
Submitted 11 August 2020
Accepted 9 December 2020
Published 5 March 2021

Corresponding author
Xiaoxi Zeng, zengxiaoxi@wchscu.cn

Academic editor
Alberto Davalos

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.10682

Copyright
2021 Li et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Identification of the hub genes in
gastric cancer through weighted gene
co-expression network analysis
Chunyang Li1,2, Haopeng Yu1,2, Yajing Sun1,2, Xiaoxi Zeng1,2 and Wei Zhang1,2

1West China Biomedical Big Data Center, West China Hospital, Sichuan University, Cheng, China
2Medical Big Data Center, Sichuan University, Chengdu, China

ABSTRACT
Background. Gastric cancer is one of the most lethal tumors and is characterized by
poor prognosis and lack of effective diagnostic or therapeutic biomarkers. The aim of
this study was to find hub genes serving as biomarkers in gastric cancer diagnosis and
therapy.
Methods. GSE66229 from Gene Expression Omnibus (GEO) was used as training set.
Genes bearing the top 25% standard deviations among all the samples in training set
were performed to systematic weighted gene co-expression network analysis (WGCNA)
to find candidate genes. Then, hub genes were further screened by using the ‘‘least
absolute shrinkage and selection operator’’ (LASSO) logistic regression. Finally, hub
genes were validated in the GSE54129 dataset fromGEOby supervised learningmethod
artificial neural network (ANN) algorithm.
Results. Twelve modules with strong preservation were identified by using WGCNA
methods in training set. Of which, five modules significantly related to gastric cancer
were selected as clinically significant modules, and 713 candidate genes were identified
from these five modules. Then, ADIPOQ, ARHGAP39, ATAD3A, C1orf95, CWH43,
GRIK3, INHBA, RDH12, SCNN1G, SIGLEC11 and LYVE1 were screened as the hub
genes. These hub genes successfully differentiated the tumor samples from the healthy
tissues in an independent testing set through artificial neural network algorithm with
the area under the receiver operating characteristic curve at 0.946.
Conclusions. These hub genes bearing diagnostic and therapeutic values, and our
results may provide a novel prospect for the diagnosis and treatment of gastric cancer
in the future.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology, Medical Genetics
Keywords Gastric cancer, Weighted gene co-expression network analysis, WGCNA, LASSO
regression, Supervised machine learning

BACKGROUND
Gastric carcinoma remains the fifth most frequently diagnosed cancer and the third leading
cause of cancer-related deaths, with an estimated 1,033,701 new cases and 782,685 deaths
worldwide in 2018 (Bray et al., 2018; Pormohammad et al., 2018). Gastric cancer is also one
of the most common malignancies and the third leading cause of death in China, where
427,100 cases with 301,200 deaths were observed in 2013 (Chen et al., 2017b). Despite the
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several existing treatments including chemo-, radio-, or targeted therapy, the overall 5-year
survival rate of stomach cancer patients is still <20% (Raimondi et al., 2018).

There are two types of gastric cancer, diffuse and intestinal types, which differ in their
histological manifestations, epidemiological features and etiologic pathogenesis (Huang
et al., 2019). Histopathology is the gold standard approach for diagnosing gastric cancer;
however, this approach is not suitable for everyone due to the invasive nature of the biopsy
(Yoon & Kim, 2015). Although there are several commonly used serum biomarkers such as
alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125),
and cancer antigen 19–9 (CA19-9) (He et al., 2013) for gastric cancer diagnosis, none
of them are sensitive or gastric-cancer-specific (Smyth et al., 2016). Moreover, effective
and specific targeted therapies for gastric cancer remain to be identified. Presently, the
major treatment strategies for gastric cancer are anti-human epidermal growth factor
receptor 2 (HER2) and anti-vascular therapies (Raimondi et al., 2018). However, resistance
to the targeted agents is common in some gastric tumor types. Therefore, novel practical
approaches are needed for specific diagnosis and effective treatment of gastric cancer.
Accordingly, identification of the key genes and biomarkers that are involved in the
pathogenesis of gastric cancer is of paramount significance.

With recent advancements in bioinformatics methods, comprehensive identification of
potential biomarkers through large-scale screening of expression profiles has been proposed
(Li et al., 2018a; Takeno et al., 2008; Wang et al., 2014; Zeng et al., 2019). A weighted gene
co-expression network analysis (WGCNA) approach provides a systematic analysis to
investigate the functional clustering of expression profiles, based on the theory that genes
with similar expression profiles may have closely functional linkages and/or pathways
(Carlson et al., 2006; Carter et al., 2004; Zhou et al., 2018). This approach groups highly
co-expressed genes into the same module. Modules bearing high correlation with certain
clinical traits are identified as clinically significant modules (Zhou et al., 2018).

By using this systematic bioinformatic method, followed by the ‘‘least absolute
shrinkage and selection operator’’ (LASSO) logistic regression, a suitable method for
high-dimensional gene data analysis (Friedman, Hastie & Tibshirani, 2010; Zeng et al.,
2019), candidate variables were selected from clinically significant modules. Finally,
supervised artificial neural network (ANN) method was performed to test the reliability of
the results in an independent dataset. ANN approach has been widely used in the prediction
of cancer diagnosis, staging and recurrence since the mid-1990s (Hu et al., 2013), which is
an useful method to incorporate and analyze large amounts of omics and health-care data
(Ngiam & Khor, 2019).

Consequently, we attempt to construct a co-expression network by using systematic
WGCNA method followed by LASSO regression to identify hub genes, which could
effectively discriminate cancer samples from normal tissue. These findings may provide
potential diagnostic and therapeutic targets in future research and clinical intervention of
gastric cancer.

Li et al. (2021), PeerJ, DOI 10.7717/peerj.10682 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.10682


MATERIAL AND METHODS
Data collection and preprocessing
The workflow of this study is shown in Fig. 1. Raw expression datasets were downloaded
from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)
by using the keywords ‘‘stomach/gastric cancer/tumor/carcinoma’’, ‘‘normal’’, ‘‘GPL570’’,
and ‘‘Homo sapiens’’. Our inclusion criteria for the training set were that: (1) datasets
based on the Affymetrix Human Genome U133 Plus 2.0 Array Platform (Affymetrix, Santa
Clara, CA, USA) and (2) datasets derived from human case-control studies, with gastric
tumor patients as the case group, regardless of the histopathological types and stages, and
non-tumor individuals as the control group.

Therefore, only two datasets (GSE66229 (Cristescu et al., 2015; Oh et al., 2018) and
GSE54129) as of October 10, 2020 met the screening criteria. GSE66229 contained 300
tumor and 100 normal samples, and was used as the training set to screen for the hub
genes. GSE54129 (contained 111 tumor and 21 normal samples) served as an independent
testing set to validate the hub genes.

All the analyses in this study were conducted using R software (version 3.5.1). FitPLM
weight, Relative Log Expression (RLE), Normalized Unscaled Standard Errors (NUSE),
and RNA degradation images were analyzed to evaluate the quality of each dataset. Then,
the ‘‘rma’’ function with the default parameters of the ‘‘affy’’ package was used to perform
background correction and normalization (Gautier et al., 2004). Missing values in each
dataset were imputed by using the function ‘‘impute.knn’’ with the default parameters of the
‘‘impute’’ package (Hastie & Narasimhan, 2001). Platform annotations were downloaded
from the GEO database, and finally, the gene symbol expression matrices were acquired
from each dataset for further analyses.

Weighted gene co-expression network construction
Weighted gene co-expression network in the training set was constructed using the
‘‘WGCNA’’ package (Langfelder & Horvath, 2008; Zhang & Horvath, 2005). The genes with
the top 25% SD among all the 400 samples in the expression matrix of the training set were
selected as the input genes (5,115 genes in total).

In brief, first, the appropriate soft-thresholding power (β) was selected by using the
‘‘pickSoftThreshold’’ function with the default parameters (herein, β = 4). Subsequently,
the Pearson’s correlationmatrix was calculated to evaluate the similarity among all the pair-
wise genes by using the ‘‘cor’’ function with the default parameters. Then, the adjacency was
calculated based on β and the Pearson’s correlation matrix by using the ‘‘TOMsimilarity’’
function with the default parameters, and the corresponding dissimilarity (dissTOM) was
also calculated. Finally, average linkage hierarchical clustering was conducted according to
the dissTOM value with a minimum size of 30 for each gene dendrogram.

Module eigengenes (MEs), considered the first principal component (PC) of gene
expression patterns of a corresponding module, were obtained for each module. To further
strengthen the reliability of the modules, a cut line was set at 0.25 so that modules bearing
<0.25 would be merged (Chen et al., 2017a).
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Figure 1 Flow diagram of the study.Data collection, analysis, and hub gene selection and validation.
Full-size DOI: 10.7717/peerj.10682/fig-1

Module preservation analysis
To evaluate the stability of the modules in the training set, GSE13911 was used to validate
the module preservation of the training set (Chen et al., 2018; Neidlin, Dimitrakopoulou &
Alexopoulos, 2019;Obeidat et al., 2017). Preservation analysis for GSE13911 was performed
using the ‘‘modulePreservation’’ function by setting referenceNetworks= 2, nPermutations
= 200, randomSeed= 1, and verbose = 3,maxModuleSize= 3000 andmaxGoldModuleSize
= 3000 in ‘‘WGCNA’’ package. The Z summary scores of each module were calculated to
indicate the module preservations. Z summary scores <2, [2–10], and >10 indicated that
the modules had no, moderate, and strong preservation, respectively (Liu et al., 2019b; Lou
et al., 2017). The grey module contained the genes that did not belong to any of the other
modules, and a gold module was generated for statistical purposes. Therefore, these two
modules were not shown in the preservation analysis results (Langfelder et al., 2011b).
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Identification of clinically significant modules
Herein, the most interesting clinical trait was the tissue type, which was designated as
tumor or normal samples. We calculated log10 transformation of the P-value in the logistic
regression between the MEs and clinical trait. Modules with log10 transformation of the
P-value greater than 10 were considered to be closely correlated with tissue types.

Functional enrichment and pathway analyses of significant modules
To determine whether the clinically significant modules were closely correlated with gastric
cancer, GO functional annotation and KEGG pathway analyses were performed using
the Database for Annotation, Visualization and Integrated Discovery (DAVID) (version
6.8) (https://david.ncifcrf.gov/home.jsp) (Ashburner et al., 2000; Dennis et al., 2003). The
visualization of the functional enrichment and pathway analyses was performed by the
‘‘GOplot’’ (Robin et al., 2011) and ‘‘ggplot2’’ (Wickham, 2016) packages of R, respectively.

Candidate gene selection
Candidate genes among clinically significant modules were selected according to the
following criteria: (1) differentially expressed genes (DEGs) between gastric cancer
samples and normal samples with |log2FC (Fold Change)|>1 and adjusted P-value
<0.05 based on the ‘‘limma’’ package (Ritchie et al., 2015), (2) high module membership
(defined as the correlation between the expression of each genes and MEs) |MM(Module
Membership)|>0.8.

Selection of hub genes by LASSO logistic regression analysis
Candidate genes were subjected to LASSO regression, which was performed using the
‘‘glmnet’’ package by setting alpha= 1, and ten-fold cross-validation for tuning parameter
selection. Lambda was defined as the minimum partial likelihood deviance (Friedman,
2010).

Validation of hub genes
The machine learning method of ANN (by using the ‘‘neuralnet’’ function with hidden
= 2) (Fritsch et al., 2019) was performed to determine whether the hub genes could
correctly distinguish the gastric cancer samples from the normal samples in a testing set.
Moreover, in order to demonstrate whether these hub genes could specifically distinguish
between gastric tumor and normal samples, we also evaluated the predictive effects of
11-gene model in pancreatic cancer (GSE15471) (Badea et al., 2008) and colorectal cancer
(GSE37364 excluding adenoma samples) (Galamb et al., 2012) by using ANN algorithm.

Areas under the receiver operating characteristic (ROC) curve was calculated to show
the predictive effect of supervised machine learning model, and then the ROC curves were
plotted using the ‘‘pROC’’ package (Robin et al., 2011). An area under the curve (AUC)
value between 0.8 and 0.9 is considered an excellent classification, while greater than 0.9 is
considered as outstanding discrimination (Lemeshow, 2000).
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RESULTS
Construction of co-expression networks
After the quality check of the input data, no sample was removed (Fig. S1); herein, two
clinical traits (tissue type and stage) are presented. According to different tissue types
(tumor or normal), the 400 samples could be mainly divided into two clusters.

As shown in Fig. 2, the soft thresholding was set at 4, while the scale-free topology
fit index reached 0.89, indicating approximate scale-free topology. Co-expressed gene
modules were identified with the dynamic tree cut method (Fig. 3A) (Chen et al., 2017a).
In total, 12 modules were found, and each color represented one module (Fig. 3B). The
biggest module was the turquoise module, which contained 2,120 genes, followed by the
blue module, bearing 1,503 genes. The grey module comprised 2 genes, which did not have
a similar expression pattern and did not belong to any other module.

Module preservation analysis
5,115 genes in GSE13911 clustered into 11 colored modules (grey module only contained
2 genes, and did not show in Fig. 4), as determined in the training set. All gene modules
were found to bear strong conservation, as the Z summary scores were all >10 (Fig. 4B).

Selection of clinically significant modules
After the assessment of the relationship by using regression analysis between the MEs and
clinical traits, the log10 transformation of the P-value was shown in Fig. 5. Accoring to the
screening criteria, there were 5 modules closely related to tissue types, which were black,
turquoise, greenyellow, salmon and blue modules. These moduels were selected for further
analysis.

Functional enrichment of clinically significant modules
Gene Ontology (GO) enrichment results showed that 1503 genes in the blue module, 137
genes in the black module, 2,120 genes in the turquoise module, 61 in the salmon module
and 194 genes in the greenyellow module mainly participated in 141, 15, 221, 54 and 146
different significant biological processes, respectively (Table S1 to Table S5). The top three
most significantly enriched biological processes were cell division (P = 2.29e−29), G1/S
transition of themitotic cell cycle (P = 6.32e−21), mitotic nuclear division (P = 3.49e−19)
in the blue module (Fig. 6A), and potassium ion import (P = 3.39e−05), digestion
(P = 8.25e−04), multicellular organismal water homeostasis (P = 0.0012) in the black
module (Fig. 6B), and extracellularmatrix organization (P = 6.30e−06), positive regulation
of cell migration (P = 7.57e−06), axon guidance in the turquoise module (P = 9.18e−06)
(Fig. 6C), and inflammatory response (P = 2.80e−21), immune response (P = 5.70e−17),
neutrophil chemotaxis (P = 5.15e−15) in the greenyellow module (Fig. 6D), and defense
response to virus (P = 3.33e−25), type I interferon signaling pathway (P = 8.52e−23),
response to virus (P = 9.02e−16) in salmon module (Fig. 6E).

KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that genes in
the blue, black, turquoise, salmon and greenyellow modules were mainly significantly
enriched in 15, 7, 35,14 and 23 pathways, respectively (from Table S6 to Table S10).
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Figure 2 Determination of the soft-thresholding power in the weighted gene co-expression network
analysis in the training set. (A) Screening soft-thresholding powers. (B) Analysis of the mean connec-
tivity for various soft-thresholding powers. (C) Histogram of the connectivity distribution with the soft-
thresholding powers set at 4. (D) Checking the scale-free topology with the soft-thresholding powers set at
4.

Full-size DOI: 10.7717/peerj.10682/fig-2

The top three most significantly enriched pathways were cell cycle (P = 1.21e−15),
DNA replication (P = 6.21e−15), the p53 signaling pathway (P = 2.03e−06) in blue
module (Fig. 7A), and gastric acid secretion (P = 4.46e−05), protein digestion and
absorption (P = 1.28e−04), drug metabolism-cytochrome P450 (P = 0.0032) in black
moule (Fig. 7B), and focal adhesion (P = 1.49e−07), arrhythmogenic right ventricular
cardiomyopathy (P = 2.27e−05), complement and coagulation cascades (P = 3.58e−05) in
turquoise module (Fig. 7C), and cytokine-cytokine receptor interaction (P = 2.35e−08),
amoebiasis (P = 3.30e−05), and rheumatoid arthritis (P = 5.65e−05) in greenyellow
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Figure 3 Clustering dendrograms of the 5,115 genes in the training set. (A) Clustering of the module
eigengenes to identify the merged modules. Upon setting the threshold at 0.25, 15 modules were merged
into 12 modules. (B) Co-expression module of the training set.

Full-size DOI: 10.7717/peerj.10682/fig-3

Figure 4 Evaluation of module preservation. The x- and y-axes present module size and preservation
median rank (A) as well as preservation Z summary (B), respectively.

Full-size DOI: 10.7717/peerj.10682/fig-4
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Figure 5 Identification of clinically significant modules. log10 transformation of the P-value in the lo-
gistic regression between the MEs and clinical trait. The height of bars represents the log10 transformation
of the P-value, and modules with log10 transformation of the P-value greater than 10 were considered to
be closely correlated with tissue types.

Full-size DOI: 10.7717/peerj.10682/fig-5

module (Fig. 7D). While in the salmon module, influenza A (P = 1.09e−09), measles
(P = 9.44e−07), and herpes simplex infection (P = 7.99e−06) (Fig. 7E) were the most
significantly enriched pathways.

Identification of hub genes
Using the screening criteria of |MM |>0.8, 926 genes were identified from 5 significant
modules, of which 713 genes were differentially expressed between the normal and tumor
samples with |logFC|>1 and adjusted P-value <0.05 (all the 713 candidate genes were
listed in Table S11). Finally, 11 genes [Adiponectin (ADIPOQ); Rho GTPase activating
protein 39 (ARHGAP39); ATPase family AAA-domain containing protein 3A (ATAD3A);
C1orf95 (also known as STUM gene); Cell wall biogenesis 43 C-terminal homolog
(CWH43); Glutamate receptor, ionotropic kainate 3 (GRIK3); Inhibin subunit beta A
(INHBA); sodium channel epithelial 1 subunit gamma (SCNN1G); Sialic acid-binding
immunoglobulin-like lectin-11 (SIGLEC11); Retinol dehydrogenase 12 (RDH12) and
lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)] were identified as the hub
genes by using LASSO logistic regression (Table 1). The heatmap of these 11 hub genes
were shown in Fig. 8, indicating that these 11 hub genes differentially expressed between
tumor and normal samples.

Validation of the hub genes
GSE54129 was utilized as the testing set to validate the 11-gene model. The AUC value
of this classifier upon using artificial neural network was 0.946 indicating the excellent
classification effects of the model (Fig. 9A). Furthermore, both the AUC values of this
11-gene model were around 0.5 in colorectal cancer (Fig. 9B) and pancreatic cancer (Fig.
9C), indicating specifically predictive effect in gastric cancer.
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Figure 6 The bubble plot of gene ontology terms in the (A) blue, (B) black, (C) turquoise, (D)
greenyellow and (E) salmonmodules. The z-score is assigned to the x-axis and the negative logarithm
of the p-value to the y-axis, as in the barplot (the higher the more significant). The area of the displayed
circles is proportional to the number of genes assigned to the terms. Herein, only the meaningful enriched
GO terms were presented, and the most three sigificant GO terms’ lables were displayed.

Full-size DOI: 10.7717/peerj.10682/fig-6

DISCUSSION
In this study, five modules were identified as clinically significant and preservedmodules by
using WGCNA. The GO and KEGG analyses revealed that the genes in these four modules
were significantly enriched in the biological processes of the cell cycle, cell division, and
stomach-related functions. All these biological functions are closely related to gastric cancer
(Cao et al., 2018; Waldum, Sagatun & Mjones, 2017). Eventually, 11 hub genes including
ADIPOQ, ARHGAP39, ATAD3A, C1orf95, CWH43, GRIK3, INHBA, RDH12, SCNN1G,
SIGLEC11 and LYVE1 were screened by using WGCNA method followed by LASSO
regression. Then, artificial neural network algorithms were performed, and demonstrated
that this 11-gene model could effectively discriminate between gastric cancer and normal
tissues.

In preservation analysis, Z summary is used to assess the significance of observed statistics
and is defined as themean of Z scores computed for density and connectivitymeasures (Lou
et al., 2017). When density and connectivity based preservation statistics are important
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Figure 7 KEGG pathway enrichment analyses of the (A) blue, (B) black, (C) turquoise, (D) greenyel-
low and (E) salmonmodules. The negative logarithm of the p-value is assigned to the x-axis and the term
of each pathway to the y-axis. The size of the bubble shows the numbers of the genes enriched in each
pathway, while the colors indicate the enrichment significance (from blue to red designated as less to high
significance).

Full-size DOI: 10.7717/peerj.10682/fig-7

factors for judging the preservation of a network, Z summary score was preferentially
selected to evaluate the preservation (Langfelder et al., 2011b). Although turquoise, blue
and greenyellow had low preservation according to the median rank results, they are still
considered to be conserved since the Z summary scores of these modules were 39, 52
and 22, respectively. Black module has relatively high Z summary score and low median
rank, indicating high preservation. In the current study, all the four gene modules were
considered to be conserved and selected for further analysis.

INHBA, Inhibin- βA (INHBA), a ligand belonging to the transforming growth factor-
β superfamily (Oshima et al., 2014), is associated with cell proliferation in various tumor
types including colon adenocarcinoma (Lin et al., 2020a; Miao et al., 2020; Miyamoto et
al., 2020), pancreatic cancer (Liu et al., 2020), gastric cancer (Chen et al., 2019) as well as
oral squamous cell carcinoma (Lin et al., 2020b). Many studies have demonstrated the
prognostic role of INHBA in colon adenocarcinoma (Chen et al., 2020; Li et al., 2020;
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Table 1 LASSO regression results.Genes selected by the LASSO logistic regression, with the estimated
coefficients and odds ratio.

Gene Coefficient Odds ratio

ADIPOQ −0.16241431554 0.8500889265
ARHGAP39 1.14238882470 3.134246595
ATAD3A 0.85913784838 2.361124169
C1orf95 −1.99447221881 0.1360854586
CWH43 −0.05325279770 0.9481402945
GRIK3 −4.02900881511 0.01779195633
INHBA 0.19110414846 1.210585526
LYVE1 −0.01065353474 0.9894030132
RDH12 −0.09270793497 0.9114596669
SCNN1G −0.02709362847 0.9732701115
SIGLEC11 −0.17337880264 0.84081905

Figure 8 Heatmaps showing the expressopms pf 11 hub genes between the gastric cancer patients and
normal controls in training set. The x- and y-axes present the samples and genes, respectively. In the x-
axis, pink and green represent the gastric cancer and normal samples, respectively. The scale bar from blue
to red represented low to high expressions of each gene in each sample.

Full-size DOI: 10.7717/peerj.10682/fig-8

Miao et al., 2020; Sun et al., 2020), and the role of INHBA in gastric cancer has been
widely reported also. INHBA was highly expressed (Kaneda et al., 2011; Seeruttun et al.,
2019; Zhang et al., 2010) and aberrantly methylated (Zhang et al., 2019) in gastric tumor
samples, and high INHBA expression was associated with significantly poorer 5-year
survival than low expression group (Katayama et al., 2017; Wang et al., 2012). One study
has demonstrated that INHBA gene silencing could inhibit gastric cancer cell migration
and invasion by impeding TGF- β signaling pathway (Chen et al., 2019).
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Figure 9 Validation results. ROC curve of the classifier predicted by these 11 hub genes in the testing set
of (A) gastric cancer, (B) colorectal cancer and (C) pancreatic cancer.

Full-size DOI: 10.7717/peerj.10682/fig-9

ADIPOQ is one of the most important adipocytokines secreted by adipocytes (Parida,
Siddharth & Sharma, 2019), and the polymorphisms of ADIPOQ have been reported to
correlate with several types of cancer, including colorectal (Nimptsch et al., 2017; Tan
et al., 2017) and breast (Mendez-Hernandez et al., 2017) cancers. A study focusing on
the molecular mechanisms ADIPOQ participated in has revealed that ADIPOQ induces
cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of
the AMPK-ULK1 axis (Chung et al., 2017). Another study has reported that miR-370
inhibits the proliferation, invasion, and epithelial-mesenchymal transition of gastric cells
by directly downregulating receptor 4 of ADIPOQ (Feng et al., 2018). Overexpression of
another microRNA, miR-15b-5p, promotes the metastasis of gastric cancer by regulating
ADIPOQ receptor 3 (Zhao et al., 2017).

ATAD3A is a nuclear-encoded mitochondrial enzyme, involving in mitochondrial
dynamics, cell death, and cholesterol metabolism (Teng, Lang & Shay, 2019). It has been
reported to correlate with hepatocellular carcinoma (Liu et al., 2019a) and breast cancer
(Daniel et al., 2019), and it might be an effective therapeutic target in cancer treatment
(Teng et al., 2016). ATAD3A is differentially expressed between paclitaxel-resistant and
-sensitive MCF7 breast cancer cells (Daniel et al., 2019). A study has revealed that ATAD3A
is upregulated in hepatocellular carcinoma and ATAD3A upregulation is correlated with
poor prognosis (Liu et al., 2019a).

LYVE1 acts as a receptor and binds to both soluble and immobilized hyaluronan (Banerji
et al., 2016), may function in lymphatic hyaluronan transport and tumor metastasis (Wu
et al., 2019). The dysregulation of LYVE1 closely correlated with many types of tumor, like
gastric cancer (Ozmen et al., 2011), colorectal cancer (Gao et al., 2006), breast cancer (Kato
et al., 2005), lung cancer (Koukourakis et al., 2005) and liver cancer (Mouta Carreira et al.,
2001). LYVE1 has been studied extensively for its possible role in cancer diagnosis and
prognosis in cancer. One study has demonstrated that LYVE1 was upregulated in gastric
cancer, and overexpression of LYVE1 positively correlated with perineural invasion and
lymph node in gastric cancers (Ozmen et al., 2011). And the expression of LYVE1 might
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be a biomarker to predict the existence of regional lymph node metastasis in early gastric
cancer (Fujimoto et al., 2007).

RDH12, an NADPH-dependent retinal reductase, catalyzes the reduction of all-trans
retinal to all-trans retinol (Belyaeva et al., 2005). It was significantly decreased in gastric
tumor samples (Kropotova et al., 2013) and cervical squamous cell carcinoma samples
(Peng et al., 2015). RDH12 was also one of the differentially expressed metabolism-related
genes, and correlated with the prognosis of gastric cancer patients (Wen et al., 2020).

GRIK3 mainly participates in the neuroactive ligand–receptor interaction pathway, and
GRIK3 upregulation is associated with poor survival in gastric cancer (Gong et al., 2017).
GRIK3 promotes epithelial-mesenchymal transition by regulating the SPDEF/CDH1
signaling in breast cancer cells (Xiao et al., 2019).

There have been few studies focusing on the relationship between gastric cancer and
SCNN1G, ARHGAP39, Clorf95, CWH43 or SIGLEC11. SCNN1G is one of the genes
significantly upregulated in Ewing’s sarcoma and fibromatosis samples (Sarver et al.,
2015). ARHGAP39 mutations or variations in copy number or expression level were found
in several types of tumor-like tissues from the central nervous system, skin, prostate,
and gastrointestinal tract (Nowak, 2018). ARHGAP39 interacts with p53 and BAX, and
decreased expression of ARHGAP39 increases cell proliferation, leading to tumorigenesis
(Jones, 2017). Clorf95 is one of the uncharacterized proteins correlated with diverse
human cancers (Delgado et al., 2014). Another study focusing on scleroderma patients
demonstrated the involvement of Clorf95 in cancer incidence (Xu et al., 2016). Sialic
acid-binding immunoglobulin-like lectin-11 (SIGLEC11) is a primate-lineage–specific
receptor of human tissue macrophages, and it is also expressed in brain microglia (Angata
et al., 2002; Shahraz et al., 2015). A missense mutation of SIGLEC11 has been detected in
pancreatic cancer patients (Jones et al., 2008), and SIGLEC11 was significantly upregulated
in the poor prognostic group of pancreatic cancer patients (Stratford et al., 2010). CWH43
was correlated with tumorigenesis in thyrotropin-secreting pituitary adenomas (Sapkota
et al., 2017). One meta-analysis also showed that CWH43 was differentially expressed
between colorectal cancer and normal (Chu et al., 2014) samples.

All these results from the previous studies demonstrate that the hub genes identified
in our study are closely correlated with gastric cancer and play important roles in cancer
development, progression, or proliferation.

The significant module and hub genes identified in this study are biologically rational.
First, the clinically significant module identified in our study bears strong preservation,
implying that this clinically significantmodule is conservative and could also be reproduced
in other datasets. Further, it suggests that thatmodules constructed byWGCNA are reliable.
Second, most of the genes in the significant module were enriched for specific GO terms
and KEGG pathways closely relating to stomach or cancer physiology. For instance, GO
analysis demonstrated that most of the genes in the clinically significant modules were
closely related to digestion, carbohydrate metabolic process, and gastric acid secretion, as
well as cell division and cell cycle. KEGG enrichment analysis also indicated that most of the
genes in the clinically significant module were implicated in gastric acid secretion, protein
digestion and absorption, as well as glycerolipidmetabolism and the p53 signaling pathway.
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Third, all the hub genes identified in our study had previously been reported to relate to
cancer. Moreover, several hub genes are implicated in metabolic processes, influencing the
development and progression of gastric cancer. A previous study has demonstrated the
association between metabolic syndrome and gastric cancer (Li et al., 2018b). A study has
detected increased fatty acid oxidation in gastric cancer (Lee et al., 2019), and adipocytes
fuel gastric cancer by mediating fatty acid metabolism (Tan et al., 2018). It may thus be
inferred that these genes are genuinely the hub genes in charge of the key processes in
gastric cancer, and they deserve a deeper analysis and validation. Finally, by using machine
learning methods, the hub genes were demonstrated to effectively discriminate the gastric
tumor samples from normal samples. In our study, the predictive effects of ANN method
was evaluated by AUC values (Huang & Ling, 2005). Herein, the AUC value was >0.8,
indicating the excellent predictive results. Furthermore, these 11-gene model might be
the specific predictors for gastric cancer, since the AUC values of this predictive model
were less than 0.8 in other tumor types including, colorectal cancer and pancreatic cancer.
All the results indicated that the expression profiles of these 11 hub genes have excellent
predictive effects when discriminating gastric cancer samples from normal samples.

However, our study has limitations. First, all the hub genes were identified and validated
only through bioinformatics, and further exploration of the biological functions and
molecular mechanisms of these hub genes both in vitro and in vivo is required. Second,
due to the limited availability of the data, we did not differentiate between intestinal-type
and diffuse-type gastric cancers. More data are needed to analyze and identify the hub
genes between these two types of gastric cancer and normal samples.

In summary, through WGCNA, we identified 11 hub genes, which might serve as
potential diagnostic and/or therapeutic biomarkers for gastric cancer. Profile data
mining by bioinformatics analysis is an available method to find potential diagnostic
or therapeutic biomarkers systematically. Nevertheless, further investigations about the
molecular mechanisms in which these hub genes are involved are still needed to verify the
involvement of these genes in gastric cancer. Our findings provide a better understanding
of the molecular mechanisms and putative diagnostic or therapeutic biomarkers for gastric
cancer.
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