Skip to main content
. 2021 Feb 22;12:611506. doi: 10.3389/fgene.2021.611506

Table 3.

Stability of filter methods for prediction of residual feed intake.

Subset size1 Filter method2 NSNPs3 PDF4 NOG5
50 mrmr 500 0.30 0.53
cforest 500 0.90 0.02
spearcor 500 0.19 0.73
univ.dtree 500 0.96 0.00
random 500 0.98 0.00
250 mrmr 2,500 0.26 0.58
cforest 2,500 0.80 0.04
spearcor 2,500 0.23 0.67
univ.dtree 2,500 0.85 0.01
random 2,500 0.88 0.00
500 mrmr 5,000 0.25 0.59
cforest 5,000 0.72 0.04
spearcor 5,000 0.21 0.66
univ.dtree 5,000 0.75 0.02
random 5,000 0.79 0.00
750 mrmr 7,500 0.22 0.62
cforest 7,500 0.65 0.04
spearcor 7,500 0.20 0.68
univ.dtree 7,500 0.67 0.02
random 7,500 0.71 0.00
1,000 mrmr 10,000 0.21 0.64
cforest 10,000 0.59 0.04
spearcor 10,000 0.19 0.69
univ.dtree 10,000 0.60 0.03
random 10,000 0.64 0.00
1,500 mrmr 15,000 0.19 0.66
cforest 15,000 0.49 0.04
spearcor 15,000 0.18 0.69
univ.dtree 15,000 0.50 0.03
random 15,000 0.52 0.00
1

Subset size = number of selected features.

2

Filter method = Maximum relevance minimum redundancy (mrmr); Random forest (cforest); Spearman’s correlation (spearcor); Univariate decision tree (univ.dtree); Random selection (random).

3

NSNPs = Total number of SNPs selected in the 10 subsets.

4

PDF = Proportion of distinct features in the 10 subsets.

5

NOG = Nogueira et al. (2018) stability estimator.