 9121) of previously reported mouse brain 

tissue annotations (The UniProt Consortium, 2017), demonstrated the characteristic elution 

patterns of both neuronal and ubiquitous (housekeeping) protein assemblies (Figure 1B). In 

comparison to previously reported large-scale interactome studies of cultured cell lines 

(Havugimana et al., 2012; Huttlin et al., 2017; Wan et al., 2015), BraInMap was significantly 

enriched for annotated proteins known to be selectively expressed in mammalian cortex 

(FDR = 7.2 x 10−56), brain (FDR = 1.34 x 10−41) and other brain regions relative to other 

mouse tissues (Figure 1C; Table S6).

Scoring high-confidence co-complex associations

We devised a quantitation-based computational pipeline to tally the likelihood of co-

complex interactions based on the pairwise similarity of the measured protein co-elution 

patterns. The premise is that stably associated components (subunits) of a multi-protein 

complex exhibit correlated profiles (i.e., components reproducibly co-purify together). 

Proteomic precursor ion (MS1) intensity profiles across all the fractions were acquired using 

both MaxQuant (CORE) and 3 additional search engines (X!Tandem, MSGF+, Comet) 

(EXPANDED) to derive preliminary protein co-complex associations. We calculated five 

established similarity measures (APEX, Jaccard, Bayes, Euclidean Distance, Mutual 

Information; see STAR Methods) that evaluate different features recorded in each 

experimental profile separately.
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In a subsequent step (Figure 1D), protein pairs from both the CORE and EXPANDED 

datasets showing high similarity were input into a supervised machine-learning model 

(random forest classifier; STAR Methods). Two models were trained to predict high 

confidence co-complex associations based on the co-fractionation patterns we observed 

alone, or together with other publicly available supporting functional association evidence, 

with reference to curated ‘gold standard’ brain associated mammalian macromolecules 

(Table S2). Positive examples were obtained from public curated databases – namely 

CORUM (Ruepp et al., 2010), IntAct (Orchard et al., 2014), Gene Ontology (Ashburner et 

al., 2000), while negatives were created from randomized combinations of components 

assigned to distinct clusters. To minimize classifier bias, known mouse exemplars were 

supplemented with annotated human protein assemblies based on strict one-to-one orthology 

projections (InParanoid) (Sonnhammer and Ostlund, 2015). Moreover, complexes in the 

training set sharing a majority of subunits were merged (fractional overlap >0.8), while those 

with more than 50 members (e.g. ribosome) were excluded.

High concordance was evident when comparing both sets of co-fractionation patterns to 

probabilistic functional associations previously predicted based on protein domain co-

occurrence, co-expression and co-citation in both mouse (MouseNet v2 database) (Kim et 

al., 2016) (Figure 1E) and human (HumanNet v2) (Hwang et al., 2019) (Figure 1F; 

conversion of human to mouse identifiers was done through one-to-one orthology mapping 

via InParanoid (Sonnhammer and Ostlund, 2015) and wherever applicable human orthologs 

of mouse proteins are named using uppercase letters e.g. the human ortholog of mouse 

protein Tdp-43 is referred to as TDP-43. These observations establish the broad 

physiological relevance of our initial interactome data.

The trained classifiers were then used to generate probabilistic co-complex relationships 

from both the CORE and EXPANDED datasets (STAR Methods). We evaluated all possible 

feature combinations to optimize precision and recall. The models were merged (average) 

into a single final high confidence protein-protein interaction (PPI) network, the BraInMap, 

consisting of 27,043 co-complex interactions (Table S3). We benchmarked the model 

prediction performance (precision and recall) by two-fold cross validation, using a fully 

independent set (i.e. exclusive of the training set) of manually curated complexes (from 

CORUM) for evaluation. These tests established a stringent False Discovery rate (FDR) of 

11% with a precision-recall area-under-the-curve AUC of 0.92 (Figure 2A).

We portioned the integrated network using the ClusterONE (Nepusz et al., 2012) clustering 

algorithm which revealed 1030 putative brain protein assemblies (Table S4). Based on their 

degree of connectivity and the initial source network from which a particular subunit within 

a given assembly was derived, each complex can be deconstructed into a ‘core’ and 

‘extended’ set of interacting components (Figure S1A). To rigorously evaluate classifier 

performance at the protein complex level (rather than PPI as before), we calculated three 

stringent evaluation metrics (maximum matching ratio, accuracy, overlap score) (Nepusz et 

al., 2012) and combined the results into a single summary ‘composite’ quality score (F-

measure) (STAR Methods).
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As seen in Figure 2B, complexes based on our brain co-fractionation data alone (i.e. built 

without external data) produced a comparable or higher total composite score than other 

recently reported cell line-based interactomes, establishing the overall reliability of our 

scoring pipeline. We boosted classifier performance further by incorporating additional 

supporting functional association evidence (see STAR Methods) from MouseNet (Kim et al., 

2016) and other public sources. We emphasize that the external data was used primarily as a 

filter to reinforce the primary findings of our proteomics data and that none (zero) of the 

protein assemblies in BraInMap are based solely on external sources (all macromolecular 

complexes are derived from replicate co-fractionation data).

To establish the degree of agreement with previously known complexes, we systematically 

examined the overlap of BraInMap complexes with annotated assemblies using multiple 

similarity metrics (Figure S1B). Of the 6 metrics tested, we settled on average matching 

index (AMI) and hypergeometric score as the most inclusive and stringent criteria to define 

macromolecules not reported in public databases (Figure S1C). We calculated the AMI as 

the average fraction of subunits matched between a known and predicted complex (STAR 

Methods).

As shown in Figure 2C & D, just over half (638, or 62%) of our complexes overlapped (AMI 

≥ 0.25, hypergeometric p-value ≤ 0.05) significantly with one or more previously reported 

complexes (Havugimana et al., 2012; Huttlin et al., 2017; Ruepp et al., 2010; Wan et al., 

2015); of these, 146 were considered as fully annotated (AMI ≥ 0.5) while the others (492) 

were deemed to have additional subunits not previously reported. Using this rigorous 

definition, the remaining (392) complexes appear to be reported here for the first time (Table 

S4). Consistent with the source tissue, over half (57%) of all the assemblies recovered by our 

survey consisted predominantly (≥50%) of components annotated as neuronal according to 

the Gene Ontology (STAR Methods), whereas only 33 assemblies (3%) lacked neuronal 

constituents (Figure 2E).

Brain complexes exhibit recent evolutionary adaptations that extend to human

To assess the human physiological relevance of BraInMap, we compared the underlying co-

complex interactions against a fully independent curated public database of high quality 

human PPI (‘InWeb’, pooled from the InWeb3 and InWeb_IM resources) (Lage et al., 2007; 

Li et al., 2017) and found an overall agreement of 64% (Figure 2F). Consistent with this 

high apparent conservation, our own independent validation experiments showed that human 

orthologs of putatively interacting mouse components also tend to co-elute together (i.e., 

have correlated co-elution profiles) in independent chromatographic fractionation 

experiments performed on protein extracts from cultured human neuroblastoma SH-SY5Y 

cells (Figure 2G; Table S5). Likewise, human orthologs of BraInMap components strikingly 

showed higher correlated co-fitness profiles upon mRNA knockdown in human cell culture 

(Pan et al., 2018) as compared to random target pairs (Figure 2H), implying functional 

conservation of these complexes in human brain as well. Further support for the apparent 

conserved roles of these putative complexes in the CNS was demonstrated by the 

observation that these same orthologs are highly expressed during human brain development 
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(embryogenesis through adulthood; Figure 2I) based on messenger RNA expression data 

obtained from the BrainSpan Atlas (Miller et al., 2014).

We examined the domain architecture of brain specific assemblies by assessing their 

corresponding Pfam A domain and family assignments (STAR Methods). By definition, 

domains are highly conserved sequence patterns that are presumed to represent independent 

folding units, while domain pairs in multi-domain proteins represent combinations of units 

operating in tandem (Cromar et al., 2016). In general, while rarely in the majority, brain 

specific protein domains and domain pairs were found to occur widely across the BraInMap 

(Figure 2J), suggesting they confer brain-specific functions. For some complexes, the 

occurrence of brain specific domains was a dominant feature. The presence of unique folds, 

both independently and in combination, reinforces the concept that the complexes we found 

in brain differ markedly from those revealed in previous interactome studies of cell lines. 

These observations are also consistent with specialized roles in processes linked to 

neurodevelopment and brain physiology. Consistent with this, many of the conserved 

complexes showed broad functional annotation diversity (Table S6) and enrichment for 

associations with specialized neuronal compartments (e.g. synapse, axon, and dendrite), 

processes (e.g. neurogenesis) and particular protein domains (Figure 2K).

Regionalization and cell-type specificity of brain protein assemblies

The mechanisms underlying the regional specification of the vertebrate CNS are of broad 

interest. This specification may be driven in part, by differences in the abundance 

(expression) and composition of different macromolecular complexes. To directly examine 

the potential regionalization of the protein assemblies in BraInMap, we performed 

independent biochemical fractionations (quadruplicate IEX-HPLC runs) and mass 

spectrometric profiling on 10 distinct brain regions (Figure 3A; frontal cortex, parietal 

cortex, occipital cortex, hippocampus, striatum, thalamus, midbrain, hindbrain, cerebellum, 

and cervical spinal cord) isolated from age and gender matched CD1 mice (4x males, 16 

weeks) (STAR Methods). To accurately quantify differences in relative abundance, we used 

a two-pronged multiplexing procedure based on stable isotope labeling (tandem mass tags) 

to measure both the regional expression patterns and the corresponding regional co-elution 

profiles of most of the BraInMap assemblies in parallel (Figure 3B). We found that 

complexes that were significantly enriched (hypergeometric p-value ≤ 0.05) in the brain total 

protein measurements (Figure 3C) were likewise enriched for subunit pairs showing 

significantly (hypergeometric p-value ≤ 0.05) and reproducibly correlated co-fractionation 

profiles (as compared to random pairs) across the same regions (Figure 3D), allowing us to 

infer the regional selectivity of most of the assemblies in BraInMap (Table S7).

To further examine the extent of specification, we overlaid BraInMap with recent mouse 

single-cell RNA (scRNA Seq) data (Zeisel et al., 2018). After collapsing the cell taxonomy 

from Zeisel et al. into 21 broad neuronal and non-neuronal cell-types, we observed 

widespread evidence of selective cognate gene expression (Figure 3F; Table S7). For 

example, complex 20, implicated in adhesion and signaling of axons with the myelin sheath, 

was enriched in neurons as well as abundantly expressed in the hippocampus and spinal cord 

(Figure 3F & G). Functional annotations of its membrane-associated subunits corroborate 
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regional specificity in hippocampus (Ntpn, Prrt2, Slc6a1), and spinal cord (Lancl1, Prrt2, 

Srcin1), reflecting roles supporting and maintaining axon growth signals (Gpm6a, Negr1, 

Nptn), and vesicle targeting and release (Snap25, Syp, Syt2). Another component, Slc6a1, 

terminates GABAergic signal through sodium-dependent reuptake to presynaptic terminals, 

leading to myoclonic-atonic seizures when mutated (Carvill et al., 2015), while Plp1, a key 

constituent of compact myelin, along with Mag and Cntn1, mediates adhesion of the 

insulating sheath to axons in the internodes and paranodes, respectively (Jahn et al., 2009). 

PLP1 mutations cause a spectrum of neuronal disorders from Pelizaeus-Merzbacher disease 

to spastic paraplegia 2 (Hobson and Kamholz, 1993), while variants in CNTN1 cause lethal 

congenital myopathy (Compton et al., 2008), which may reflect an adhesion role at the 

neuromuscular junction. Mouse prion protein (Prnp) is also present in complex 20 and its 

interaction with PLP1, MAG, CNTN1, DPP6, ERI3, and SPARCL1 has previously been 

described (Schmitt-Ulms, Hansen et al. 2004). In addition to affecting transmissible 

neurodegenerative disease, neuronal expression of Prnp is essential for maintaining 

myelination (Bremer et al., 2010). Taken as a whole, this transmembrane assembly is likely 

critical to formation of myelin sheaths around GABAergic axons.

Likewise, complex 251, which contains neuron-specific neurofilament light, medium and 

heavy chain (Nefl, Nefm, Nefh) axoskeletal components, showed enriched expression in 

neuronal cells, as well as higher abundance in cortex and hippocampus (and lower 

expression in midbrain, hindbrain and spinal cord), while complex 42, comprised of SNARE 

protein components necessary for neurotransmitter release, was enriched in neurons (Chen 

et al., 2002) as well as in cerebellum and spinal cord. Conversely, complex 35, which 

contains alpha, beta and gamma subunits of Guanine nucleotide-binding protein (G-protein), 

showed high abundance in midbrain and thalamus as well as broad expression in both 

neurons and non-neurons (Figure 3G & F). Upon extracellular ligand binding to G-protein 

coupled receptors (GPCRs), G-proteins are activated by GDP to GTP replacement, 

facilitating one of the most prevalent signaling systems in diverse cell types through 

downstream effectors. Notably, this assembly included β-adrenergic receptor kinases 1 and 2 

(Grk2, Adrbk2), mitogen-activated protein kinase 3 (Mapk3), as well as Ataxin 10 (Atxn10), 

in which a repeat expansion mutation is associated with spinocerebellar ataxia type 10 

(Matsuura et al., 2000). In support of these findings, Atxn10 has previously been shown to 

interact with Gbeta2 (Gnb2) to potently activate the Ras/Mapk/Elk-1 signaling cascade 

(Waragai et al., 2006).

BraInMap assemblies showing regional enrichment in thalamus and striatum and 

preferential enrichment in non-neuronal cells include complex 19, which contains subunits 1 

to 8 of the COP9 signalosome (responsible for deneddylation of cullin-RING ubiquitin E3 

ligases), cullin4A-RING (Cul4a, Cul4b, Crbn, Ddb1) and cullin2-RING (Rbx1) E3 ubiquitin 

ligases (Cavadini et al., 2016; Dubiel et al., 2015). Likewise, complex 250 is enriched in 

non-neurons and hippocampus and is composed of argonaute proteins 1-3 (Ago1-3) 

necessary for RNA silencing and other double-stranded RNA interacting proteins (Stau2, 

Prkra). It also contains RNA binding protein Ytfdh1 needed to facilitate learning and 

memory formation in the hippocampus (Shi et al., 2018).
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Subcellular compartmentalization

BraInMap identifies an array of complexes associated with neuronal subcellular 

compartments such as the axon, dendritic spine and synapse (Figure 4A; Table S8). The 

latter include assemblies that form a higher order molecular architecture on outer cell 

membranes as well as the synaptic vesicles involved in neurotransmission (Figure 4B; Table 

S8). For example, complex 42 (Figure 3F) and 51 share 14 components that encompass 

SNARE proteins (including Syt1, Snap25, Syntaxins 1a/1b/12, Complexins 1/2/3, Vamp1/2) 

necessary for synaptic vesicle docking (Chen et al., 2002). While complex 42 is 

characterized by the inclusion of additional synaptic-vesicle transmembrane factors (Sv2b, 

Slc4a10, Prrt2), complex 51 is differentiated by the presence of factors mediating ER-Golgi 

vesicle transport and fusion (Vcp, Sec22b, Scfd1, Arfgap2). Likewise, complex 234 and 267 

share components required for Glutamatergic neurotransmission such as Gad1/2 (Glutamate 

decarboxylases) and Slc17a7 (Vesicular glutamate transporter 1). Complex 234 differs by 

exhibiting additional interaction with components of excitatory synapses (Vdac1, Nlgn2, 

Slc17a6), whereas complex 267 contains endosomal trafficking components (Rab21, Itgb1). 

These observations highlight compositional variations relevant to core neuronal activities.

Manifold other complexes in BraInMap are linked to mitochondrial function (Figure 4C; 

Table S8), which plays a crucial role in meeting the elevated energetic demands required for 

neuronal homeostasis. These include complex 14, which consists of mitochondrial 

ribosomal proteins (Mrpl/s), and the related complexes 23 and 25, which contain 

autophagosomal proteins involved in mitochondrial turnover. Conversely, complex 226, 

comprised of factors involved in mitochondrial fission (Dnm1l, Mff), has links to 

neurological disorders through Scg3, which is involved in secretion of neuropeptides and 

hormones such as pre-opiomelanocortin from the CNS (Tanabe et al., 2007) as well as 

neurotoxin-induced apoptosis of Dopaminergic neurons in a PD model (Li et al., 2012).

BraInMap identifies manifold RNA binding assemblies

Previously unreported complexes in BraInMap are significantly enriched for involvement in 

RNA metabolism (Figure 5A), including messenger RNA processing (FDR P = 1.6 x 10−2) 

and binding (FDR P = 2.7 x 10−2). These assemblies typically comprise RNA binding 

proteins (RBPs) (Figure 5B; Table S8), which mediate the biogenesis, distribution, and 

metabolism of both coding and non-coding RNAs (Hentze et al., 2018). BraInMap identifies 

assemblies ranging in size from 8 interacting RBPs, such as complex 250, which includes 

Ago1/2/3 and Stau2 (Figure 3F) to larger complexes with over a dozen subunits. For 

instance, complex 22 (Figure 5C) contains 28 RBPs (Atxn2/2l, Ddx1/3x/5/6/17, Dhx15, 

Elavl 1, Fam98a/b, Fus, Hnrnpdl/h1/u/ul1, Ilf2/3, Khsrp, Lsm12, Mcrip1, Rptor, Rtcb, Rtraf, 

Tdp-43, Tia1, Tial1, Urm1).

We confirmed the interaction between mouse Tdp-43, Hnrnph1, Ddx5, Tia1 and Fus, key 

members of complex 22, by co-immunoprecipitation (co-IP) of either endogenous mouse 

Tdp-43 or Hnrnph1 from brain cortices of wild-type C57BL/6J mice (n=4). Whereas RBP 

components were absent from control IPs using either rabbit or mouse IgG, IP of Tdp-43 co-

precipitated endogenous Hnrnph, Ddx5 and Tia1 (Figure 5D; Figure S2A). Likewise, IP of 

endogenous Hnrnph1 reciprocally pulled-down Tdp-43, Ddx5, Tia1 and Fus (Figure 5E; 
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Figure S2B). Tdp-43 was also detected as a component of complex 168 that contains Dhx36, 

Elavl2 (HuB), Elavl3 (HuC), Elavl4 (HuD), Ewsr1, Fam98a, Hnrnpul2, Mtdh (Aeg-1), and 

Prpf3 (Figure 5F; Table S4). In this other RBP complex we confirmed the previously 

unreported association of Mtdh (AEG-1) with Tdp-43 in mouse brain lysates by reciprocal 

co-IP (Figure 5G).

RBP-containing complexes with relevance to ALS/FTD are affected by disease state

Complexes 22 and 168 are of particular interest since they contain multiple RBPs 

genetically linked to ALS and FTD. Mutations in (TARDBP) (Kabashi et al., 2008; 

Rutherford et al., 2008; Sreedharan et al., 2008), FUS/TLS (Kwiatkowski et al., 2009; Vance 

et al., 2009) and TIA1 (Mackenzie et al., 2017) lead to the accumulation of pathological 

insoluble cytoplasmic inclusions in motor and cortical neurons (Mackenzie et al., 2010; 

Sreedharan et al., 2008). ATXN2 is a common genetic modifier of ALS, in addition to its 

role in spinal cerebellar ataxia (Elden et al., 2010), and EWSR1 mutations are associated 

with the disease (Couthouis et al., 2012).

Given the multiple links of complex 22 to neurodegeneration, we examined a mouse model 

of ALS to explore the relationship of the components of this complex to disease progression. 

Overexpression of human TDP-43 (TDP-43WT/WT) in mice results in rapid degeneration of 

motor neurons with associated pathological aggregates (Wils et al., 2010), whereas depletion 

of Atxn2 (a component of complex 22) reduces aggregation of the transgenic TDP-43, 

increasing motor neuron survival and extending lifespan (Becker et al., 2017). We, therefore, 

performed co-IP experiments of exogenous human TDP-43 from brain cortices in both 

disease prone TDP-43WT/WTAtxn2[+/+] and protected TDP-43WT/WTAtxn2[+/−] mice (n=4/

group), and used quantitative mass spectrometry to explore changes in complex 22 

components linked to neuroprotection (STAR Methods)

Immunoprecipitated TDP-43 pulled down complex 22 RBPs Ddx1/3x/5/17, Elavl4, Fam98b, 

Fus, Hnrnpdl/h1/u, Khsrp, Rtcb and Rtraf from the brains of susceptible 

TDP-43WT/WTAtxn2[+/+] mice (Figure 6A), confirming the interactions detected by co-

fractionation. Interestingly, however, in the protected TDP-43WT/WTAtxn2[+/−] mice these 

interactions were all reduced, with the exception of Ddx1 (fold change of 1.00) (Figure 6A). 

This finding is highlighted in the reproducible reductions observed in TDP-43 binding to 

Hnrnph1, Ddx3x, Ddx5, Ddx17 and Rtraf (Hnrnph1: −1.83 fold-change, −Log10 P value = 

1.02; Ddx3x: −1.82 FC, −Log10 P value = 1.28; Ddx5: −1.95 FC, −Log10 P value = 1.09; 

Ddx17: −1.93 FC, −Log10 P value = 1.06; Rtraf: −1.52 FC, −Log10 P value = 1.10; n= 4/

group) (red text labels; Figure 6A). Reduced co-IP of Hnrnph1 with exogenous TDP-43 was 

further confirmed by immunoblot (Figure S2E, F).

Elavl2 and Elavl4 of complex 168 were also depleted in the co-IP pulldowns from disease 

resistant TDP-43wT/wTAtxn2[+/−] mice as compared to the susceptible strain (Elavl2: −2.43 

FC, −Log10 P value = 2.05; Elavl4: −1.96 FC, −Log10, P value = 1.23; n = 4/group) (red text 

labels; Figure 6A). A similar trend was observed with Ewsr1, but did not reach statistical 

significance (Ewsr1: −1.74 FC, −Log10, P value = 0.91) (purple text labels; Figure 6A). 

Elavl proteins are cytosolic RBPs, which suggests that Atxn2 modulates the interaction of 

TDP-43 with cytoplasmic RNP granules, thereby decreasing pathologic insoluble inclusions 
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in TDP-43WT/WTAtxn2[+/−] mice. These results point to selective dissociation of pathologic 

TDP-43 from different RBP assemblies upon Atxn2 reduction, consistent with reduced 

recruitment of TDP-43 to cytoplasmic SGs resulting in fewer inclusions in the disease 

resistant strain (Becker et al., 2017; Elden et al., 2010).

In the protected TDP-43WT/WTAtxn2[+/−] mice, TDP-43 showed decreased interaction with 

proteins associated with RNA binding functional terms (Figure 6Bi), this is exemplified by 

the volcano plot distribution of heterogeneous nuclear ribonucleoproteins (HNRNPs; Figure 

S2C). Interestingly, TDP-43 in the protected TDP-43WT/WTAtxn2[+/−] mice showed 

increased interaction with proteins clustering with functional categories such as protein 

folding, ATP binding, and sodium/potassium ion homeostasis (Figure 6Bii); this is 

exemplified by the volcano plot distribution of heat shock proteins and protein isomerases 

that form the unfolded protein response (Figure S2D). These data indicate that the 

interaction of pathologic TDP-43 with Hnrnphl, Ddx3x, 5 and 17, Rtraf and other RBPs 

involved in RNA processing is responsive to neuropathophysiological states.

Our observation that TDP-43 shows increased interaction with complex 22 components in 

disease-affected mice led us to predict that these RBP components would be dysregulated in 

neurons affected with TDP-43 pathology. We, therefore, investigated distribution of RBPs in 

the cortices of transgenic TDP-43WT/WTAtxn2[+/+] mice by immunofluorescent confocal 

microscopy.

As shown previously, neurons in the TDP-43WT/WTAtxn2[+/+] mice exhibited increased 

levels of cytoplasmic TDP-43 and pTDP-43 (Becker et al., 2017). Neurons showing 

cytoplasmic distribution of transgenic TDP-43 (also immuno-positive for phosphorylation at 

S409/410; Figure S2Hi) exhibited increased cytoplasmic distribution of complex 22 RBPs 

Hnrnph1, Ddx5, Ddx1, and Ilf3 (Figure 6C). The cytoplasmic distribution of these RBPs 

mirrored that of TDP-43; for instance, neurons showing focal accumulations of TDP-43 also 

showed co-localized accumulations of complex 11 RBPs (Figure 6C; Figure S2Gi–iv). 

These RBPs are restricted to the nuclei of neurons and non-neurons in wild type C57Bl6 

mice. The RBP U2af, which is not a component, does not redistribute out of neuronal nuclei 

in TDP-43WT/WTAtxn2[+/+] mice, nor does the nuclear protein Histone H3 (Figure S2Hii–

iii). This finding emphasizes how TDP-43 pathology may specifically disrupt complex 

function through subunit sequestration and aberrant cellular relocalization.

By examining our regional proteomic data (Figure 3E), we examined the distribution of 

complex 22 RBPs (Figure 6D; Figure S2I). Cortical regions show a small relative increase in 

complex 22 expression compared to normalized whole brain expression (mean ±SEM, F.Ctx 

0.27 ±0.09, P.Ctx 0.19 ±0.08, O.Ctx 0.36 ±0.10), while the thalamus, midbrain, and 

hindbrain exhibited a moderate decrease (mean ±SEM, Thalamus −0.46 ±0.07, Midbrain 

(Midb.) −0.25 ±0.13, Hindbrain (Hindb.) −0.46 ±0.13). The region displaying highest 

expression is the cerebellum (an unaffected area in ALS) while the region showing the 

lowest expression is the spinal cord (mean ±SEM, Cerebellum (Cbl) 1.32 ±0.23, Spinal Cord 

(Sp.C) −0.73 ±0.15). The regional expression of Tdp-43 (Figure 6D) and Fus clearly 

correlate with the pooled expression pattern of complex 22 (Pearson correlation of region 

mean to Tdp-43 r =0.977, P <0.001, to Fus r =0.951, P <0.001). As pathological inclusions 
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of TDP-43 are almost universally detected in sporadic ALS-affected spinal cord and FTD-

affected cortical neurons (but rarely in cerebellar neurons) (Brettschneider et al., 2014; 

Brettschneider et al., 2013), it appears that total regional expression of TDP-43 (or complex 

22) does not directly correlate with distribution of pathology, suggesting that relative cellular 

expression or complexation levels may be more relevant. Notably, as indicated above, while 

the expression of many RBPs is ubiquitous, complex 22 RBPs are enriched in neurons 

(Dopaminergic, GABAergic, Glycinergic, Adrenergic, and Serotonergic) as compared to 

non-neuronal cells (except for Oligodendrocytes; Figure 3G). Hence, factors other than 

absolute level of expression of TDP-43 (or complex 22) may drive motor neuron 

susceptibility.

HNRNPH1 function is antagonistic to that of TDP-43 and DDX5

We investigated the functional relationships of RBPs associated with TDP-43. We assayed 

alternative splicing upon depletion of one or more co-complex members based on the 

previously reported observation that a reduction in TDP-43 leads to increase inclusion of 

exon 17b of SORT1 (Sortilin 1) (Polymenidou and Cleveland, 2011; Prudencio et al., 2012). 

Expression of TDP-43, HNRNPH1 and DDX5 was reduced in SH-SY5Y cells through 

transfection of siRNA (Figure S2J, K). As previously reported (Prudencio et al., 2012), 

knockdown of TDP-43 (siTDP-43) significantly increased the ratio of SORT1+17b transcript 

(inclusion of exon 17b) to SORT1WT (predominant transcript lacking exon 17b) (ANOVA 

with Tukey’s multiple comparison between all groups: siTDP-43 = 3.54 A.U. ± 0.082, P < 

0.01 vs control/siCtrl non-targeting siRNA) (Figure 6E; Figure S2L). The knockdown of 

DDX5 slightly increased SORT1 exon 17b inclusion, but the effect was not statistically 

significant. Strikingly, however, coordinate knockdown of TDP-43 and DDX5 together led 

to a dramatic increase in inclusion of SORT1 exon 17b (siTDP-43/DDX5 ratio = 5.74 ± 

0.36, P < 0.05 vs siTDP-43 alone). Conversely, while knockdown of HNRNPH1 alone had 

no significant effect on alternate splicing of SORT1, it exerted a profound antagonizing 

effect on the splicing functions of both TDP-43 and DDX5. Knockdown of HNRNPH1 

blocked inclusion of SORT1 exon 17b resulting from depletion of either TDP-43 (siTDP-43/

HNRNPH1 = 0.84 ± 0.15, P < 0.01 vs siTDP-43) or TDP-43 and DDX5 together (siTDP-43/

DDX5/HNRNPH1 = 1.97 ± 0.51, P < 0.001 vs siTDP-43/DDX5) (Figure 6E).

These data imply that TDP-43 and DDX5 exert cooperative (synergistic) functions in 

repressing HNRNPH1-mediated inclusion of alternatively spliced exons (Figure 6F). 

TDP-43 was known to participate with RBPs to facilitate splicing (Mohagheghi et al., 2016), 

and HNRNPH1 was known to bind the intron upstream of SORT1 exon 17b (i.e. same 

binding region as TDP-43), but no significant effect on splicing was recorded. Our study 

establishes the interaction of specific RBPs as a functional module in which members exert 

antithetical effects on exon usage.

ALS-mutations disrupt TDP-43-MTDH association within an RBP complex

TDP-43 co-purified with other factors linked to ALS, including MTDH (metadherin, also 

known as Astrocyte-elevated gene-1). Molecular docking using the crystal structures of 

human MTDH and TDP-43 revealed that five residues of TDP-43, which when mutated 

cause familial ALS (A315, G287, G368, W385, A382), are located in the predicted 
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interaction interface (Figure 6G). Functional studies support the association of TDP-43 with 

MTDH: TDP-43 plays a role in microRNA (miRNA) biogenesis and activity via 

Microprocessor and RNA-induced silencing complex (RISC) (Kawahara and Mieda-Sato, 

2012) and regulates miRNA loading to RISC (King et al., 2014). MTDH, an RBP, has also 

been shown to be physically and functionally associated with RISC activity (Yoo et al., 

2011).

To independently assess the effect of these ALS-associated variants on MTDH and TDP-43 

interaction, we generated four mutant TDP-43-FLAG variants (A315T, G287A, G368A, 

W385G), and found that G287A and W385G variants disrupted the association in 

differentiated SH-SY5Y neuronal cells, while two other variants partially impaired the 

interaction (Figure 6H). In addition, we demonstrated a perturbed interaction in fibroblasts 

isolated from an ALS patient carrying a pathogenic mutation (A382T) in TDP-43 as 

compared to healthy control (Figure 6I). Taken together, our data suggest that the disruption 

of miRNA regulation observed in ALS pathobiology (Eitan and Hornstein, 2016) may 

reflect disruption of interaction between TDP-43 and factors such as MTDH.

Modules connected to human neurological conditions

Conserved components of multiple BraInMap assemblies had strong links to diverse human 

neurological disorders (Figure 7A). These include macromolecules showing significant 

enrichment (Figure 7B) for components associated with psychiatric conditions such as 

schizophrenia (Schizophrenia Working Group of the Psychiatric Genomics et al., 2014), 

neurodevelopmental disorders such as autism (Sanders et al., 2015) and neurodegenerative 

diseases such as AD, PD and ALS (Dormann et al., 2010) and for associated genetic variants 

(Table S9). Relative to other diseases, neurological dysfunction annotations (DisGeNet) 

(Piñero et al., 2017) (Figure 7C) were often associated with several subunits of certain novel 

brain complexes. This suggests that disruption of complex function by multiple avenues can 

lead to similar mechanistic and phenotypic outcomes.

An illustrative example, highlighted in Figure 7D, is complex 42, which includes SNARE 

protein components necessary for synaptic vesicle fusion in neurotransmitter release (Chen 

et al., 2002) that are deficient in neurodegenerative impairments such as in PD (Burre et al., 

2010) and Huntington’s disease (HD)(Smith et al., 2007). Alterations in SNARE component 

SNAP25 have also been associated with psychiatric disorders, particularly attention-deficit 

hyperactivity disorder, in both mice and humans (Brophy et al., 2002; Bruno et al., 2007). In 

a similar vein, BraInMap complex 35 (discussed further above) contains the ortholog of 

ATXN10 in which repeat expansion mutations have been shown to cause spinocerebellar 

ataxia type 10 (Matsuura et al., 2000). Likewise, complex 20 (discussed above) contains a 

number of subunits associated with neurological disorders, including PLP1 (Hobson and 

Kamholz, 1993), CNTN1 (Compton et al., 2008) and PRNP. In complex 205, the human 

ortholog of the voltage-gated L-type calcium channel subunit Cacnb3 has been linked to 

bipolar disorder (Psychiatric Gwas Consortium Bipolar Disorder Working Group et al., 

2011) while a rare mutation in the ortholog of the subunit synaptogamin1 SYT1 results in 

severe juvenile motor deficits and cognitive impairment (Baker et al., 2015). Complex 251 

neurofilaments (Nefl, Nefm, Nefh) accumulate in certain neurodegenerative diseases and are 
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associated genetically with ALS (Campos-Melo et al., 2018). NEFL mRNA stability is 

regulated by direct binding to the 3‘UTR by TDP-43 and mutant SOD1, the major disease 

proteins of ALS, potentially dysregulating the stoichiometry of neurofilament 

polymerization (Ge et al., 2005; Strong et al., 2007).

Another example is complex 65 (Figure 7D), which consists of a number of retromer 

complex vacuolar protein sorting-associated components (Vps26a/26b/29/35) and sorting 

nexins (Snx1-6/27), implicating this assembly in endosomal delivery. Mutations in VPS35 

impair vacuole dynamics leading to defects in macroautophagy, mitochondrial turnover and 

AMPA receptor trafficking (Williams et al., 2017) resulting in PD (Vilarino-Guell et al., 

2011). Also present in this complex is dynactin 1 (DCNT1), important for retrograde 

transport of vesicles and autophagic clearance (Laird et al., 2008) and in which mutations 

cause ALS and Perry’s syndrome (Farrer et al., 2009; Munch et al., 2004). These 

observations mesh with accumulating evidence that autophagic deficiencies underlie the 

neurological dysfunction seen in diverse clinical disorders, potentially explaining their 

heterogeneous etiology.

BraInMap assemblies are frequent targets of disruptive mutations impairing 
neurodevelopment

To evaluate whether brain complexes had an elevated rate of disease-linked mutations, we 

investigated the correspondence of ~21,000 de novo variants previously detected in 

neurodevelopmental disorder-affected individuals as compared to unaffected controls. The 

variant data was compiled from 40 different published studies (listed in denovo-db v.1.5), 

including the Deciphering Developmental Disorders project and genetic studies of Autism, 

Schizophrenia, Epilepsy, and Intellectual Disability (Turner et al., 2017). To control for 

differences in abundance in the enrichment analyses, we compared subsets of proteins 

(2,298 per group) from BraInMap and background (detectable) proteome with matched 

abundance distributions for the enrichment analyses (one-tail Fisher’s exact test). The same 

procedures were applied in Figure 7E analyses (calculating node degree, betweenness, pLI, 

pHI).

As summarized in Table S9, BraInMap was significantly enriched for gene products 

harboring de novo loss-of-function (LoF) mutations in neurologically impaired individuals 

(LoF, expected:observed ratio = 1.41, P value = 3.4 x 10−4 by a two-tail binomial test; see 

STAR Methods), but not for synonymous mutations or variants seen in unaffected controls 

(Figure 7E). Starting with a curated list of 1,007 known Autism-associated gene products 

(Basu et al., 2009), we again observed significant overlap with BraInMap 

(expected:observed = 1.50, P value = 3.2×10−4; Table S9). In contrast, gene products with 

rare synonymous variants from the National Heart Lung Blood Institute Exome Sequencing 

Project (NHLBI ESP) study exhibited the background rate (expected:observed = 0.86, P 
value = 1.0).

De novo variants typically occur on one copy of a gene; hence, to confer risk, should arise 

more frequently in genes susceptible to haploinsufficiency. In neurodevelopmental disorder-

affected individuals, orthologs of BraInMap components harboring de novo LoF and 

missense mutations had, on average, a significantly higher probability of being 
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haploinsufficient (pHI) (Huang et al., 2010) than unaffected controls (median 0.33 versus 

0.23, binomial test P value = 5.0 x 10−3; Figure 7E, panel i). Components with disruptive de 
novo mutations were less tolerant to genetic variation, with a higher average probability of 

loss-of-function intolerance (pLI)(Lek et al., 2016) compared to controls (median 0.78 

versus 0.05, P value = 2.4 x 10−4; Figure 7E panel ii) or synonymous variants (median 0.33 

versus 0.1, P value = 0.21). Taken together, the analyses in Table S9 show that BraInMap 

assemblies are frequent targets of disease-related variants that potentially impair 

neurodevelopment.

Disruptive missense mutations in autistic individuals reportedly impact highly connected 

network (hub) components (Chen et al., 2018). Consistent with this, proteins with loss of 

function (LoF) and missense mutations in affected individuals exhibited, on average, 

significantly higher network connectivity (‘degree’) relative to unaffected controls (median 

0.24 versus 0.2, P value = 0.025 by one-tail U-test; Figure 7E, panel iii). In contrast, no 

significant difference was observed for synonymous variants (median 0.15 versus 0.2, P = 

0.63). Similar trends were evident with other measures of network centrality such as shortest 

paths or ‘betweenness’ (median 0.06 versus 0.05, P value = 0.035; Figure 7E, panel iv). 

BraInMap, therefore, offers a potential mechanistic framework for determining how genetic 

variants confer clinical risk through interaction perturbation.

DISCUSSION

Tissue, regional and cell-type enriched macromolecules drive brain function, physiology, 

and disease. However, direct mapping of molecular connections in the CNS is challenging. 

While a number of experimental methods have been devised to study protein interactions 

that occur in neurons (see for example (Zhu et al., 2018) and (Ganapathiraju et al., 2016)), 

most studies have typically been executed in a piecemeal manner that does not allow for a 

comprehensive interrogation of the brain interactome. To address this gap, we applied a 

systematic, data-driven functional proteomic approach. Using deep biochemical 

fractionation, we identified endogenous protein complexes in murine brain in a near native 

context, avoiding artifacts due to epitope tagging or ectopic over-expression. Moreover, it is 

complementary to existing genetic surveys (e.g. GWAS), cell connectivity maps (i.e. NIH 

BRAIN initiative), and single cell transcriptome data.

In doing so, we establish an approach to identifying macromolecular protein complexes in 

post-mortem tissues, which could be highly useful in studying human brain samples. Rather 

than viewing ALS/FTD as a TDP-43 proteinopathy, a growing consensus is to consider the 

condition as resulting from insolubility and splicing defects of a number of RBPs. Our 

discovery that ALS-associated RBPs natively assemble as a functional splicing module 

raises the possibility that a more accurate descriptor of ALS/FTD is as an RBP 

‘complexopathy’ that results in part from splicing defects due to insolubility of a subnetwork 

of RBPs. Therefore, BraInMap represents an important new tool to interrogate the 

composition, distribution, and function of the macromolecules of the CNS and their role in 

normal and diseased brain physiology.
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Comprehensive characterization of the multi-protein architecture of the mammalian brain, 

therefore, represents a milestone for neurobiology. It also provides access to unusual classes 

of questions. For example, of the 5,677 proteins to a complex, 2,836 (or just under 50%) 

were assigned to multiple complexes. These ‘promiscuous’ interactors (or “moonlighting 

proteins”), which are members of multiple complexes, show an enrichment for functional 

roles linked to protein transport (Benjamini Hochberg FDR p = 9.8 x 10−32), mRNA 

processing (Benjamini Hochberg FDR p = 1.7 x 10−27) and translation (Benjamini Hochberg 

FDR p = 1.6 x 10−17), as well as a higher (1.8-fold) average abundance in brain according to 

PAXdb (students T test P = 4.7 x 10−3)(Wang et al., 2015) as compared to proteins assigned 

only to one complex (Figure S1D, Table S8).

Given the rapid evolution of mammalian brain, we could also examine the evolutionary 

trajectories of these macromolecular assemblies by assigning individual proteins an ‘age’ 

that represents their phylogenetic origin based on ortholog projections (see STAR Methods). 

In this preliminary investigation, most brain complexes exhibited a mixture of component 

ages (Figure S1G & H; Table S4), suggesting that younger, possibly less tightly bound 

components represent more recent evolutionary adaptations relative to more ancient 

assemblies. The previously unreported complexes in our network were also enriched for 

mammalian proteins, whereas documented assemblies exhibited a higher fraction of 

components of lower eukaryotic origin (Figure S1F). Taken together, these observations are 

consistent with the notion that mammal restricted macromolecules are more likely to 

mediate brain-specific functions, whereas previously described complexes are more likely 

associated with house-keeping roles common to multiple lineages. Further in depth analysis 

of the BraInMap resource is needed to refine and rigorously test this notion.

To support such follow up studies, BraInMap can be accessed via a dedicated web portal 

(https://www.bu.edu/dbin/cnsb/mousebrain/) that supports search queries, network 

visualization, and biological inference. The resource is currently a static representation of 

neuronal circuits, however, whereas cellular interaction networks are dynamic. The 

mammalian brain is impacted by changing developmental and physiological cues and 

contextual signaling cascades. In principle, our interactome profiling technology can be used 

to study these network fluxes to reveal interactions underlying particular neurological and 

pathological states. Thus, follow up studies using this platform together with sophisticated 

functional manipulation tools, such as optogenetic control of protein interactions and 

complex assembly, data science methods based on newer deep learning classifiers, as well as 

more precise information about macromolecular localization and topology, may define the 

mechanistic principles driving neurological processes central to healthy and impaired brain 

function.

STAR ★ METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the lead 

contact, Dr. Andrew Emili, by email at aemili@bu.edu. Plasmids are available upon request; 

this study did not generate any other new unique reagents.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue Harvest and Protein Extraction—12 week old male CD1 mice were 

euthanized and the brains excised, washed several times in ice-cold phosphate-buffered 

saline (PBS) to remove blood, snap-frozen and stored in −80°C. For protein isolation, tissues 

were homogenized in ice-cold lysis buffer (10mM Tris-HCl pH7.4, 10% glycerol, 50mM 

NaCl, 1mM Dithiothreitol (DTT), 1mM Ethylenediaminetetraacetic acid (EDTA), 1% Triton 

X-114 and complete Mini EDTA-free Protease Inhibitor (Roche)) using a dounce tissue 

grinder on ice. The lysates were kept on ice for 30 minutes and centrifuged at 20,000rcf for 

10 minutes to pellet cellular debris. Prior to fractionation, lysates were treated with 100 

units/ml Benzonase (Sigma) to remove nucleic acids and further clarified by centrifugation 

to remove debris. A Bradford assay was performed to determine protein concentrations. The 

lysate saved as protein extract I.

The detergent-free protein extract was prepared by homogenization of the brain tissue in 

lysis buffer II (containing 10mM Tris-HCl pH7.4, 20% glycerol, 50mM NaCl, 1mM DTT, 

1mM EDTA and complete Mini EDTA-free Protease Inhibitor (Roche)). The suspension was 

incubated on ice for 30 minutes and then centrifuged at 4,000rcf for 10 minutes. The 

supernatant was saved as protein extract II while the pellet was resuspended in detergent 

containing lysis buffer (10mM Tris-HCl pH7.4, 20% glycerol, 50mM NaCl, 1mM DTT, 

1mM EDTA, 1% Triton X-114 and protease inhibitors). The sample was incubated with 

gentle shaking for 45 min at 4°C and centrifuged at 6,000rcf for 10 min. The supernatant 

was saved as protein extract III. 100 units/ml Benzonase was then added to both protein 

extracts II and III and protein concentrations measured by Bradford assay.

METHOD DETAILS

2-D Biochemical Fractionation

Isoelectric Focusing (IEF) Fractionation: The protein extract was fractionated by 

isoelectric focusing using a MicroRotofor IEF cell (Bio-Rad) set up. 3mg of total protein 

were added to IEF running buffer (20% glycerol, 2% IPG buffer pH5-8) and an electric field 

at a constant power of 1W was applied to the focusing cell while the voltage and current 

were limited to 350V and 2500 mA, respectively. The separation was stopped after 150 min 

once the voltage held constant for about 45 min. Five fractions per sample were collected 

across a pH range of 5-8.

Ion Exchange (IEX) Fractionation of IEF fractions: Each IEF fraction was subjected to 

IEX-HPLC separation using mixed-bed PolyCATWAX chromatography columns (200 × 

2.1mm i.d., 5μm, 1000-Å) purchased from PolyLC Inc (MD, USA) without any preparation 

step. Depending on the pH of IEF fractions collected, an IEX buffer system of Tris pH8 or 

MES pH6 was used. IEX buffers were always freshly prepared with HPLC grade H2O and 

comprised of a low salt buffer A (10mM Tris-HCl pH8 (or 10mM MES pH6), 0.01%-NaN3, 

5%-Glycerol) and high salt buffer B (buffer A + 1.5M NaCl). All HPLC fractionations were 

performed using an Agilent 1260 infinity HPLC system (Agilent Technologies, ON, 

Canada). The PolyCATWAX IEX column was equilibrated with running low salt buffer A 

for 30 minutes immediately before loading protein samples. Bound proteins were eluted 

from the column using a linear gradient to 30% buffer B from 5 to 95 min, followed by a 
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gradient to 100% buffer B from 95 to 105 min and an isocratic hold at 100% B until 120 

min. Protein elution was monitored by absorption at 260 and 280 nm. The gradient was run 

at a flow rate of 0.2ml/min and 60x 0.4ml fractions were collected (the first and last 

fractions with no peak at 280 nm were discarded). Fractions (i.e. 46 fractions per IEX run, 

230 fractions for entire 2-D IEF-IEX fractionation experiment) were prepared and by LC-

MS/MS as described.

Ion Exchange Fractionation of Protein Extract I: A total of 2mg soluble protein of 

protein extract I was loaded to a PolyCATWAX column (200 × 2.1mm i.d., 5μm, 1000-Å). A 

MES pH6 buffer system (described above) was employed and elution of bound proteins was 

achieved through application of a linear gradient to 15% buffer B from 2 to 80 min, followed 

by a gradient to 50% buffer B from until 140 min and a final 20 min long gradient of 

50%--100% buffer B. An isocratic hold at 100% B applied until 180 min to elute tightly 

bound proteins. A total of 90x 0.4ml fractions were collected using a flow rate of 0.2ml/min.

Ion Exchange Fractionation of Protein Extracts II and III: 1.2 to 1.5mg total proteins in 

cytoplasmic and membrane extracts were fractionated on a PolyCATWAX column (200 × 

2.1mm i.d., 5μm, 1000-Å) using the MES pH6 buffer system. Protein extracts were resolved 

using a 120 min gradient program as follows: A linear gradient to 20% buffer B from 2 to 60 

min, a gradient to 60% buffer B from 60 to 90 min followed by final 10 min gradient to 

100% buffer B and 20 min run with 100% buffer B. 60 fractions by 2 min intervals and 

using a flow rate of 0.2 ml/min were collected.

Dual-Phase Heparin-Ion Exchange Fractionation of Protein Extract I: In order to enrich 

low abundance nuclear proteins, a TSKgel Heparin-5PW affinity column (75 × 7.5mm i.d., 

10μm, 1000-Å) hyphenated with a PolyCATWAX mixed-bed ion exchange column (200 × 

4.6mm i.d., 5μm, 1000-Å). 4mg of protein was loaded to columns and the MES pH6 buffer 

system was used to resolve multi-proteins complexes in protein extracts. A 240 min elution 

program consisting of a 10 min gradient with 100% buffer A, followed by a 120 min 

gradient from 0 to 15% buffer B, a 60 min gradient from 15 to 50% buffer B and a 30 min 

gradient to 100% buffer B followed by 30 min isocratic hold at 100% buffer B was applied 

to resolve and fractionate proteins. A total of 120x 0.5ml fractions were collected using a 

flow rate of 0.25ml/min.

Sample Preparation and Trypsin Digestion: HPLC protein fractions were precipitated 

overnight at 4°C by adding 10% v/v Trichloroacetic acid (TCA). The fractions then 

precipitated at 20,000rcf for 30 min and the pellets washed twice with 300μl ice-cold 

acetone. The pellets were air dried then dissolved in 90μl 50mM NH4HCO3. The samples 

were reduced by adding DTT (Thermo) to a final concentration of 5mM and incubated for 

20 min at 50°C with gentle agitation. The samples were cooled to room temperature and 

alkylated by adding 10mM lodoacetamide (Sigma) and incubation in the dark for 20 min. To 

quench excess of lodoacetamide, 5mM DTT was added to each sample. The protein 

fractions were then digested by adding ĝ of mass spectrometry grade trypsin gold (Promega) 

and incubated overnight at 37°C with gentle agitation. The digestion was quenched by 

adding formic acid (FA) to 1% v/v final concentration and the peptide mixture was subjected 
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to purifying using ziptip C18 tips (Millipore). The ziptip C18 tips were first conditioned 

with 10μ! acetonitrile and then equilibrated with 2x 10μl of 0.1% trifluoroacetic acid (TFA). 

After loading the peptide mixture to ziptip C18 tips, the samples were washed three times 

with 0.1 v/v TFA and eluted with 2x 10μl elution buffer (80% acetonitrile, 0.1% TFA). The 

desalted peptides then lyophilized by using Speed-Vac (Thermo Scientific) and dissolved in 

1% FA prior to LC-MS/MS analysis.

LC-MS/MS analysis: All LC-MS/MS analyses performed on an EASY nLC 1200 system 

(Thermo Scientific) coupled to a Q Exactive HF mass spectrometer equipped with an EASY-

Spray ion source (all from Thermo Scientific). A C18 Acclaim PepMap 100 pre-column 

(3μm, 100 Å, 75μm × 2cm) hyphenated to a PepMap RSLC C18 analytical column (2μm, 

100 Å, 75μm × 50cm) (all from Thermo Scientific) was used to separate peptide mixtures 

prior injection into the mass spectrometer. Depending on sample complexity in each 

fractionation experiment, 60 or 90-min gradients were used to elute peptides from columns. 

The quality of LC-MS/MS analysis was repeatedly controlled for by running Trypsin-

digested BSA MS Standard (BioLabs) between sample runs.

Regional sample preparation for quantitative mass spectrometry: Tissue from 10 brain 

regions were dissected from four 12 week old male CD1 mice: 1) Frontal Cortex, 2) Parietal 

Cortex, 3) Occipital Cortex, 4) Hippocampus, 5) Striatum, 6) Thalamus and Hypothalamus, 

7) Midbrain (including Substantia Nigra), 8) Hindbrain (including Pons and Medulla), 9) 

Cerebellum and 10) Spinal Cord. Each was individually placed in 8M urea with phosphatase 

(PhosSTOP™, Roche) and protease (cOmplete™, Roche) inhibitors, then sonicated (1 

minute, in 2 second pulses) on ice. Sonicated samples were snap-frozen in liquid N2 and 

then sonicated again as described above. Proteins were reduced for 1 hour with 5mM 

dithiothreitol (DTT) and alkylated for 30 minutes with 15mM iodoacetamide in the dark. 

Protein concentration was estimated using a BCA kit (Pierce™ BCA Protein Assay Kit, 

Thermo) and about 1mg of each sample was allocated for trypsin digestion. Prior to 

digestion, the 8M urea solution was diluted to 1M with 50mM ammonium bicarbonate. Each 

sample was digested overnight at 37°C with 10μg sequencing grade trypsin (Pierce™ 

Trypsin Protease, MS Grade, Thermo)

Prior to TMT (Tandem Mass Tag) labeling, peptides were extracted from each digested 

sample using c18 Sep-Pak (Waters, 50mg cartridge) and peptide concentrations were 

measured with a peptide quantification assay (Pierce™ Quantitative Colorimetric Peptide 

Assay, Thermo). Sample peptide concentrations were adjusted to 1μg/μL in 100mM 

triethylammonium bicarbonate (TEAB), and 100μg of the sample was aliquoted for 

labelling. A common pool of samples was generated by combining equal parts of each of the 

40 samples. Peptides from the samples and the pool were labelled with 0.4mg and 1.6mg of 

TMT label, respectively (TMT11plex™ Isobaric Label Reagent Set, 1 x 0.8mg, Thermo). 

Ten labelled regions from each mouse along with an aliquot of the common pool were 

pooled and fractionated by high pH reverse-phase HPLC into 12 fractions. Mobile phase A 

was 0.1% ammonium hydroxide and 2% acetonitrile, mobile phase B was 0.1% ammonium 

hydroxide and 98% acetonitrile. Fractions were collected over a 48 minute gradient.
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Mass spectrometry: Samples were analyzed by a Q Exactive HFX mass spectrometer 

connected to Easy nLC 1200 reverse-phase chromatography system (Thermo Scientific). 

Mobile phase A was 0.1% formic acid and 2% acetonitrile, mobile phase B was 0.1% formic 

acid and 80% acetonitrile. Peptides were resuspended in 0.1% formic acid for loading. The 

samples were loaded onto a nano-trap column with mobile phase A, (75μm i.d. × 2 cm, 

Acclaim PepMap100 C18 3μm, 100Å, Thermo Scientific) and were separated over an 

EASY-Spray column, (50 cm × 75 μm ID, PepMap RSLC C18, Thermo Scientific) by an 

increasing mobile phase B gradient over 180 minutes at a flow rate of 250 nL/min. The mass 

spectrometer was operated in positive ion mode with a capillary temperature of 300°C, and 

with a potential of 2100V applied to the frit. All data were acquired with the mass 

spectrometer operating in automatic data dependent switching mode. A high resolution 

(60,000) MS scan (350-1500 m/z) was performed using the Q Exactive to select the 12 most 

intense ions prior to MS/MS analysis using HCD (NCE 33, 45,000 resolution).

MaxQuant search and data analysis: Raw files were searched in MaxQuant Version 

1.6.0.16 against the Mus musculus canonical Swiss-Prot proteome downloaded from 

UniProt on January 24, 2019. Two missed cleavage events were allowed and 

carbamidomethylation of cysteine was set as a fixed modification while variable 

modifications were oxidation of methionine and acetylation of protein N-termini. Reporter 

ion MS2 was used for quantification with 11plex TMT and a reporter mass tolerance of 

0.003 Da. Peptide search tolerance was set to 4.5ppm for MS1, and MS2 fragment tolerance 

was set to 10ppm. Match between runs was active with an alignment window of 20 min and 

a match window of 0.7 min. The obtained protein intensities of each sample were first 

normalized to its median for each of the 10 brain regions, the replicates summed and then 

normalized to the intensities of the reference pool. The summed normalized intensities were 

used for enrichment analysis to detect regional specificity of BraInMap complexes.

Regional sample preparation for co-fractionation analysis: Snap-frozen mouse brain 

tissues (frontal cortex, parietal cortex, occipital cortex, hippocampus, striatum, thalamus, 

midbrain, hindbrain, and spinal cord) were transferred to 2ml microcentrifuge tubes and 

homogenized using 2x5mm stainless steel grinding beads. The tissues were homogenized 

for four 0.5 min cycles in Mixer Mill (MM400, Retsch Technology) at 25 Hz. Ground 

tissues were solubilized in a mild-detergent buffer (10mM Tris-HCl, 250mM Sucrose, 5mM 

MgCl2, 1mM DTT, 5mM ATP, 1% DDM) containing protease and phosphatase inhibitors 

(Roche) and treated with Benzonase at 100 units/ml for 30 min at 4°C. The crude lysates 

were centrifuged at 18,000rcf for 10 mins at 4°C and the clarified supernatant collected. 

Protein concentration in the clarified lysates was estimated with Brad-Ford assay (Bio-Rad). 

The protein extracts were further clarified at 14,000rcf for 30 min at 4°C and fractionated 

using an optimized volatile-salt based IEX-HPLC fractionation approach (manuscript in 

preparation). We deployed a previously described dual IEX-HPLC elution gradient 

(Havugimana et al., 2007), comprising PolyWAX LP and PolyCAT A (200 x4.6 mm i.d., 

5μm, 1000-A; PolyLC Inc) column in series, to generate a total of 960-IEX protein fractions 

(i.e., 96 fractions per mouse regional tissue). The fractions were dried in a speed vac, 

digested, and each set of 96 fractions was labeled with a unique Tandem Mass Tag (TMT) 

using the TMT-10plex kit (ThermoFisher Scientific). The TMT-labeled fractions were 
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pooled and desalted. The desalted samples were then analyzed via LC-MS/MS using a Q 

Exactive Orbitrap HF mass spectrometer (ThermoFisher Scientific) (Havugimana et al., 

2007).

Database search and data analysis: Raw file for each fraction was searched against the 

Mus musculus canonical Swiss-Prot proteome downloaded from UniProt on January 24, 

2019, using 3 search algorithms (X!Tandem, MSGF+, and Comet). MS1 intensities were 

extracted from the results using the utilities developed in-house as described above. The 

obtained protein intensities of each fraction were normalized to its median for each of the 10 

brain regions and then normalized to the intensities of the reference pool. The protein-

protein correlation was calculated for each of the four replicates using the co-elution profile 

of each protein across all fractions. Protein pairs in BraInMap complexes that showed high 

correlation (≥ 0.5) in their co-elution profiles for two or more replicates and that also 

exhibited a high concordance in terms of their corresponding proteomic expression profiles 

were selected for further analysis.

Co-immunoprecipitation of complexed RBPs from C57BI/6J mice: The right cortices 

from four 5 months old C57Bl/6J wild type mice were homogenized in lysis buffer (50mM 

Tris pH7.4, 150mM NaCl, 2mM EDTA, 0.2% NP-40, 0.05% SDS, 1mM PMSF, 1x HALT 

PIC (Pierce), PhosSTOP (Roche) and 40U/ml RNasin (Promega)) using a motorized 

homogenizer. Protein concentration was determined by BCA assay. Co-immunoprecipitation 

was performed using Direct-IP kits (Pierce) according to the manufacturer’s protocol. 

Briefly, 5μg of either (mouse) monoclonal anti-Tdp-43 (Ling et al., 2010) (FL4; a gift from 

Ling Shuo-Chien) or (rabbit) polyclonal anti-hnRNP-H (Bethyl Labs; A300-511A) was 

conjugated to AminoLink resin, blocked (1 hr at RT) with 1% BSA in lysis buffer then 

washed with lysis buffer. Negative controls were performed using normal mouse IgG (Santa 

Cruz) and rabbit control IgG (Proteintech). 1mg of sample lysates was precleared by 

incubation (1 hr at 4°C) with control agarose resin, before incubating overnight at 4°C in IP 

columns. The following day, the flow-throughs were collected then the columns washed 3 

times with lysis buffer, once with lysis buffer containing 0.1% SDS then eluted by 

incubating at 98°C for 10 mins in TBS with 2× LDS and 1× reducing agent (Life Tech.). 

Samples were resolved in 4-12% BisTris Bolt gels (Thermo) with 10μg lysates, transferred 

to 0.45μM PVDF membrane, blocked in 5% non-fat dry milk in TBSt and probed overnight 

at 4°C with the antibodies as follows. IP-Tdp-43 immunoblot: 1. (rabbit) anti-hnRNP-H 

(Bethyl Labs; A300-511A; 1:2000), 2. (rabbit) anti-DDX5 (Abcam; ab21696; 1:2000), 3. 

(goat) anti-TIA-1 (Santa Cruz; sc-1751; 1:300), 4. (rabbit) anti-TDP-43 (Proteintech; 

12892-1-AP; 1:2000). IP-Hnrnph immunoblot: 1. (mouse) anti-Tdp-43 (FL4; 1:4000), 2. 

(rabbit) anti-DDX5-Biotin (ab21696) 3. (goat) anti-TIA-1 (sc-1751), 5. (rabbit) anti-FUS/

TLS-Biotin (11570-1-AP), 5. (goat) anti-hnRNP H (Santa Cruz; sc-10042; 1:2000). Where 

indicated, 10μg primary antibodies were conjugated to Biotin using One-Step Antibody 

Biotinylation kit (Miltenyi Biotec). Blots were probed with secondary (donkey) anti-mouse-

HRP, (donkey) anti-rabbit-HRP (Jackson; 1:5000) or Strepavidin-HRP (Jackson; 0.2μg/ml) 1 

hour at RT before activating with SuperSignal HRP substrate (Thermo) and imaging with a 

ChemiDoc XRS+ (Bio-Rad). Between antibodies, blots were stripped with Restore PLUS 

(Thermo), blocked, washed and re-probed.
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TDP-43 immunoprecipitation from transgenic TDP-43 murine brain and proteomic 
analysis: Cortical sections from 21 day old wild type (gait score 0/4), TDP-43WT/WT; 

Atxn2[+/+] (gait score 3.75/4) and TDP-43WT/WT; Atxn2[+/−] (gait score 2.75/4) mice 

(Becker et al., 2017) (n=4 per group) were lysed in 50mM Tris-HCl pH7.4, 150mM NaCl, 

0.2% NP-40 with 1mM PMSF, cOmplete PIC, PhosSTOP and 40U/ml RNasin by motorized 

pestle. Samples were spun at 1,000rcf for 5 mins at 4°C and the supernatants collected and 

assessed for concentration. Direct-IP columns were generated with 10ug each of (mouse) 

anti-TARDBP (Abnova; H00023435-M01) and immunoprecipitations, using 500μg lysate 

per column, were bound, washed and eluted as above. Negative control experiments were 

performed using anti-TARDBP bound columns and hippocampal lysate from a conditional 

Tardbp knockout mouse (gift from Phillip Wong (Chiang et al., 2010)) and using 

TDP-43WT/WTAtxn2[+/+] lysates in columns bound with normal mouse IgG. Quantitative 

proteomic analysis of TDP-43 interactions was performed, as previously described 

(Vanderweyde et al., 2016), using LC-MS/MS, less nonspecific interactions identified in 

negative controls and normalized to the iBAQ levels of TDP-43 in each sample. Protein 

interactors were excluded if not identified in duplicate or more per group. Equal amounts of 

TDP-43 immunoprecipitated material from TDP-43WT/WTAtxn2[+/+] and 

TDP-43WT/WTAtxn2[+/−] mice (n=3) was immunoblotted and probe for hnRNP-H (Bethyl) 

and DDX5 (Abcam) as detailed above.

TDP-43 immunofluorescence imaging from transgenic TDP-43 murine 
brain: Hemispheres from TDP-43WT/WTAtxn2[+/+] and wild type litter mates were drop 

fixed in 4% PFA for 48 hours before washing in PBS and storing in 30% sucrose in PBS. 

Hemispheres were sliced into 30μm sagittal sections, treated 20 mins at room temperature in 

1mg/ml sodium borohydrate to block aldehydes, washed in water then mounted to slides. 

After drying, slides were washed in PBS, incubated 1 hour at 95°C in citrate buffer (Vector 

Labs; H-3300) then cooled in PBS. Tissue was permeabilized in 0.2% Tween-20 in PBS, 

blocked in 5% normal donkey serum, 0.05% Tween-20 in PBS then incubated overnight at 

4°C with primary antibodies in PBS with 0.5% NDS and 0.05% Tween-20. Primary 

antibodies used were (mouse) anti-TARDBP (Abnova; H00023435-M01; 1:500), (rabbit) 

anti-TDP-43 phosph-S409/410 (a gift from Leonard Petrucelli; Rb3655; 1:250), (rabbit) 

anti-DDX1 (ProteinTech; 11357-1-AP; 1:500), (rabbit) anti-DDX5 (Abcam; ab21696; 

1:1000), (rabbit) anti-hnRNP-H (Bethyl; A300-511A; 1:500), (rabbit) anti-ILF3 (Bethyl; 

NF90/NF110, A303-121A), (rabbit) anti-U2AF2 (Novus; NBP2-04138), (rabbit) anti-

Histone H3 (Abcam; ab18521), (chicken) anti-MAP2 (Aves; MAP2) and (chicken) anti-

NeuN (EMD; ABN91; 1:500). Slides were then washed with PBS and fluorescently 

immunolabelled as appropriate with the (donkey) anti-mouse, rabbit, or chicken with 

Alexafluor conjugates (Jackson Immuno; 1:750). Slides were washed again in PBS, 

counterstained with DAPI then autofluorescence was quenched by incubating 10 mins at RT 

in 0.1% Sudan Black in 50% Ethanol. The sections were coverslipped in Prolong Gold 

antifade reagent (ThermoFisher). Sections were then imaged at 63x on a Zeiss AxioObserver 

LSM700 confocal with standardized exposures given additional gain to observe cytoplasmic 

distribution.
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Human cell culture and differentiation:  SH-SY5Y cells (ECACC, 94030304) were 

maintained in high-glucose DMEM (Millipore Sigma, D5671) medium supplemented with 

10% fetal bovine serum (FBS, Lifetchnologies; 12483020), penicillin (50 u/ml), 

streptomycin (50μg/ml) (Lifetechnologies; 15070-063), L-glutamine (2mM) 

(Lifetechnologies; 25030-081). Cells were incubated at 37°C and 5% CO2/95% air with 

saturated humidity. SH-SY5Y cells were differentiated by all-trans retinoic (at-RA, 

Millipore Sigma; R2625) and BDNF (eBiosciences; 14-8366-80) as described before 

(Encinas et al., 2000). For differentiation, cells were plated at the density of 4 X 104 

cells/cm2 in complete DMEM medium containing 5% FBS and at-RA acid was added to 

cells and the medium was changed daily for a total of 5 days. From days 6-12, cells were 

incubated with DMEM supplemented with penicillin (50μg/ml), streptomycin (50μg/ml), L-

glutamine (2mM) and BDNF (20ng/ml) but no FBS and medium was changed every 2-3 

days.

Human anti-FLAG/MDTH immunoprecipitation, Western blotting, and affinity-
purification/mass spectrometry:  Differentiated live cells were cross linked using the cell 

membrane-permeable bifunctional cross linking reagent dithiobis[succinimidyl propionate] 

(DSP, Lomant’s reagent, ThermoScientific; 22585). DSP solution was made in DMSO at the 

concentration of 0.25M and diluted in PBS to a final concentration of 1mM immediately 

prior to incubation with cells at room temperature. Excess DSP was quenched by reacting 

with 100mM Tris-HCl pH 7.5. Cells were then washed in 1X PBS twice, detached by 

incubating with versine at 37°C for 10 minutes, pelleted and lysed in RIPA buffer. Protein 

concentration was assayed and approximately 10mg protein was incubated in each reaction 

with protein-specific or control antibodies for 1 hr at 4°C with tumbling. After that, 50μl 

protein G magnetic microbeads were added and the mixture is incubated for an additional 4 

hr at 4°C with tumbling. Subsequently, samples are purified using magnetic columns and 

washed using detergent-free buffers. For mass spectrometric analysis, purified proteins and 

their associated partners are eluted and proteolytically-digested overnight at room 

temperature. Samples are subsequently desalted and purified using ZipTip and analyzed 

using nLC-MS. For Western blotting, elution was done in Laemlli buffer and a fraction was 

run on SDS-PAGE, transferred to PVDF membranes and subsequently blotted with primary 

protein specific antibodies and subsequently with HRP-conjugated secondary antibodies. 

Visualization was done using luminescence.

Mouse brain co-Immunoprecipitation (anti-Tdp-43/anti-MTDH):  The cell lysate was 

adjusted to 1ml with RIPA buffer containing PIC and 3μl of each antibody (TDP-43 or 

MTDH) were added. After 1 hr agitation at 4°C, 100μl of μMACS protein A or G magnetic 

microbeads (Miltenyi) was added with continued agitation overnight at 4°C. Microbeads 

suspension was passed through μMACS columns (Miltenyi) equilibrated with RIPA and 

PIC, and the retained microbeads were washed 2 times with 1ml of RIPA buffer containing 

0.1% of detergents and PIC followed by another one wash with 1ml detergent-free RIPA 

buffer. Proteins bound to the microbeads were released by addition of 100μl Laemmli 

loading buffer 2X and heated at 95°C. Eluate was analyzed using western blot and visualized 

using SuperSignal West Femto Maximum Sensitivity Substrate (Thermo Fisher, 34095).
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Structure modeling and docking:  The I-TASSER (Iterative Threading ASSEmbly 

Refinement) server was used to predict non-resolved full-length structures of human MTDH 

and TDP-43. The structure of the lowest energy was selected, which was then refined by a 

fragment-guided molecular dynamic procedure, with the purpose of optimizing the 

hydrogenbinding network and removing steric clashes. The docking studies were carried out 

using PIPER. We produced 7,000 structural conformations between two structure chains. 

For the highest scoring docked structure, we determined residues at the complex interface 

using Schrodinger to measure the change in solvent accessible surface area between bound 

and unbound states of this complex. Residues with a minimum 15% solvent accessible 

surface area in the unbound state whose absolute solvent accessible surface area changes 

decreased by ≥1.0Å squared were considered to be at the interface of the bound structure.

Generation of human TDP-43 mutants and mutagenesis: Sequence confirmed TDP-43 

cDNA clone (HsCD00079870) from the human ORFeome collection (Dana Farber/Harvard 

Cancer Center DNA Resource Core) was used to generate the mutations, following the PCR-

driven overlap extension method (PMID: 29128334). All PCR reactions were performed 

using the high-fidelity Phusion polymerase. A set of forward and reverse primers were 

designed to flank the desired mutation sites and the two unique restriction sites at NsbI and 

EcoRV. At each mutation site, another set of forward and reverse primers that bind at the 

mutation sites was used, ensuring that their Tm was within ± 5 °C of the outer flanking 

primers. For each mutation, two first-stage PCR reactions were performed with the outer 

flanking forward primer and the mutation site reverse primer, and vice versa. After a 

successful PCR, the reaction products were cleaned up using a PCR cleanup kit. For each 

mutation, a single second-stage overlap-extension PCR was carried out in which an 

equimolar mixture of two PCR products of the first-stage reactions and the outer forward 

and reverse flanking primers were used. Overlap extension was verified using agarose gel. 

Both TDP-43 plasmid (HsCD00079870) and the final PCR products were cut with 

restriction enzymes, NsbI and EcoRV, following manufacturer’s recommendations. Gel 

purified products were ligated using T4-DNA ligase, transformed into competent DH5α 
cells, and the successful mutagenesis was verified using Sanger sequencing.

To clone TDP-43 into mammalian expression vectors, we used Gateway LR Clonase II 

(ThermoFisher) according to the manufacturer’s instructions. Briefly, a mixture of TDP-43 

wild type or mutant entry vector was mixed with the enzyme mixture and appropriate 

amount of the destination vector pLD-puro-Cc-VA (Addgene) containing a C-terminal 

versatile affinity tag containing 3× Flag, 6× histidine and 2× Streptactin epitopes (Flag and 

His separated by dual tobacco etch virus protease cleavage sites). After the incubation and 

enzyme inactivation, cloning mixture was transformed into NEB stable competent bacteria 

(to avoid recombination of the repetitive lentiviral sequences in the destination vector). 

Successful cloning was verified using Sanger sequencing at The Centre for Applied 

Genomics (TCAG), Toronto Hospital for Sick Children sequencing facility.

siRNA knockdown of complexed neuronal RBPs: SH-SY5Y human neuroblastoma cells 

were maintained in 50:50 DMEM/F12, 10% FBS, Pen/Strep, NEAA and L-glutamine using 

standard culturing techniques. Cells were plated (DIV0) to 6 well plates (2.0x105 cells/well) 

Pourhaghighi et al. Page 25

Cell Syst. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or 12 well plates (1.0x105 cells/well). The following day (DIV1), knockdown in triplicate 

was achieved using PepMute (SignaGen; according to manufacturer’s protocol) with 50nM 

of the following siRNA SMARTpools (Dharmacon): siGENOME Human TDP-43 
(siTDP-43, 23435), siGENOME Human HNRNPH1 (siH1, 3187), siGENOME Human 

DDX5 (siDDX5, 1655) and siGENOME Non-Targeting siRNA Pool #1 (siCtrl). Where 

appropriate, siCtrl was included so as equimolar siRNA was added to each well. After 24 

hours (DIV2), the media and knockdown reagents were removed and replaced for a total of 

72 hours knockdown before collection (on DIV4). SH-SY5Ys from 12 well plates were 

collected and lysed in RIPA buffer (50mM Tris pH7.4, 150mM NaCl, 2mM EDTA, 1% 

NP-40, 0.1% SDS, 0.1% sodium deoxycholate, 1mM PMSF, cOmplete PIC (Roche)) and the 

concentrations determined by BCA reagent. Samples were immunoblotted as above.

qPCR analysis of SORT1 Exon17b mis-splicing: Total RNA from siRNA treated SH-

SY5Ys from 6 well plates was collected using the RNeasy Minikit (Qiagen). Random 

hexamer primed cDNA was generated using the High Capacity cDNA Reverse Transcription 

Kit (Thermo). qPCR was performed using iQ SYBR Green Supermix (Bio-Rad) to detect 

ACTB (NM_001101.3), total Sortilin 1 (Prudencio et al., 2012) (NM_002959.6; SORT1total; 

Ex15_F 5’-TCCATCTGCCTCTGTTCCCTG, Ex16_ 5’-

GGTGTTCTTCTCTTCCGTACAGACAA), SORT1WT (omitting exon 17b; Ex17_F 5’-

TGGGGTAAATCCAGTTCGAG, Ex17-18_R 5’-GACTTGGAATTCTGTTTTTCCGGAC) 

and SORT1+17b (including exon 17b; Ex17b_F 5’-AATCCAGCTCTGCCTCCTCT, Ex18_R 

5’-TCCCACGATGGCCAGGATAA). Sample transcripts were normalized to ACTB levels 

then to the mean of the siCtrl treated group. Plotting and ANOVA with Tukey’s multiple 

comparison posthoc statistical analysis was performed using GraphPad.

QUANTIFICATION AND STASTICAL ANALYSIS

Data analysis—MS1 intensity elution profiles of 550 fractions from 5 experiments were 

determined by searching the spectra with MaxQuant version 1.6.0.16 (Tyanova et al., 2015) 

against the UniProt reviewed Mus musculus proteome protein sequence database (version: 

Feb 21, 2017, (The UniProt Consortium, 2017), number of sequences: 50,915). Searches 

were performed with fragment ion mass tolerance of 20 ppm, maximum missed cleavage of 

2. Oxidation of methionine was considered as variable modification. The false discovery was 

controlled using a target/decoy approach with false discovery level set to 1%. Only protein 

groups identified with at least two or more peptides (sum of razor and unique) in more than 

one fraction were carried forward in the analysis. This resulted in the detection of 4,134 

proteins. To increase protein coverage we ran additional database searches using 3 more 

search algorithms (X!Tandem, MSGF+, and Comet) subject to the same parameters as given 

above. The results of these 3 search engines were integrated using the MSblender integration 

tool which led to the identification of 8,075 proteins. Since the results were obtained in the 

form of MS2 spectral counts, an in-house script was developed to extract MS1 intensities. 

Three utilities were developed to extract MS1 intensity data. The first pair of programs 

scanned the X!Tandem, MSGF+ and Comet search results, producing a list of peptides 

identified for each fraction by a given search engine along with a range of scan numbers for 

each combination of identified peptide and precursor ion charge state. The range of scan 

numbers consisted of the lowest and highest scan numbers of MS2 spectra for which the 
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peptide was considered identified. The third program read each list and scanned the 

associated spectra file, extracting and reporting the highest MS1 peak intensity within plus 

and minus 10 ppm of the precursor peak m/z for (1) the MS1 spectrum immediately 

preceding the range, (2) the first MS1 spectrum following the range, and (3) each MS1 

spectrum between.

Both sets of MS1 intensities were run through the EPIC prediction tool (Hu et al., 2019) to 

predict PPI and complexes. Correlation scores were calculated for each experiment using 5 

different methods (Euclidean, Bayes, Jaccard, Apex and Mutual information) and 15 

additional functional annotation features were included to boost performance and PPI 

prediction. 678 complexes from GO, IntAct and CORUM (Table S2) were used as the 

reference set for training the data through machine learning to predict PPI. Complexes were 

predicted using ClusterOne (Nepusz et al., 2012)and benchmarked against a set of 78 brain 

specific reference complexes obtained from CORUM for mouse and other orthologs 

(Human, Rat, Bovine, Rabbit, and Pig; Table S2).

Given that subunits of a complex should reproducibly co-elute, chromatographic profile 

similarity is taken as a proxy for physical association. We applied machine-learning 

procedures to capture and weigh different features from the biochemical data (Hu et al., 

2019). The results from each fractionation were processed by random forest classifier 

trained on experimentally-verified co-complexes PPIs from public curated databases to 

assign PPI confidence scores (CORUM (Ruepp et al., 2010), IntAct (Orchard, Ammari et al. 

2014), GO (Ashburner et al., 2000). To maximize coverage and accuracy, we integrate 

supporting functional association evidence in the random forest step. After generating a high 

confident co-elution network we used ClusterONE to generate a set of stable protein 

complexes from the co-elution network. See below for a more detailed description of each 

set of the data analysis pipeline and how the model evaluation was conducted (Nepusz et al., 

2012).

Removing low scoring proteins—To ensure proper quality across different co-elution 

experiments we integrated two preprocessing steps: a) removing low scoring proteins, and b) 

normalizing peptide counts. Both of the filtering steps treated each coelution experiment as 

an individual entity and we merged all experiments at a later stage. First, we removed all 

proteins for which peptides were observed in one fraction only. For example, if protein A 

was only observed in fraction 21 in a co-elution experiment that protein was discarded. We 

justify this filtering based on the fact that calculating any kind of co-elution is impossible for 

a protein with exactly one observation. We observed that some fractions contain more 

peptide than others, to minimize this fraction bias we performed a column-wise 

normalization followed by a row-wise normalization. In the column-wise normalization, we 

divided the number of identified peptides for each protein for each fraction by the total 

number of peptides in that fraction. For row wise normalization, we divided the number of 

peptides of a protein in a specific fraction by the total number of identified peptides of that 

protein.

Co-elution scores—We expect proteins that are physically interacting will co-elute in our 

fractionation experiments and thus the elution profile of interaction proteins should be 
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similar. To measure this relationship we deploy several methods that capture elution profile 

similarity. At its core, these methods are different correlation metrics that are tuned to 

measure different aspects of correlation. In the formulas for each correlation metric: pa,pb 

denote protein a and protein b in the same co-fractionation experiment, N denotes the total 

number of proteins and M is the total number of fractions.

Euclidean Distance—The Euclidean distance denotes the distance of two vectors (or two 

points) in a high-dimensional space (also known as 2-norm). The two points, for which the 

distance is calculated, represent the protein pair and the number of fractions is the dimension 

of the space to which the Euclidean distance applies. The Euclidean distance feature uses 

normalized counts and lies between 0 and the square root of 2, where identical elution 

profiles have a distance of 0 and elution profiles that differ greatly have a distance close to 

square root of 2.

Bayes correlation—In this work, we integrated a novel method (Sanchez-Taltavull et al., 

2016) that utilizes a Bayesian framework for calculating correlation scores between two 

MS2 spectral counts based vectors. Originally, this method was proposed to process RNA-

Seq gene expression data that is based on sequence counts for various genes under various 

conditions. Here we propose to use the same method for protein peptide counts for various 

proteins across various biochemical fractions. The main advantage of the Bayesian 

correlation over Pearson correlation is that it considers both measured signal magnitudes and 

associated uncertainties in those magnitudes. Thus, Bayesian correlation will retain high 

correlation values if the measurement confidence is high and will prevent high correlation 

values when the measurement confidence is low. Moreover, it was shown that the Bayesian 

correlation could be used as a kernel in any kernel based machine-learning method, such as 

support vector machines, which makes Bayesian correlation a useful feature for our co-

fractionation pipeline. To integrate Bayesian correlation we downloaded the R script (http://

www.perkinslab.ca/sites/perkinslab.ca/files/Bayes_Corr.R) and integrated into the python 

pipeline using the rpy python package that allows the import of R code into python. 

Bayesian correlation calculation scores support three different assumptions of how the priors 

distributed: uniform, Dirichlet-marginalized and zero count-motivated. Zero-count was used 

here, as it performed better than the others (unpublished data).

Mutual information (MI)—Mutual information (MI), unlike linear correlation metrics 

such as PCC, considers information about both linear and nonlinear dependencies. The 

initial step in calculating MI is to binarize the spectral count vector elements into ‘with 

protein’ and ‘without protein’, since mutual information measures statistical dependence 

between the two given proteins based on their relative co-elution frequency (% co-eluted 

fractions) and each protein’s individual relative frequency (% fractions containing the 

respective protein). We binarize the elution matrix by temporarily changing each protein 

peptide count to 1 if there were spectral counts observed in the fraction and to 0 if not. Thus, 

P(pa =1) denotes the individual relative frequency of pa, which is calculated by dividing the 

total number of fractions with value 1 for protein pa by the total number of fractions in the 

corresponding cofractionation experiment. Whereas, the joint relative co-elution frequency 

of protein pa and pb named P(pa =1, pb =1) is calculated by counting the total number of 
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fractions that contain both pa and pb and dividing this number by the total number of 

fractions. MI is calculated as follows:

MI(pa, pb) = H(pa, pb) − H(pa) − H(pb)

In the formula above, H(pa) denotes the entropy of protein a and H(pa, pb) the joint entropy 

with the following formulas:

H(pa) = − ∑
i

{0, 1}
P (pa = i) ∗ log2(P (pa = i))H(pa, pb)

= − ∑
j

{0, 1}
∑
i

{0, 1}
P (pa = i, pb = j) ∗ log2(P (pa = i, pb = j))

Jaccard score—Jaccard score computes the ratio of how often proteins are eluted in the 

same fractions and how often proteins are eluted in different fractions. Thus the Jaccard 

score between two proteins is calculated by counting the number of fractions that contain 

both proteins and dividing by the number of fractions that have at least one of the two 

proteins.

Apex—Most proteins tend to elute only at a specific time, and thus the fraction that 

contains the largest amount of a particular protein is also the most critical fraction for the 

given protein. Thus, two proteins are considered to be more likely to interact with each other 

if the fractions that have the largest amount of proteins across all fractions are the same. 

Based on this assumption, the previous co-fractionation experiments utilized the co-apex 

score, which scores protein co-elution profiles highly if their respective peak fraction is the 

same (apex score = 1) or not (apex score = 0).

Functional evidence—We enriched our experimental data with high quality functional 

evidence and other brain-related experiments taken from various sources. In order to prevent 

circular reasoning, we removed all evidences that used information derived from protein 

complexes. Adding functional evidence only slightly increased the composite score.

MouseNetV2—MouseNetV2 is a functional gene network for the laboratory mouse that 

combines various functional evidence from both mouse and other model organisms mapped 

to mouse (Kim et al., 2016).

Allen brain Atlas—The Allen brain atlas is a gene expression database for mouse brain 

that contains exhaustive in situ experimental data for various mouse brain regions. We 

extracted expression values for each gene for all available brain regions that are: Isocortex, 

Olfactory areas, Hippocampal formation, cortical subplate, striatum, pallidum, thalamus, 

hypothalamus, midbrain, pons, medulla, cerebellum. The expression is measured in 

expression energy, which is calculated as follows: Within a given area A (voxel or structure), 

expression energy = (sum of intensity of expressing pixels in A) / (sum of all pixels in A). 

The final interaction score is derived by calculating Pearson correlation for all protein pairs 

based on their expression energy.
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Published brain networks—We also integrated brain data from various other sources. A 

recently published work on mouse brain proteasome that contains MS expression analysis 

for 12934 proteins across major brain regions and cell types was integrated. Additionally, we 

mapped a study of the human subcellular location to their respective mouse orthologs via 

InParanoid. We calculated Pearson correlation for each protein pair in each experiment 

respectively.

RNA-Seq data—RNA-Seq data was extracted from the Gene expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/gds) using their R library, and selected using several criteria to 

extract high quality brain data. Only transcriptomic RNA-Seq data for adult mouse 

generated using Illumina HiSeq 2000 and 2500 and having as source tissue one of the 

following descriptors: brain, cortex, thalamus, striatum, cerebellum, cerebellum dentate, or 

olfactory bulb was selected. We then use the Sequence read archive (SRA) tool to map each 

GEO to their respective raw data set on the SRA. In accordance with a recently published 

Nature protocol (Pertea et al., 2016), we processed the raw RNA-Seq read data by using 

StringTie (Pertea et al., 2015) and HISAT (Kim et al., 2015) with the Ensembl (Zerbino et 

al., 2018) mouse reference genome (Mus_musculus.GRCm38.84.gtf) as an annotation 

source. Once we quantified RNA expression in each experiment, we calculated co-

expression based on those experiments using Pearson correlation.

Reference complexes—We created a comprehensive set of 678 mouse protein 

complexes by extracting known protein complexes from CORUM, IntAct, and GO. We 

downloaded a recent set of complexes from CORUM and only kept those complexes 

annotated with biochemical evidence. We further expanded this set by adding experimentally 

verified mouse protein complexes from IntAct and protein complexes that we constructed by 

using GO annotation. GO complexes were derived by taking all genes that are annotated 

with a complex specific GO annotation. We identified them by taking all experimentally 

validated GO cellular component annotations that are a leaf annotation (lowest level, i.e. 

most specific) and are a descendent of the protein complex GO term. Genes with the same 

GO annotation are grouped together in the same complex. In the next step, we repeated the 

same procedure for Human protein complexes, followed by a strict one-to-one mapping of 

human proteins to mouse proteins using only human-mouse pairs that have a 100% 

InParanoid score (highest confidence score). After obtaining this set of complexes, we 

performed several preprocessing steps. In the first step, we removed all proteins, for which 

we have no elution profile, followed by removing all assemblies that have more than 50 

members. In an effort to eliminate redundancy we merged all protein complexes that have an 

overlap coefficient of 0.8 or more. In addition, for complex benchmarking we used a distinct 

set (i.e. not a part of the reference complexes) of 78 brain associated complexes from 

CORUM.

Positive and negative protein complexes—As in previous work (Havugimana et al., 

2012; Wan et al., 2015), we generated a set of positive co-occurring protein pairs by taking 

all possible protein pairs that were observed in the same protein complex. Negative protein 

pairs are all possible protein pairs that are never observed in the same protein complex. For 

example, we observed protein A and B are members of the same complex we consider them 
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to be part of the positive training set, and if we never observe protein A and C together in 

any of our reference complexes we would consider them to be part of the negative training 

set. Furthermore, previous studies showed that co-elution prediction works best when having 

a ratio of one to five between positive and negative protein pairs. We created that ratio of 

positive to negative training data points by under sampling negative protein pairs since there 

are considerably more negative PPIs than positives.

Model evaluation—Protein complexes consist of multiple proteins and determining if two 

complexes are matching is a non-trivial problem. The most common way of measuring it is 

using the overlap coefficient. The overlap between two protein complexes A and B is 

calculated as follows (note that |A| denotes the number of proteins in complex A):

O(A, B) = A ∩ B 2
A ∗ B

We defined two protein complexes as matching when the overlap score between them is 

larger than 0.25 since two clusters of the same size would have this score if the intersection 

set is half of the complex size.

Additionally, we calculated prediction sensitivity, accuracy, positive predictive value, and 

cluster separation (Brohee and van Helden, 2006). For the following scores, we considered 

a1,...,ai,..,am predicted complexes, which we compared to a set of b1,..,bj,..,bn reference 

complexes, and Ti,j denotes the number of proteins that were found in both complexes i and 

j.

Sensitivity (Sn): the fraction of proteins in predicted complexes that were found in reference 

complexes.

Sn =
∑i = 1

n maxj = 1
m ti, j

∑i = 1
n bi

Positive predictive value (PPV): indicates how specific and complete the predicted 

complexes match the reference complexes. A score of 1 indicates that each predicted 

complex only overlaps with exactly one reference complex, and a low score indicates low or 

redundant overlap with the reference.

PPV =
∑j = 1

m maxi = 1
n Ti, j

∑j = 1
m ∑i = 1

n Ti, j

Accuracy (Acc): shows the trade-off between PPV and Sn.

Acc = Sn ∗ PPV
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Maximum matching ratio (MMR): The MMR was developed to cope with some of the 

limitations of the PPV. PPV tends to be lower if there is substantial overlap in the reference 

data (Nepusz et al., 2012), but those overlaps are common in biological data sets such as 

CORUM. Our merging step only removes highly overlapping clusters, but smaller overlaps 

are still present. Thus, even if EPIC perfectly predicts the reference complexes it will not 

achieve a score of 1 for PPV and Sep (clustering-wise separation score suggested previously 

by (Brohee and van Helden, 2006)). MMR addresses this problem:

MMR =
∑i = 1

n maxi = 1
m O ni, mj

maxi = 1
n O(ni, m) > 0

As established by others (Nepusz et al., 2012), we summarized MMR, overlap score, and 

accuracy to create the composite score, and we considered the parameter combination with 

the highest composite score to be the best combination.

Cross fold evaluation—Our primary goal was to accurately infer stable protein 

complexes from the experimental data in order to properly evaluate our performance. 

Therefore, we measured how well we could reconstruct known reference complexes from 

our experimental data. We performed a two-fold cross validation to ensure that we have the 

same amount of complexes for training and validation. To train the model we first split our 

set of reference complexes 50:50 and then generated positive and negative PPIs for one set 

and then trained a random forest model to distinguish them. Next, we predicted all PPIs for 

which we have elution data and retained all PPIs pairs with a random forest score greater 

than 50%. We then generated protein clusters from these interactions using ClusterOne with 

default parameters. The performance was evaluated using overlap score, MMR, and 

accuracy of those predicted clusters against the separate set of brain specific reference 

complexes. To perform an extensive benchmark, we tried out all possible combinations of 

co-elution scores and found the best result using Apex, Jaccard, Bayes, Euclidean distance, 

and mutual information. We performed a global optimization to select the elution profile 

correlation metrics that generated the highest composite score. We also noted that adding 

functional evidence considerably increased the composite score.

Scored protein co-fractionation networks were calculated by correlation analysis (Apex, 

Jaccard, Bayes, Euclidean distance, and mutual information) based on the protein intensities 

recorded across each set of fractions (STAR Methods). Weighted networks were constructed 

based on functional evidence reported in MouseNet v2 (Kim et al., 2016) omitting 

mammalian protein interaction data to minimize circularity that might bias our association 

predictions. For the machine-learning classifier, we used the Fast Random Forest 

implementation (STAR Methods) to integrate all generated networks. Cross-validated 

decision trees were learned and benchmarked using independent training and test sets of 

reference complexes (Ruepp et al., 2010) (STAR Methods). Clusters were defined using 

ClusterONE parameter settings maximizing the bipartite matching ratio between the 

predicted complexes and set of cluster-training complexes (STAR Methods).
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Random forest cut-off—The final output of the random forest returns a confidence score 

on how likely two proteins are interacting based on their functional evidence and their co-

elution. This score ranges between 0 and 1, and we would only consider two proteins to be 

interacting if they have a score of at least 0.5. Higher cut-off results in better composite 

scores and better-predicted complexes, but at a cost of reducing the number of complexes 

predicted. To explore the effects of this parameter, we evaluated prediction performance for 

each random forest score cutoff between 0.5 and 1 for two fold evaluation. We observed a 

steady increase in scores for cut-off scores 0.5 to 0.683, with a drop in MMR and accuracy 

for higher cut-offs. At the same time, we see an increase in overlap score, which in turn 

causes a significant increase in composite score. We see that the number of PPIs and 

predicted clusters declines for higher cut-off and the jump in overlap score is most likely 

caused by over fitting. Thus, we select a random forest confidence score cut-off of 0.683.

Classification of BraInMap complexes—There are many metrics for measuring cluster 

agreement (overlap), but none is universally accepted in the field. To define novelty in a 

stringent and transparent manner, we applied 6 independent similarity measures reported in 

previous interactome publications. These include the Jaccard, Sorensen-Dice, Anderberg, 

Ochai (Meyer et al., 2004), and Overlap scores (Nepusz et al., 2012), and the 

hypergeometric distribution, to define the overlap between our predicted protein complexes 

and known assemblies in CORUM. Though these established similarity metrics gave 

generally similar results (Figure S1B), they did not account for instances wherein the 

subunits of a small (known) complex were found as part of a larger predicted assembly. 

Hence, to address this shortcoming, we then calculated an average matching index (AMI) 

that looked at overlaps with respect to both the vantage of the annotated and the predicted 

complex as follows:

Average matcℎing index (AMI) = (p ∩ k)
p + (p ∩ k)

k

where p and k represent the number of subunits in predicted and known complexes 

respectively and (p ∩ k) the number of subunits present in both.

As both a pragmatic and stringent solution, we classified putative complexes with an average 

matching index ≥ 0.5 as “annotated”, those between ≥ 0.25 & < 0.5 as “previously reported 

assemblies with new subunits”, and finally only those complexes with < 0.25 average 

matching index that are also not statistically significant (p-value > 0.05) by hypergeometric 

test as “novel” (Figure S1C).

Selection of neurological and other disease annotation—Neurological and other 

disease associations for BraInMap complexes were compiled from disease annotations in 

DisGeNET 5.0 (Pinero et al., 2017). We used high quality curated associations obtained by 

applying stringent filtering to exclude associations with EI (Evidence Index) < 0.9 and 

DisGeNET score < 0.005. (Figure S1E), to map 1710 members of BraInMap complexes to 

various neurological diseases (Table S8).
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Enrichment analysis—Enrichment analysis was carried out with Gene Ontology (GO) 

version 1.2 (downloaded on 2019-03-07), and mouse gene associations downloaded from 

Gene Ontology (Ashburner et al., 2000). A subset of the gene ontology comprising ~3,221 

GO terms were defined using goslim synapse and selected neuronal terms for enrichment. 

Interaction space was constrained to only those interactions between pairs of proteins that 

were observed both in our high-confidence PPIs and in the target annotated dataset.

Over-representation analysis of gene ontology terms was performed using the Cytoscape app 

BiNGO Version 3.0.3 (Maere et al., 2005). Enrichment for each annotated term among 

genes in each of the 1030 complexes was calculated using the hypergeometric test (p < 0.05) 

with Benjamini-Hochberg FDR correction, using genes in our high confidence network as 

the reference set.

Gene set enrichment analysis (GSEA) (Subramanian et al., 2005) of brain regions and cell 

types was performed to determine brain-specific and cell type specific complexes in 

BraInMap. In each case, our 1030 complexes were used as gene sets. To determine brain-

region specificity we used normalized protein intensity data from regional mouse brain co-

fractionations performed in our lab (see STAR Methods below) restricted to proteins in our 

high confidence network, while for cell type specificity we used the sc-RNA-Seq gene 

expression data from mouse brain (Zeisel et al., 2018). Average normalized CPM values 

were computed using the edgeR package for R (Robinson et al., 2010) and grouped into 

representative neuronal and non-neuronal cell types. The gene expression data was again 

constrained to genes present in our high confidence network. Results were visualized using 

the Cytoscape Enrichment map app and hierarchical clustering.

Enrichment of Neurodevelopmental disorder-related genes in BraInMap PPI 
network—The overlap between a given gene set and our network genes was evaluated 

using a binomial model

X ∼ Binomial(n, p)

Where:

n is the number of genes in the gene set being examined

p is the probability of observing a random protein-coding gene in our brain PPI 

network, which is calculated as the fraction of 2,304 genes in the network over all 

20,210 mouse protein-coding genes (The UniProt Consortium, 2017).

Domain enrichment—Domain architectures for all mouse proteins were obtained from 

PhyloPro 2.0 (Cromar et al., 2016) for the longest peptide associated with each gene. 

Domain predictions are based on Hidden Markov Models of curated seed alignments 

comprising Pfam A Domains and Families. To avoid frequency biases, all architectures were 

stripped of domain repeats using a custom Perl script (e.g. AABBAAA becomes ABA). The 

resulting architectures were then used to determine domain pairs as follows. Domain 

architectures within proteins were determined by ordering domains by sequence start site 

and creating adjacent pairs. These were used to define brain specific pairs as seen in the 
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overlap analysis (see below). Domain architectures within complexes were compared to 

produce all possible combinations of cross-protein domain pairs, ignoring adjacent domains. 

For example, comparing ABC to DEF would yield AD, AE, AF, BD, BE, BF, CD, CE, CF 

but not AB, BC, DE or DF). We did this because, at the complex level, we were interested to 

discover domain associations’ particular to the complex rather than the proteins themselves. 

Neurologically associated domains are defined as those appearing in proteins that are 

annotated to one or more neurological diseases. To determine unique brain and 

neurologically associated domains, an overlap analysis was performed as follows. A list of 

domains in each complex was obtained by pooling the domain architectures of proteins in 

each complex. This was also done for complexes in the assembly CORUM, Havugimana et 

al. (2012), and Wan, Borgeson et al. 2015 data sets. These lists were compared using (http://

bioinformatics.psb.ugent.be/webtools/Venn/) to determine domain overlaps between the four 

data sets and identify domains unique to the brain. Brain specific and neurologically 

associated proteins were determined similarly. To determine statistical significance of 

features, we constructed 10,000 random data sets consisting of complexes of the same size 

as the real data set by selecting random genes (and their associated domain architectures) 

from a list comprising all mouse proteins with domain predictions. Custom Perl scripts were 

used to calculate the frequency of specific proteins, domains and domain pairs for the real 

data set and compare them with the sum of frequency of occurrences in the random 

networks, counting a score of 1 for each random network in which the protein, domain or 

domain pair was present as frequently or more frequently than in the real network. For the 

domain similarity network (Main Figure), domains and domain pairs were classified as 

either brain specific (b), neurologically associated (n) or non-brain specific (nb) and 

enrichments were determined by category. The p-value is the ratio of the real frequency to 

the score of the random frequencies. Network construction and visualization was done in 

Cytoscape.

Phylogenetic conservation of complexes—Ortholog predictions for all proteins were 

obtained from PhyloPro 2.0 (Cromar et al., 2016) and clustered using Cluster 3.0 (City 

Block, Complete Linkage) to group proteins with similar phylogenetic conservation patterns 

across 164 taxa. Taxa were phylogenetically arranged and grouped into: Eukaryotes, 

Opisthokonts, Metazoans, Vertebrates, and Mammals. Within each group, we scored the 

presence or absence of an ortholog prediction for each gene and used an unbiased, consensus 

approach to predict gene origin. To account for gene losses in some clades within a group 

we defined an arbitrary cutoff of 30% representation as a requirement to score a gene as 

being present within a group. To determine whether the group comprising novel complexes 

was enriched for proteins of a particular age category versus the group comprising non-novel 

complexes, the assignment of complexes to novel or non-novel groups was randomly 

shuffled and the frequency of proteins of different ages was compared between real groups 

versus 10,000 random assignments. A tally was kept in which the frequency of proteins in an 

age category equaled or exceeded the frequency in the real group.

DATA AVAILABILITY

All raw proteomic (co-fractionation) data from this work is submitted to the PRIDE 
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with the data sharing policy. Codes used in generating the results are described above in 

detail.
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Highlights

• BraInMap is a global proteomic survey of over 1000 multi-protein brain 

complexes.

• Near native complex identification by CF/MS and reconstruction by computer 

learning.

• Technique interrogates complexes in normal and pathophysiological context.

• Allows study of functional modules that are adversely affected in neurological 

diseases.
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FIGURE 1 –. Integrative workflow used to generate the mammalian Brain Interactome Map 
(BraInMap)
A Multi-pronged biochemical fractionation (high performance ion exchange 

chromatography, HPLC-IEX; isoelectric focusing, IEF; fraction numbers in brackets) of 

soluble macromolecular assemblies from mouse brain extracts.

B Hierarchical clustering of protein co-fractionation intensity profiles recorded by precision 

liquid chromatography-tandem mass spectrometry (LC-MS/MS); (right) neuronal (top) and 

housekeeping (bottom) components highlighted.

C Enrichment analysis (DAVID (Huang da et al., 2009)) of representative tissue annotations 

(UniProt) for proteins detected in this work relative to previously published interactome 

studies.

D Schematic depicting steps in the integrative BraInMap computational scoring pipeline: 

calculation of protein similarity (correlation) metrics, integrative classifier training (EPIC 

machine learning; (Hu et al., 2019)) and scoring of co-fractionation data (this study) and 

supporting (public) evidence to predict high-confidence co-complex interactions, followed 
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by network partitioning, benchmarking and meta-analysis (pathobiological relevance) of the 

predicted complexes.

E Enrichment of interacting (co-eluting) brain proteins relative to random pairs for high 

functional similarity based on association scores reported in MouseNet (v2) (Kim et al., 

2016)

F Enrichment of orthologs of interacting mouse brain proteins relative to random pairs for 

high functional association scores in HumanNet (v2) (Hwang et al., 2019).
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FIGURE 2 –. Benchmarking reveals diverse, evolutionarily conserved brain complexes
A Precision Recall (PR) analysis of predicted (EPIC score) co-complex interactions (CORE 

+ EXPANDED) benchmarked against an independent (holdout) set of brain-derived 

reference assemblies establishes a false discovery rate (FDR) of 11%.

B Benchmark quality metrics of putative complexes (this work) versus other interactome 

maps. Bar length reflects total composite score, calculated as the sum of complex maximal 

matching ratio, overlap, and accuracy (see STAR methods) relative to select reference 

curated brain macromolecules.

C Bar chart of categorized complexes (partial or complete match to annotated assemblies vs 
novel).

D Highly significant (hypergeometric p-values) overlap of predicted complexes with 

annotated assemblies compared to randomized protein sets.

E Schematic of protein assemblies in BraInMap, sorted according to novelty, showing the 

distribution of neuron-associated components (purple).
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F ROC analysis of predicted co-complex interactions showing high agreement with 

previously reported high confidence orthologous human protein interactions in the InWeb 

database (Li et al., 2017).

G Enrichment of human orthologs of BraInMap complex subunits relative to randomized 

protein pairs for highly correlated co-fractionation profiles of SHSY5Y neuronal cell 

extracts.

H Enrichment of human orthologs of interacting proteins in BraInMap relative to random 

pairs for high functional ‘co-fitness’ scores (Pan et al., 2018).

I Median expression of orthologs of BraInMap components during development of the 

human cortex; lines indicate levels of all interacting components (red) versus the subset 

associated with risk for schizophrenia (olive)(Schizophrenia Working Group of the 

Psychiatric Genomics et al., 2014), autism (green)(Sanders et al., 2015), or other 

neurodevelopmental disorders (cyan)(Deciphering Developmental Disorders et al., 2017), as 

compared to random proteins (magenta).

J Schematic of protein domains enriched in BraInMap. Complexes (nodes) sharing two or 

more domains are joined according to overlap (Jaccard Index). Colors reflect the proportion 

of domains restricted to brain (blue) or linked to neuropathology (red). Highlighted bipartite 

subnetwork shows relationship between subunits (ellipses) and domains (diamonds) of a 

representative assembly (complex 20).

K Annotation enrichment (DAVID; (Huang da et al., 2009) in BraInMap relative to previous 

interactome studies: Gene Ontology (i) cellular component or (ii) biological process terms, 

or (iii) PFAM domains (Finn et al., 2016).
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Figure 3 –. Regional- and cell-type selective macromolecules
A Schematic of 10 mouse brain regions subjected to quantitative proteomic profiling and 

biochemical (HPLC-IEX) fractionation in parallel.

B Representative chromatograms and isobaric (TMT) labeling of fractionated regional 

assemblies.

C Highly significant (hypergeometric) agreement between the regional abundance patterns 

recorded by quantitative profiling versus co-fractionation of BraInMap components (derived 

by whole tissue analysis) as compared to randomized protein sets.

D Complex subunits with highly correlated regional co-fractionation profiles also show 

significantly co-enrichment (hypergeometric p-value ≤ 0.05, relative to randomized protein 

pairs) in the same brain compartments as determined by quantitative proteomics (E).

E Heatmap clustergram showing complex regional specificity (enrichment P-value ≤ 0.01 by 

Kolmogorov–Smirnov test) as measured by quantitative proteomics.

F Heatmap clustergram of complexes showing preferential (P ≤ 0.01 by KS test after 

normalization) component mRNA expression in neuronal versus non-neuronal cell classes 

based on recently published mouse brain scRNA-seq data (Zeisel et al., 2018).
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G Representative complexes displaying regional (proteomic) and neuronal cell-type 

(scRNAseq) specificity. Highlighted (red) nodes represent subunits associated with 

neurological disorders.
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FIGURE 4 –. Compartmentalized brain protein assemblies
A BraInMap assemblies enriched for select neuronal functions (GO annotation terms).

B Protein complexes (circles; size proportional to subunit number) enriched for synaptic 

functions (hexagons). Red outlines indicate links to neurological disorders (examplars 

shown at bottom).

C Protein complexes enriched for mitochondrial (Mt.) functions.
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Figure 5 –. BraInMap identifies complexes with diverse functions
A BraInMap complexes enriched for RNA-binding (dashed box), other annotation terms 

(purple), and disease associations (orange).

B Sub-network of RNA-related complexes (olive); outline (red) indicates a link to 

neurological disorder.

C Putative module (complex 22), composed of 28 RBPs (orange) with links to ALS (red).

D Co-Immunoprecipitation (Western blot) analysis of endogenous Tdp-43 confirms physical 

associations with Hnrnph, Ddx5, and Tia1 (doublet). Lysate and replicate pulldowns 

provided; no non-specific signal observed using rabbit or mouse IgG (IgG −ve).

E Co-IP analysis of endogenous Hnrnph confirms interactions with Tdp-43, Ddx5, Tia1, and 

FUS/TLS.

F Complex 168 (Tdp-43 co-complexed with Elavl2/3/4, Ewsr1, Fam98a, Dhx36, 

Hnrnpul2,Mdth, Prpf3).

G Reciprocal co-IP analysis confirms the association of Mtdh with Tdp-43 in the mouse 

brain.
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FIGURE 6 –. RBP complexes are affected in ALS models
A Complex 22 is responsive to neuropathology. Volcano plot summarizing results from co-

IP pulldowns of exogenous TDP-43 from cortical lysates from diseased (TDP-43WT/WT) 

versus protected (TDP-43WT/WTAtxn2[+/−]) transgenic mice. Precipitates were subject to 

quantitative mass spectrometry to define differential binding to pathogenic TDP-43 (> 

±0.50x Log2-fold, −Log10 P < 1, highlighted in green). Interaction of Hnrnph1, Ddx5 and 

Ddx17 significantly reduced in protected animals (n = 4 per group, students t-test P ≤ 0.05).

B Gene ontology molecular function annotations of proteins showing (i) decreased 

interaction and (ii) increased interaction with transgenic TDP-43 in protected 

TDP-43WT/WTAtxn2[+/−] murine brain. Shown are terms with FDR−1 >20.

C Confocal immunofluorescent microscopy showing a redistribution of Complex 22 RBPs 

(Hnrnph1, Ddx1, Ddx5, Ilf3) into human TDP-43 positive cytoplasmic accumulations 

(arrows) in affected cortical neurons of transgenic TDP-43WT/WT mice, which is not seen in 

wild type animals. Scale bar = 20μm.

Pourhaghighi et al. Page 52

Cell Syst. Author manuscript; available in PMC 2021 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D The relative brain region expression pattern of Tardbp (TDP-43; dark blue line) closely 

mirrors the mean expression complex 22 expression (red line). Other RBP components are 

traced in pink.

E Knockdown (siRNA) of TDP-43 or TDP-43/DDX5 together results in the inclusion of 

Exon 17b of sortilin1 (SORT1) in SH-SY5Y cells (quantified by qPCR), whereas 

knockdown of interacting partner HNRNPH1 blocks this effect. Graphs show ratio (mean ± 

SEM) of SORT1 transcripts with/without exon17b (SORT1+Ex17b vs SORT1WT); n = 3 per 

group (ANOVA with Tukey’s multiple comparison between all groups: * P < 0.05, ** P< 

0.01, *** P < 0.001).

F Model of TDP-43 and DDX5 interaction illustrates coordinate inhibition of SORT1 Ex17b 

inclusion, dependent upon joint association with HNRNPH1.

G Structural model of mutations in residues of TDP-43 linked to familial ALS (A315T, 

G287A, G368A, W385G, A382T) that map to the interaction interface with MTDH.

H Co-IP analysis showing a reduced association of MTDH in SH-SY5Y cells expressing 

FLAG-tagged TDP-43 with ALS-relevant mutations at the predicted interaction interface.

I TDP-43 interaction with MTDH is abrogated in ALS-patient-derived fibroblasts carrying a 

pathogenic mutation (A382T), as compared to fibroblasts from a healthy control.
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FIGURE 7 –. Macromolecular links to neurological disorders
A Putative pathophysiological relevance of complexes in BraInMap. Proportion (purple) of 

subunits of each assembly linked to neurological impairment (see Table S6 for details).

B Number of BraInMap components (orthologs) and corresponding human genetic variants 

associated with specific neuropathologies (see Table S5).

C Enrichment (hypergeometric p-value) of complex subunits with links to neuropathology 

as annotated in DisGeNET (Pinero et al., 2017).

D Representative complexes associated with Alzheimer’s (magenta), autism (yellow), 

amyotrophic lateral sclerosis (red), epilepsy (green), Down syndrome (olive), Charcot-

Toothe-Marie syndrome (orange), Parkinson’s (blue), or other neurological disorders 

(purple).

E Enrichment of genes encoding BraInMap components harboring de novo variants for (i) 
haploinsufficiency (pHI) and (ii) pLI (probability a gene is intolerant to loss of function 

(LoF) mutations) versus synonymous variants in affected individuals in comparison to 

unaffected controls; (iii) network degree and (iv) betweeness of genes with de novo LoF/

missense or synonymous mutations in neurodevelopmental disorder afflicted individuals or 
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unaffected controls. Violin plot width proportional to protein abundance (red dot, median); 

P-values (one-tailed U-test; P< 0.05 in bold) shown at the top.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

(mouse) anti-Tdp-43 Ling Shuo-Chien FL4

(rabbit) anti-hnRNP-H Bethyl Labs A300-511A

normal mouse IgG Santa Cruz sc-20-25

rabbit control IgG Proteintech 30000-0-AP

(rabbit) anti-DDX5 Abcam ab21696

(rabbit) anti-FUS/TLS Proteintech 11570-1-AP

(goat) anti-TIA-1 Santa Cruz sc-1751

(rabbit) anti-TDP-43 Proteintech 12892-1-AP

(goat) anti-hnRNP H Santa Cruz sc-10042

(donkey) anti-mouse-HRP Jackson Immuno 715-035-150

(donkey) anti-rabbit-HRP Jackson Immuno 711-035-152

Streptavidin-HRP Jackson Immuno 016-030-084

(mouse) anti-TARDBP Abnova H00023435-M01

(rabbit) anti-TDP-43 phosph-S409/410 Lab of Leonard Petrucelli

(rabbit) anti-DDX1 ProteinTech 11357-1-AP

(rabbit) anti-ILF3 Bethyl Labs NF90/NF110 Antibody, A303-121A

(rabbit) anti-U2AF2 Novus Biologicals NBP2-04138

(rabbit) anti-Histone H3 Abcam ab18521

(chicken) anti-MAP2 Aves MAP2

(chicken) anti-NeuN EMD ABN91

Anti-TARDBP Santa Cruz Cat# sc-376532

Anti-MTDH (LYRIC) Abcam Cat# ab227981

TMT10plex Isobaric Label Reagent Set plus 
TMT11-131C Label Reagent Thermo Fisher Cat# A34808

Pierce™ Trypsin Protease, MS Grade Thermo Fisher Cat# 90057

Sep-Pak C18 1 cc Vac Cartridge, 50 mg Sorbent per 
Cartridge, 55-105 μm Particle Size Waters Cat# WAT054955

Thermo Scientific™ EASY-Spray™ HPLC Column Thermo Fisher Cat# ES805

Bacterial and Virus Strains

DH5α competent cells Thermo Fisher Scientific Cat# 18255017

E. coli NEB stable New England Biolabs Cat# C3040I

Biological Samples

Control fibroblast (code: pz2) I IRCCS, Neurology and Laboratory 
of Neuroscience

Female; Mutation: none; age at biopsy-45 
yrs; Healthy

Mutant TARDBP fibroblasts (code: A577 MF) IRCCS, Neurology and Laboratory of 
Neuroscience

Male; Mutation TARDBP p.A382T; age at 
biopsy-56 yrs.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

DL-Dithiothreitol Millipore Sigma Cat# D0632

Iodoacetamide Millipore Sigma Cat# I6125

Urea Fisher Cat# BP169

PhosSTOP™ Millipore Sigma Cat# PHOSS-RO

cOmplete™, Mini, EDTA-free Protease Inhibitor 
Cocktail

Millipore Sigma Cat# 11836170001

Triethylammonium bicarbonate buffer Millipore Sigma Cat# T7408

Formic Acid, 99.0+%, Optima™ LC/MS Grade, Fisher 
Chemical

Fisher Cat# A117

Acetonitrile, Optima™ LC/MS Grade, Fisher Chemical Fisher Cat# A955

Ammonium Hydroxide, ACS Reagent Grade, 
28.0-30.0% as NH3

Fisher Cat# RABA0020500

Critical Commercial Assays

Pierce™ Quantitative Colorimetric Peptide Assay Thermo Scientific Cat# 23275

Pierce™ BCA Protein Assay Kit Thermo Scientific Cat# 23225

Deposited Data

Protein sequences UniProt Consortium PMID: 29425356

Reference complexes CORUM PMID: 19884131

Reference complexes IntAct PMID:24234451

Reference complexes GO PMID: 10802651; PMID: 27899567

Reference complexes Metazoan PMID: 26344197; PMID: 26870755

Reference complexes Human soluble PMID: 22939629

Functional evidence Mouse Net v2.0 PMID: 26527726

Functional evidence Human Subcellular localization PMID:28495876

Functional evidence Cell type and brain region – Mouse 
brain Proteome

PMID:26523646

Functional evidence Allen Brain Atlas – Mouse brain PMID: 17151600

Functional evidence RNA-Seq from SRA PMID: 21062823

Functional evidence GeneCards PMID: 27322403

Protein abundances PAXdb PMID: 25656970

Disease association DisGenNET PMID: 27924018

Experimental PPIs AP/MS, BF/MS, Y2H PMID: 22939629; PMID: 26344197; 
PMID: 26496610; PMID: 28514442

Gene expression Sc-RNA-Seq PMID: 30096314; PMID: 30096299

RNA binding protein assignment Census of RNA binding proteins PMID: 25365966

Functional PPIs Human Net v2.0, Mouse Net v.2 PMID: 30418591; PMID: 26527726

Domains and Orthologues PhyloPro 2.0 PMID: 26980519

RNA-Seq database Gene expression Omnibus PMID: 27008011

De novo variants denovo-db v.1.5 PMID: 27907889
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REAGENT or RESOURCE SOURCE IDENTIFIER

Autism genes SFARI (Mar 5, 2018) PMID: 19015121

Population variants NHLBI ESP exome-sequencing study PMID: 23201682

Protein interaction interface Interactome INSIDER PMID: 29355848

Mouse to human gene mapping Ensemble 92 PMID: 29155950

Human PPI databases Inweb3, InWeb_IM PMID: 17344885, PMID: 27892958

Human prenatal gene expression BrainSpan PMID: 24695229

Schizophrenia risk genes PMID: 25056061

Autism risk genes PMID: 26402605

Developmental disorder associated genes PMID: 28135719

Experimental Models: Cell Lines

SH-SY5Y ATCC CRL-2266

Experimental Models: Organisms/Strains

CD1 wild type mice

C57BI/6J JAX labs 000664

TDP-43WT/WT JAX via AD. Gitler 012836; B6;SJL-Tg(Thy1-
TARDBP)4Singh/J

Atxn2[+/−] JAX via AD. Gitler 101043; B6129SF1/J

CamKCreER TDP-43 KO Gift from P. Wong Chiang et al., 2010. PMID: 20660762

Oligonucleotides

siGENOME Human TARDBP Dharmacon siTDP, 23435

siGENOME Human HNRNPH1 Dharmacon siH1, 3187

siGENOME Human DDX5 Dharmacon siDDX5, 1655

siGENOME Non-Targeting siRNA Pool #1 Dharmacon siCtrl

SORT1total_Ex15_F Life Tech. 5’-TCCATCTGCCTCTGTTCCCTG

SORT1total_Ex16_R Life Tech. 5‘-
GGTGTTCTTCTCTTCCGTACAGACA
A

SORT1WT_Ex17_F Life Tech. 5‘-TGGGGTAAATCCAGTTCGAG

SORT1WT_Ex17-18_R Life Tech. 5‘-
GACTTGGAATTCTGTTTTTCCGGAC

SORT1+17b_Ex17b_F Life Tech. 5‘-AATCCAGCTCTGCCTCCTCT

SORT1+17b_Ex18_R Life Tech. 5‘-TCCCACGATGGCCAGGATAA

ACTB_931F Life Tech. 5‘-GACAGGATGCAGAAGGAGAT

ACTB_1011R Life Tech. 5‘-GTACTTGCGCTCAGGAGGA

TARDBP-outer_Forward Millipore-Sigma CAAGATGAGCCTTTGAGAAGC

TARDBP-outer_Reverse Millipore-Sigma AGAGCTGCCAGGAAACAGC

TARDBP-G287A_ Forward
Millipore-Sigma AATCAGGCTGGATTTGGTAATAGCA

GAGGG

Cell Syst. Author manuscript; available in PMC 2021 April 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pourhaghighi et al. Page 59

REAGENT or RESOURCE SOURCE IDENTIFIER

TARDBP-G287A_ Reverse Millipore-Sigma AAATCCAGCCTGATTCCCAAAGC

TARDBP-A315T_ Forward Millipore-Sigma TTGGTACGTTCAGCATTAATCCAGCC

TARDBP-A315T_Reverse Millipore-Sigma GAACGTACCAAAGTTCATCCCACC

TARDBP-G368A_ Forward
Millipore-Sigma GCCTTCGCTTCTGGAAATAACTCTT

ATAGTGG

TARDBP-G368A_ Reverse Millipore-Sigma CCAGAAGCGAAGGCCTGG

TARDBP-W385G_ Forward Millipore-Sigma AATTGGTGGCGGATCAGCATCCAAT
GC

TARDBP-W385G_ Reverse Millipore-Sigma ATCCGCCACCAATTGCTGCACC

Recombinant DNA

pENTR-TARDBP-G287A

pENTR-TARDBP-A315T

pENTR-TARDBP-G368A

pENTR-TARDBP-W385A

pLD-puro-Cc-TARDBP-WT-VA

pLD-puro-Cc-TARDBP-G287A-VA

pLD-puro-Cc-TARDBP-A315T-VA

pLD-puro-Cc-TARDBP-G368A-VA

pLD-puro-Cc-TARDBP-W387G-VA

Software and Algorithms

Sequence database searching MaxQuant 1.5.5.1 & 1.6.0.16 PMID: 19029910

Ortholog mapping InParanoid8 PMID: 25429972

PPI Prediction EPIC PMID: 31308550

Complex prediction ClusterONE PMID: 22426491

Network visualization Cytoscape v. 3.5.1 PMID: 14597658

Gene Set Enrichment Analysis GSEA PMID: 16199517; PMID: 12808457

Enrichment analysis BinGO 3.0 Cytoscape App PMID: 15972284

Enrichment analysis DAVID Bioinformatics resource 6.8 PMID: 19131956

Hierarchical clustering Cluster 3.0 PMID: 14871861

Cluster visualization Java TreeView v 1.1.6r4 PMID: 15180930

Hypergeometric test R function Stats: R package

RNA-Seq data analysis R function edgeR: R Package

RNA-SEQ analysis StringTie PMID:25690850

RNA-SEQ analysis HiSAT PMID:25751142

Binomial test Scipy function Python package

Mann-Whitney U test Scipy function Python package

Network analysis NetworkX Python package

PIPER Schrödinger, LLC Protein-protein docking
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REAGENT or RESOURCE SOURCE IDENTIFIER

ITASSER Protein structure and function 
prediction PMID: 25549265

Plots R function ggplot2: R package

Venn diagram R function VennDiagram: R package

Overlap analysis Venn Draw Tool http://bioinformatics.psb.ugent.be/
webtools/Venn/

Surrogate Variable Analysis R function sva: R package

Quantile Normalization R function preprocessCore: R package

Heatmap R function ComplexHeatmap: R package

R R version 3.5 R Foundation for Statistical Computing

IsobaricAnalyzer C++ Library OpenMS v2.4

Other

Proteomics data deposition PRIDE PXD011304

Proteomics data deposition BioGRID To be deposited

Nano-HPLC Thermo Scientific EASY-nLC™ 1200 System

HPLC Agilent Agilent 1100 Series

Mass Spectrometer Thermo Scientific Q Exactive™ HF-X Hybrid Quadrupole-
Orbitrap™ Mass Spectrometer
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