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Behavioral/Cognitive

Orbitofrontal State Representations Are Related to Choice
Adaptations and Reward Predictions

Thomas A. Stalnaker, ““Nishika Raheja, and ““Geoffrey Schoenbaum
Cellular Neurobiology Research Branch, Behavioral Neurophysiology Research Section, National Institute on Drug Abuse Intramural Research
Program, Baltimore, Maryland 21224

Animals can categorize the environment into “states,” defined by unique sets of available action-outcome contingencies in
different contexts. Doing so helps them choose appropriate actions and make accurate outcome predictions when in each
given state. State maps have been hypothesized to be held in the orbitofrontal cortex (OFC), an area implicated in decision-
making and encoding information about outcome predictions. Here we recorded neural activity in OFC in 6 male rats to test
state representations. Rats were trained on an odor-guided choice task consisting of five trial blocks containing distinct sets
of action-outcome contingencies, constituting states, with unsignaled transitions between them. OFC neural ensembles were
analyzed using decoding algorithms. Results indicate that the vast majority of OFC neurons contributed to representations of
the current state at any point in time, independent of odor cues and reward delivery, even at the level of individual neurons.
Across state transitions, these representations gradually integrated evidence for the new state; the rate at which this integra-
tion happened in the prechoice part of the trial was related to how quickly the rats’ choices adapted to the new state. Finally,
OFC representations of outcome predictions, often thought to be the primary function of OFC, were dependent on the accu-
racy of OFC state representations.
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A prominent hypothesis proposes that orbitofrontal cortex (OFC) tracks current location in a “cognitive map” of state space.
Here we tested this idea in detail by analyzing neural activity recorded in OFC of rats performing a task consisting of a series
of states, each defined by a set of available action-outcome contingencies. Results show that most OFC neurons contribute to
state representations and that these representations are related to the rats’ decision-making and OFC reward predictions.
These findings suggest new interpretations of emotional dysregulation in pathologies, such as addiction, which have long
been known to be related to OFC dysfunction. J
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Categorizing the environment into different “states,” defined
as unsignaled contexts associated with different sets of cue- or
action-outcome contingencies, is also useful in reversal learning
paradigms where, for instance, actions might lead to the opposite
outcomes before versus after reversal. Separating the environ-
ment into a prereversal state and a postreversal state would be
computationally efficient for animals trained in this setting, since
it would help them more easily choose the action leading to their
preferred outcome in each state, free of conflict with the oppos-
ing information (Gershman et al., 2010; Niv, 2019). This is true
even if the state transition is unsignaled and can only be inferred
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from the changed contingencies. But how
does the brain keep track of such inferred
states? One proposal is that the orbitofron-
tal cortex (OFC) keeps a cognitive map of
“state space,” a representation of how the
current environment is carved up into
states, that is used by other areas to keep
track of the current state, especially when
that state is partially observable or hidden
(Wilson et al.,, 2014). Although the domi-
nant theory has long been that the central
function of OFC in behavior is to represent
the value or sensory features of expected
outcomes (Gottfried et al, 2003; Padoa-
Schioppa and Assad, 2006), more recently
it has been noted that many of the charac-
teristic effects of OFC lesions would result
from an inability to keep track of the cur-
rent state when it is not directly observable
(Wilson et al., 2014). Under this proposal,
the reason the OFC represents expected
outcomes and reward value is that those
quantities often help to define the current
state space, especially in tasks commonly
used experimentally (Niv, 2019).

Here we examined single-unit activity in
831 lateral OFC neurons recorded in rats
performing a task with four distinct states,
each consisting of a unique set of response-
outcome contingencies. We made four
broad predictions as to how neural activity
should track states and relate to the rats’
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Figure 1. Recordings in OFC, odor-guided choice task, and behavioral results. a, Recording sites in lateral OFC. Black boxes
represent the approximate location from which recordings were made in each rat (in the left hemisphere). The width repre-
sents the estimated span of the electrode bundle (~1 mm), and the height represents the approximate extent of recording
across all sessions. Bregma 2.8-3.6 mm. b, Trial events and reward schedule. Trials started with odor delivery followed by
choice for 1 or 3 drops of chocolate or vanilla milk. Two odors indicated forced choices, left or right; a third odor indicated
free choice. Reward contingencies were stable across blocks of ~60 trials but switched in number of drops (dashed lines) or
flavor (dotted lines) in four unsignaled transitions. The last four blocks always had the same four sets of action-outcome con-
tingendies, but the order differed from day to day. ¢, Results of a 10 min consumption test run in a separate group of rats
(tno) = 0.1, p =0.93). d, Average trial-by-trial choice rates across number block switches (left), separately for 1drop choc-
olate—3 drops chocolate compared with 1 drop vanilla—3 drops vanilla, and flavor block switches (right). Inset, Bar graphs
compare choice rate in 25 trials before block switches versus 25 trials after block switches. ANOVA on difference in choice
rates across transitions, with factors transition type and initial flavor; main effect of transition type (F195 = 195.7,
p << 0.001), driven by significant changes across number transitions (planned contrast, F; o) = 445.9, p << 0.0001), and in-
significant changes across flavor transitions (planned contrast, F(; 95 = 1.3, p =0.27); no effect of initial flavor (F; g5 = 0.0,
p=10.93); no differences between vanilla-to-chocolate and chocolate-to-vanilla (planned contrast, F; o5 = 2.3, p=0.13). e,
Average response latencies and accuracy on forced-choice trials. Within-subjects ANOVAs on reaction time and accuracy:
main effects of reward number (F; 3) = 62.2, p < 0.001; F(5 03 = 182.3, p << 0.001) but not flavor (F(; 63y = 0.3, p=0.57;
Fa.03 = 5.3, p=0.024), nor interactions (F; g3y = 0.1, p=0.73; F1.63 = 5.1, p = 0.027). p << 0.001 vs. 1 drop condition.

behavior across unsignaled state transitions.

The first is that the current state should be

decodable from the activity of a large proportion of OFC neurons.
Second, representations of state in OFC neural activity should
change across state transitions as animals integrate information
identifying the new state. The new state information should first
appear after new outcomes are delivered, because new outcomes
would be the first evidence in our task that the action-outcome
contingencies that define the state have changed. Third, if state
information carried by OFC neurons is functionally important
to behavior, the rate at which OFC state representations de-
velop across state transitions should be related to the rate at
which animals adapt to the new state. And fourth, other non-
state information carried by OFC neurons should depend on
state representations; specifically, we predicted that outcome-
predictive information would depend on accurate OFC state
representations. We tested these predictions by examining the
information encoded in pseudo-ensembles of OFC single units
using neural decoding algorithms. The results show that OFC
ensembles hold strong state representations that are widely distrib-
uted across the OFC population, develop across state transitions,
and are related to choice behavior and neural representations of
expected outcomes.

Materials and Methods

Subjects. Six male Long-Evans rats weighing 175-200 g (~60d old
on arrival) were tested at the University of Maryland School of Medicine
in accordance with School of Medicine and National Institutes of Health
guidelines.

Surgical procedures and histology. Drivable electrodes consisting of
bundles of eight 25-um-diameter FeNiCr wires (Stablohm 675,

California Fine Wire), were manufactured, electroplated with platinum
to an impedance of ~300 kOhms, and implanted in the left OFC (3.0
mm anterior to bregma, 3.2 mm laterally, and, to begin, 4.0 mm ventral
to the surface of the brain) in each rat. At the end of the study, the final
electrode position was marked, the rats were killed with an overdose of
isoflurane and perfused, and the brains were removed from the skulls
and processed using standard techniques. All surgical procedures fol-
lowed guidelines for aseptic technique.

Behavioral task. Recording was conducted in aluminum chambers
fitted with a house light and a panel containing an odor port and two
fluid wells (see Fig. 1b). The odor port was connected to an air flow dilu-
tion olfactometer to allow the rapid delivery of olfactory cues, and the
fluid wells were connected to fluid delivery lines containing flavored
milk (Nesquik brand chocolate or vanilla) diluted 50% with water. A
custom C+ + program controlled the house light and solenoid valves
that delivered the odors and fluids; the program also recorded photo-
beam breaks at the odor port and fluid wells and lick detectors inside
each fluid well.

Rats were trained before being implanted with electrodes and then
retrained to work with the recording cable. The initial shaping phase
gradually introduced all elements of the task (described below); thus,
rats could learn the associative structure of the task over this period.
Recording began when rats could complete five blocks of trials (at least
260 trials) with the cable.

Each of the 94 total recording sessions consisted of a series of self-
paced trials organized into five blocks. Rats could initiate a trial by pok-
ing into the odor port while the house light was illuminated (for all anal-
yses and figures, trial onset, or the end of the intertrial interval (ITT), was
considered the time the house light was turned on). Beginning 500 ms
after the odor poke, an odor would be delivered for 500 ms. The cessa-
tion of odor delivery served as a go-response indicating that rats could
respond by poking at the left or right fluid well, after which fluid delivery
would begin following a 500 ms delay. Three different instructive odors
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(which were initially neutral and then unchanged throughout training
and testing) were used: two of these indicated fluid would only be avail-
able at the left well or right well (forced-choice left and forced-choice
right, respectively); a third indicated fluid would be available at either
well (free-choice). Trials were presented in a pseudorandom sequence
such that the free-choice odor was presented on 7 of 20 trials and the
left/right odors were presented in equal numbers (*1 over 250 trials).

Rewards were either one drop or three drops of chocolate or vanilla
milk, with drop size ~0.05 ml and 500 ms between drops. Response-
reward contingencies were consistent within blocks of trials, such that
the same reward would be delivered for every correct response, either
free- or forced-choice, according to whether it was at the left or right
well. Upon each block transition, either the number of drops (1 or three
drops) or flavor (chocolate or vanilla) would change on both sides while
the other variable remained constant. These block transitions were not
explicitly signaled and could not be predicted based on the exact number
of trials. The first block, consisting of on average 43 = 16 (SD) trials, was
used to set the rats” expectations before the first transition. The length of
the last four blocks varied nonsystematically at ~65 % 11 (SD). The
reward schedule was arranged so that the last four blocks always con-
sisted of the same four sets of action-outcome contingencies (e.g., left-3
drops chocolate, right-1 drop vanilla), although the order of the blocks
varied randomly from session to session. These four blocks defined four
unique “states” of the task.

During testing, rats were limited to 10 min of ad libitum water each
day, in addition to fluid earned in the task.

Flavor preference testing. In 6 rats from a separate experiment (same
strain, source, and water restriction regimen), we compared consump-
tion of the chocolate versus vanilla milk solution in two-bottle tests. All
rats were tested for 10 total minutes, with the location of the bottles
swapped every 30 s. Two rats were given five 2 min tests while the other
4 rats were given one 10 min test each.

Single-unit recording. Procedures were the same as described previ-
ously (Stalnaker et al., 2010). Wires were screened for activity daily; if no
activity was detected, the rat was removed and the electrode assembly
was advanced 40 or 80 uwm. Otherwise, a session was conducted, and the
electrode was advanced by at least 40 um at the end of the session.
Neural activity was recorded using Plexon Multichannel Acquisition
Processor systems, interfaced with odor discrimination training cham-
bers. Signals from the electrode wires were amplified and filtered by
standard procedures described in previous studies. Waveforms (>2.5:1
signal-to-noise) were extracted from active channels and recorded with
event time stamps sent by the behavioral program.

Data analysis. Units were sorted using Offline Sorter software from
Plexon, using a template matching algorithm. Sorted files were then
processed in Neuroexplorer to extract unit time stamps and relevant
event markers. These data were subsequently analyzed in MATLAB.

Experimental design and statistical analysis. Behavioral data were
analyzed by processing time-stamped events using MATLAB. Free-
choice rates (see Fig. 1d) are the average percent of free-choice trials to-
ward a particular side, scaled according to the overall number of
rewarded trials (i.e., the scale includes both free- and forced-choice tri-
als). For example, the free-choice rate in the last 25 trials before a block
switch would take all free-choice trials occurring within the last 25 of
any kind of trial and calculate the percentage of those trials toward the
side delivering one drop (or three drops). Reaction time (see Fig. le) is
the time from the cessation of odor delivery to withdrawal from the odor
port, and percent correct is the percentage of forced-choice trials in
which the rat chose the rewarded side.

For decoding analyses of neural data, MATLAB scripts and functions
from the Neural Decoding Toolbox (www.readout.info) (Meyers, 2013)
were modified as needed. Trial-aligned spike trains were constructed
from each neuron by aligning raw spike trains to trial events (house light
on, odor delivery start, odor port withdrawal, reward delivery start,
house light off) and then concatenating them according to the average
time between the events in the dataset. Then spikes were binned into
sliding epochs of 500 or 1000 ms across the trial period. All rewarded tri-
als were labeled according to the state, defined by the set of action-out-
come contingencies available in the block from which the trial occurred
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(e.g., left-3 drops chocolate milk, right-1drop vanilla milk). Then ran-
dom pseudo-ensembles were repeatedly selected from all OFC neurons.
For each decoding run, trials were randomly split into a test set, with
one trial from each neuron in each state, and a training set, with as many
remaining trials as possible such that an equal number of training trials
were selected for each state for each neuron. Training sets were then
averaged across trials for each neuron. Each test trial was classified
according to which training set had the highest correlation coefficient
with it across neurons. This test training split selection was repeated for
each trial, and then the entire process was repeated between 100 and
1000 times, depending on the analysis. The overall percentage correct
for each sliding bin is shown in the figures. Significance was assessed by
randomly assigning trial labels 100 times, repeating the entire analysis
each time, and from these 100 datasets constructing a null distribution
of decoding percentages. For a bin to be defined as significantly greater
than chance, it had to be part of a run of 5 consecutive bins in the upper
1% of the null distribution.

For the analysis in Figure 3, an ANOVA on state was run for each
neuron across all correct trials using firing rate during light on to odor
on (or, for the analysis in Fig. 3b, other epochs), and neurons were
ranked according to the resulting F value. Then decoding was run for
repeatedly selected pseudo-ensembles from each segment of the ranked
population (>90%, 81%-90%, etc.). For the analysis in Figure 3b, F val-
ues were calculated for different epochs across the trial (last 1.5 s of ITI,
1.5 s before odor delivery, odor delivery to choice response, first 1.5 s of
reward delivery, and 1.5 s after reward delivery to 1.0 s after house light
off), and Pearson correlations were run between sets of F values from
each pair of epochs.

For the multiple linear regression models of trial event factors, we used
the MATLAB function “fitlm” to create the odor-direction+outcome
model and “step” to add state as an additional predictor. We corrected for
multiple comparisons in the odor+ direction+ outcome model by requiring
5 consecutive sliding bins with p < 0.01 and disregarding bins with fewer
significant neurons than chance by x? test. Because state and outcome are
partially correlated (only two of the four possible outcomes occur in each
state), state was considered to add significantly to the model when it had
p<<0.05 and had a lower p value than outcome when each was added to
the model, or when it had p<0.05 when added after outcome to the
model.

For the analysis shown in Figures 4 and 5, we constructed sets of
training trials consisting of the last 20 trials of all blocks before transi-
tions in the number of drops, and the last 20 trials of all blocks after tran-
sitions in the number of drops. Then we selected test trials in sliding 5-
trial segments for Figure 4 (or 10-trial segments for Fig. 5b—d) from the
end of the “before” training set to the beginning of the “after” training
set. The decoding percentage was then the percentage of test trials classi-
fied as “before” versus “after.” The heat plots were constructed by
smoothing and converting the decoding percentages into a color scale.
The significance levels shown on the scale (dotted lines) were calculated
based on the null distribution constructed from the first set of test trials
by randomly assigning trial labels 100 times, each time running the
entire decoding analysis. For the analysis in Figure 5, we ranked drop
number transitions according to the proportion of free-choices toward
the 3-drop side in the first 10 trials after the transition. We took the top
quartile of such transitions (highest choice rate toward the new 3-drop
side) and the bottom quartile (lowest choice rate toward the new 3-drop
side). Then we separately analyzed the neuronal ensembles recorded in
each, matching the ensemble sizes used by the decoder in each condi-
tion. Because there were fewer neurons in these sets, we used 10-trial test
sets and 1000 ms sliding epochs for this analysis to better smooth the
data. For the analyses in Figure 5¢, d, we included only forced-choice tri-
als in the test-sets to avoid any bias in the rewards received in the top
quartile versus bottom quartile test sets (because by definition, free-
choice trials were more often toward the 3-drop side in the top quartile
sets).

For the analysis shown in Figure 6, we constructed training sets for
each state consisting of all rewarded forced-choice trials, excluding those
occurring in the first 10 trials after drop number transitions. Test sets
consisted of free-choice trials toward the 1-drop side or the 3-drop side,
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labeled according to the state, again excluding those occurring in the first
10 trials after drop number transitions. Ensemble sizes were again
matched between the two conditions. This analysis tested whether a
choice of the less preferred outcome (the 1-drop side) was associated
with worse state representations, compared with state representations
when the more preferred outcome was chosen. Forced-choice trials were
chosen to construct the training sets because those trials were unbiased
as to whether the preferred outcome was chosen. Significance levels were
again assessed by randomly assigning state labels 100 times, each time
repeating the entire analysis, to construct null distributions for each test
set and each bin.

For the analysis shown in Figure 7, we first ran for each neuron an
ANOVA on state using firing rate in the postreward epoch (1500 ms be-
ginning 1500 ms after reward delivery) during the first 20 trials after
block switches. The purpose of this was to find the neurons that were
best at decoding state postreward right after switches, because neurons
that were normally good at decoding state could provide a reliable read-
out of the trials on which state information was degraded in OFC as a
whole. The 200 best-ranked neurons were then used to decode state.
Then a yoked set of neurons was selected, consisting of all other neurons
recorded in the same sessions as the state-decoding neurons. These neu-
rons were used to decode the expected outcome. In order to ensure that
this ensemble was as good at decoding expected outcome as possible, the
worst 200 ranked neurons on an ANOVA on outcome prereward were
excluded from this yoked set. Then we separated test trials into those on
which the state had been decoded correctly by the first ensemble (the
vast majority) and those on which the state had been decoded incorrectly
by that ensemble, and separately calculated expected outcome-decoding
percentages across sliding sets of epochs for each set of test trials.
Significance was determined in the same way as in the other analyses.
Because of how the yoking of the two ensembles worked, the final aver-
age ensemble size was 92 for state and 184 for outcome. We found that
the qualitative pattern of results did not depend on exactly which neu-
rons were selected for the state-decoding ensemble and the outcome-
decoding ensemble, except that the state-decoding ensemble had to
decode at a high percentage (>90%). For the decoding percentage as a
function of ensemble size (see Fig. 7¢,d), we calculated best fit parameters
for a log function for each curve, and then calculated whether the param-
eters were significantly different using the nlinfit and nlparci MATLAB
functions.

Results

We recorded 831 units from the lateral OFC (Fig. 1a) as rats per-
formed an odor-guided choice task in which blocks of trials
defined states that required the recall and application of conflict-
ing associative information. A differently focused analysis of
these units was previously published (Stalnaker et al., 2014), but
here we sought to test whether OFC units held information
about the current task “state.” The task, illustrated in Figure 10,
consisted of a series of five blocks of trials presented across each
of the 94 recording sessions. Each block was made up of a series
of trials in which a particular milk reward (defined by the num-
ber of drops and the flavor) was delivered for a correct left
response and a different milk reward for a correct right response.
Unsignaled block switches resulted in changes to either the num-
ber of drops (one or three) or the flavor (vanilla or chocolate) of
the rewards available at each well. Block switches were arranged
such that each of the four unique sets of response-outcome con-
tingencies (defining “states”) were included in every session,
although their order varied between sessions. There were four
possible orders, one of which was randomly chosen for each ses-
sion, such that the first switch was always a change in drop num-
bers, the second a change in flavors, the third a change in drop
numbers, and the fourth a change in flavors. Each trial was initi-
ated by turning on the house light, which signaled that the rat
could make a nose poke. Nose pokes were followed after 500 ms
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by the delivery of an odor that signaled whether the trial would
be free-choice (35% of trials), meaning that either well would
yield reward, or forced-choice (65% of trials), meaning that only
one of the two wells would yield reward. Free-choice trials served
as a running index of which well the rats preferred at each point
in the block, whereas forced-choice trials allowed outcomes at
both wells to be experienced and neural data related to both out-
comes to be analyzed. However, across both free- and forced-
choice trials, the specific reward delivered for a correct left or
right response in a particular block, and hence the state, was the
same.

After initial shaping on the task, electrode bundles were
implanted in lateral OFC. Rats’ free choices tended to favor the
3-drop side. Across block transitions in which the number of
drops changed, the free-choice rate switched from the 3-drop
side on the old block to the 3-drop side on the new block over
~20-25 trials on average, before reaching an asymptotic rate of
~80%-90% (Fig. 1d). Rats’ free-choice behavior across flavor
transitions indicated no preference for chocolate- versus vanilla-
flavored milk, as did a preference test run in a separate group of
rats (Fig. 1¢,d). On forced-choice trials, the overall error rate was
very low (~5%), but the preference for the 3-drop side was evi-
dent in significant differences in both the error rate and the la-
tency to respond to the fluid well (Fig. Le).

Do OFC ensembles represent the current state?

To test whether OFC ensembles contained information about
the current state of the task, we constructed a simple decoding
algorithm using all correct trials in the last four blocks of the ses-
sions. Using an ensemble size of 25 OFC neurons, this algorithm
decoded the current state above chance across all parts of the tri-
als, including the ITI (Fig. 24, left). When we calculated the
state-decoding accuracy as a function of ensemble size, accuracy
increased rapidly with more neurons, reaching an asymptote at
nearly 100% for ensembles of ~800 neurons across all parts of
the trial (Fig. 2b). This shows that OFC ensembles tended to fire
in distinct patterns according to the current state, such that a
downstream recipient of OFC output could easily determine the
current state, even when no external stimuli were being delivered
(i.e., when the state was hidden).

We performed two control analyses to test whether state-
decoding reflected an abstract representation of the state (Fig. 24,
right). In the first (Fig. 2a, top right), we trained the decoder on
trials immediately after the outcome at the left well in each block
was delivered, and we tested it on trials immediately after the
outcome at the right well was delivered. Decoding in this condi-
tion was not different from decoding using all trials with
matched training set sizes. Thus, state representations did not
reflect a simple memory of which outcome had been delivered
on the previous trial. Second, we trained the decoder on forced-
choice trials and tested on free-choice trials (Fig. 2a, bottom
right). Here decoding was not different from training on forced-
choice and testing on held-out forced-choice trials, demonstrat-
ing that state representations generalize across trial type, consist-
ent with an abstract representation of state.

We next asked how widespread this state information was
across the OFC population. We ranked individual neurons
according to each neuron’s F value from an ANOVA run on fir-
ing rate using the factor “state” and then formed ensembles from
subsets of the ranked population (e.g., >90%, >80%, etc). The
average rank of the neurons making up these ensembles was
highly correlated with the decoding accuracy of the ensembles,
with the correlation line crossing the y axis above the significance
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Figure 2.  OFC pseudo-ensembles decode the current state accurately across all parts of trials. a, Left, Black line

indicates the percentage of trials classified to the correct state, using a 25 neuron pseudo-ensemble and a sliding
500 ms epoch aligned to different trial events and concatenated (the end of the ITl indicates the time the house light
was turned on). Other lines indicate misclassification to the other possible states: blue represents the state with oppo-
site flavor but the same number of drops (at both wells) as the correct state; red represents the state with the oppo-
site number of drops but same flavor (at both wells) as the correct state; purple represents the state with the same
two outcomes as the correct state, but at the opposite wells. Thick lines indicate significant difference from chance
using a bootstrap distribution with shuffled labels (p << 0.01 for at least 5 consecutive bins). All rewarded trials were
included in the decoder. Smaller panels on right of a represent two control analyses: Top, Training on trials immedi-
ately after outcome at left well, testing on trials immediately after outcome at right well. This shows that state repre-
sentations do not reflect memory traces of the outcome delivered on the previous trial. Bottom, Training on forced-
choice and testing on free-choice trials, showing that state representations generalize across trial type. Significant dif-
ferences in control analyses were assessed at p << 0.01 by comparing decoding percentages as a function of ensembles
sizes as described in Materials and Methods (nonsignificant for both). b, State-decoding accuracy as a function of en-
semble size using three 1000 ms epochs, with misclassification shown as in a. Across all epochs, decoding accuracy
approached 100%, with states differing only in the flavor of outcomes being the most likely to be misclassified.
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had p <0.01 for the ANOVA using the post-
reward epoch, with R* = 0.38 for the F value
correlation between these two epochs. The av-
erage R” value across all epoch pairs was 0.29.
Interestingly, the lowest correlations were
observed between the reward period, in which
OFC neurons tend to have strong phasic
responsiveness, versus all other epochs (aver-
age R* = 0.15).

A related question is whether the OFC state
representations seen in ensemble activity are
built from representations of trial events car-
ried by individual neurons, such as odor iden-
tity, choice direction, and outcome identity.
We tested this idea by running ANOVAs on all
neurons’ firing rates in all time bins across all
three trial event factors. After correcting for
multiple comparisons, this yielded 434 of 831
neurons that were significant for at least one
factor in one bin. Then we ran the state-decod-
ing algorithm separately for the event-signifi-
cant population versus the remaining event-
nonsignificant population. As shown in Figure
3d, the event-significant population was signifi-
cantly better at decoding state across the entire
trial and ITL. However, the event-nonsignifi-
cant population still decoded state better than
chance, showing that OFC state representation
did not require strong event representations.
Furthermore, the event-significant population
decoded state better independently of the pro-
portion of event-selective neurons in a particu-
lar bin (Fig. 3d, top, shaded circles). Indeed, the
event-significant population was better at rep-
resenting state even during the ITI and preo-

Dotted lines in all plots indicate chance level of accuracy (25%).

line for p=0.001 (by bootstrap distribution with shuffled labels;
Fig. 3). In addition, when we ran the state decoder with 1000 ran-
domly selected 25 neuron ensembles, 99.4% had decoding signif-
icantly better than chance (p < 0.001, data not shown). Because
we recorded neurons indiscriminately (without prescreening for
task involvement), these analyses suggest that the vast majority
of all OFC neurons can contribute to state representations held
by small ensembles.

This analysis also revealed something unexpected. Although
we ran the ANOVA to rank the neurons using a particular part
of the trial (an epoch ending before the instructional odor was
delivered to the rat; Fig. 3a, shading), the resulting ensembles
were equally good at decoding the state across all other parts of
the trial. This suggests that, although the average neuron held
only a small amount of state information, it tended to hold that
information across the whole trial. If, conversely, individual
neurons had tended to specialize in one part of the trial and
ensembles aggregated this information, our ranked ensembles
would have been biased toward the epoch used to rank them.
To confirm our initial impression, we tested the correlation
between individual F values derived from different epochs
across the trial (Fig. 3b). All epoch pairs showed significant cor-
relations (p < 0.001) and high R* values, showing that, indeed,
individual neurons held state information across entire trials.
For example, 84% (402 of 480) of all OFC neurons with
p<<0.01 for the state ANOVA using the preodor epoch also

dor-poke period, when there were no more

event-selective neurons than chance. This sug-

gests that state representations were not built
from event representations, but rather that selecting the event-
significant population distinguished the part of the OFC popula-
tion that best represented both trial events and state. We further
tested this idea by running a multiple linear regression model
with factors odor, direction, and outcome, and then adding state
to the model. In bins and neurons for which the model was sig-
nificant, state added to the model 47% of the time, whereas in
bins and neurons for which the model was not significant, state
added to the model only 19% of the time. Thus, state as a predic-
tive factor is largely separable from trial events and is more likely
to be a strong predictor when trial events are also strong
predictors.

How do OFC ensembles develop state representations when
the state changes?

We next examined the development of OFC state representations
across state transitions using a modified decoding algorithm that
tested how well ensembles represented the previous versus the
new state across a transition. This algorithm trained using one
set of trials from the end of the previous block and a second set
of trials from the end of the new block. Then it tested whether
activity during sliding sets of trials in between more resembled
one or the other of these two trial sets. The heat plot in Figure 4
illustrates the resulting data. Within a few trials of the state tran-
sition, epochs occurring after reward delivery were significantly
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Figure 3.  Individual OFC units maintain information about state across the trial, and state information is widely dis-

tributed across the OFC population. a, The average accuracy of block decoding of 25 neuron OFC ensembles taken
from ranked subpopulations. Neurons were ranked by the F values from an ANOVA using factor “state” run on each
neuron’s firing rate during the preodor period (shaded in purple). Ensembles from across the entire OFC population
decoded state above chance across the whole trial, although they were ranked using firing rate only in the preodor
epoch. Thick lines indicate significance versus chance at p << 0.01 by bootstrap for at least five consecutive bins. This
suggests that individual units tended to maintain state information across the whole trial and that the majority of OFC
neurons contributed to the state information observed in ensembles. b, Scatter plot represents the correlation between
the F values for block ANOVAs run on the prechoice epoch versus the postreward epoch across all OFC neurons. b,
Right, R* values for other pairs of epochs. ¢, The linear correlation between mean percentile rank of the neurons in
200 25 neuron ensembles randomly selected from a segment of 10% of all the neurons sliding across the population
from the top-ranked to the bottom-ranked neurons, versus their state-decoding accuracy for three 500 ms epochs
across the trial. Horizontal line indicates the significance level for decoding accuracy at p << 0.001. Filled circles repre-
sent ensembles below the significance line, of which there were 9 of 200 for the odor epoch, 3 of 200 for the postre-
ward epoch, and 14 of 200 for the ITI epoch. d, Lines indicate state-decoding by 25 neuron ensembles selected from
event-significant neurons (defined by ANOVA for factors odor, direction, or outcome in any bin) versus event-
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more similar to trials representing the new
state, shown by dark blue patches on the heat
plot. This suggests that the pattern of ensemble
firing rates after reward almost immediately
resembled that seen later in that same block, as
opposed to the pattern occurring just a few tri-
als previously at the end of the last block.
However, in other parts of the trial, the pattern
continued to resemble that in the previous
state, as shown by the red and yellow patches
in the heat plot. As trials in the new block pro-
ceeded (down the vertical axis), activity gradu-
ally came to resemble the new state pattern,
shown by the heat plot changing from red to
light blue to dark blue. By about trial 20, the
new state pattern was represented uniformly
across the whole trial. The timing of this devel-
opment suggests that initial information about
the state change arrives when an outcome is
first observed to be different from in the previ-
ous block for that same response. Interestingly,
it was not during reward delivery itself that the
information first appeared in OFC ensembles,
but ~1 s after the last reward drop delivery.
This suggests that information about the num-
ber of drops must be integrated over time in
ensemble patterns to represent the new state.
Our analysis shows more trials are needed for
this information to be integrated in earlier and
later parts of the trial that are more distal from
reward delivery.

We next tested whether the development of
OEFC state representations was correlated with
the rate at which the rats adapted their choices
to the new block. To do this, we split the OFC
population into two groups according to
whether neurons were recorded when rats
switched quickly (top quartile of free-choice
rate toward 3-drop side in the first 10 trials af-
ter the switch) versus when rats switched
slowly (bottom quartile; Fig. 5a). This split was
possible because there was considerable spon-
taneous variability in changes in the choice
rate. On lower-quartile switches, rats persever-
ated by choosing the 1-drop side (formerly the
3-drop side) on 100% of free-choice trials in
the first 10, whereas in the upper quartile they
did so on only 28% of free-choice trials in the
first 10. Then we looked separately at the devel-
opment of state representations in OFC ensem-
bles recorded in these two conditions (Fig. 5b).
The overall pattern of decoding was roughly
similar in the two conditions, recapitulating
that evident in the overall population, with the
new state pattern appearing first after reward

«—

nonsignificant neurons. Both groups decoded state better than
chance and were significantly different from each other across all
bins. Top, Shaded circles represent proportion of neurons significant
for event ANOVAs in each bin, ranging from 0% (white) to 10%
(black) of all possible significance tests across all neurons.
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previous state or new state-decoding, based on a permutation test (p << 0.05, two-tailed).

and only gradually spreading to earlier and later parts of the trial.
However, a marked difference appeared in the early parts of the
trial, after the ITI ended but before the rat made the go response
that indicated its choice. When choice rates were in the bottom
quartile, activity here was strongly perseverative (dark red),
whereas when choice rates were in the top quartile, decoding
more quickly went to chance (green or light blue). We tested this
more formally by analyzing decoding during a prechoice epoch
in the two conditions (for this, we restricted our analysis to
forced-choice trials to remove any bias in the kinds trials
included in the top quartile vs bottom quartile datasets; Fig. 5¢).
This analysis confirmed the impression from the heat plots:
When rats switched slowly, decoding for the new block was sig-
nificantly below chance (reflecting the previous block) through
about trials 12-15, whereas when rats switched quickly, decoding
was significantly above chance. Later in the block, decoding in
the two conditions became indistinguishable. When we ran a
similar analysis using a postreward epoch, the neurons recorded
on slowly switching blocks actually showed better decoding, but
the differences were not significant (Fig. 54). Because we only
observed a significant difference in the prechoice part of the trial,
it suggests the possibility that a failure to integrate new state in-
formation into OFC ensembles when rats are making choices
could result in a failure to adapt choice behavior to the new
contingencies.

Does the above analysis mean that OFC state representations
are directly driving choice behavior? Here we tested this idea by
comparing state-decoding when rats chose the preferred out-
come (the 3-drop side) versus the antipreferred outcome (the 1-
drop side). We excluded trials right after state transitions, when
the preferred side would be ambiguous. If OFC state representa-
tions were directly driving choices, we would expect to see better
representations of state when rats chose the preferred side after
this transition period. However, as shown in Figure 6, state-
decoding was indistinguishable in the two conditions. In combi-
nation with the previous analysis, this suggests that, rather than
directly driving choices, OFC state representations may only be

100% previous
state decoding

chance decoding

100% new
state decoding

After a state transition, new state representations first emerge in OFC ensembles in the postreward
epoch, after which it propagates to the other parts of the trial. Shown are results from a binary block decoder that
tests how well OFC ensembles matched the old block pattern versus the new block pattern using sliding sets of 5 trials
after a number block transition (see Materials and Methods). Spike trains were aligned to various events in the trial
(shown with vertical dotted lines) and then concatenated and binned. Decoding percentages at each bin and set of tri-
als were smoothed and converted into the color scale as shown for the heat plot. Red represents previous state-decod-
ing. Blue represents new state-decoding. Vertical dotted lines on the color scale bar indicate significance levels for

J. Neurosci., March 3, 2021 - 41(9):1941-1951 - 1947

critical to judgment as to the current state right
after state transitions, and other parts of the
brain are able drive the choice thereafter.

Do OFC representations of state drive other
information held by OFC ensembles?

The theoretical advantage of categorizing the
environment into states is that it would allow the
appropriate rules or contingencies to be recalled
in conflicting situations. In our task, for example,
knowing the current state would allow the brain
to better predict what outcome to expect based
on a chosen action. We tested whether this was
true within the OFC network by selecting OFC
ensembles that were usually correct at decoding
the current state after reward delivery immedi-
ately after block switches. Because this was the
epoch when OFC ensembles were most accurate
(see Figs. 4, 5), we reasoned that, in the rare cases
when these ensembles were incorrect, it would
mean that state information might be widely
degraded in OFC. If state information was
degraded after reward delivery, then that infor-
mation would have no opportunity to recover
on the following trial until reward was delivered.
We predicted, therefore, that OFC ensembles
would be unable to decode the expected out-
come on trials following trials with degraded state information after
reward delivery. We tested this idea by using the remaining OFC
ensembles (excluding the neurons used to identify trials with
degraded state information) to decode the expected outcome. As
shown in Figure 7, we found that, when the state had been misrep-
resented previously, these independent ensembles (matched for the
same sessions) were unable to decode the outcome better than
chance until reward delivery started. In contrast, when the state
had been represented accurately (which happened on the majority
of trials), these independent ensembles decoded the outcome better
than chance well before reward delivery. This analysis suggests that
outcome predictive information is derived from the correct repre-
sentation of the state in OFC ensembles. As a control, we ran the
same analysis using trials later in the block, when the state would
be well established. Here we found equally good outcome-decoding
regardless of whether the state had been misrepresented on the pre-
vious trial. This result suggests that, when the current state is
unambiguous, outcome predictions do not depend specifically on
the accuracy of OFC state representations.

Discussion

Animals can divide the world into “states” that define the rules
or associations appropriate for governing behavior. This strategy
is computationally efficient when appropriate behaviors conflict
between different situations because it allows animals to switch
behaviors without needing to relearn the rules each time they
change (Wilson et al., 2014). Here we trained rats on a task con-
sisting of four states presented in an order that changed daily.
States were not signaled by any external cue in addition to the
sets of rewards available at the two fluid wells, which changed at
each block transition and continued throughout the following
block of trials. We found that the vast majority of neurons
recorded in the lateral OFC held sufficient state information to
contribute to ensemble representations of the current state at any
point in time. State was even well represented during ITIs when
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top and bottom quartiles of all transitions based on the free-choice rate in the first 10 trials after the transition. In bottom quartile switches, rats perseverated, choosing what was previously
the 3-drop side, even though it had switched to deliver a single drop. Conversely, in upper quartile switches, rats immediately began switching to choose the new 3-drop side. We then ran
the binary state decoder using only OFC neurons recorded across either the top or bottom quartile switches (b-d). b, The resulting heat plots show that, in the prechoice part of the trial, neu-
rons recorded during upper quartile switches adapted quickly to the new state code, whereas those recorded in lower quartile switches strongly encoded the old state for 10-15 trials after the
transition. Line figures illustrated this effect for a prechoice epoch (c) or a postreward epoch (d). These latter analyses only included correct forced-choice trials, meaning that rewards received
were not different in the two conditions. Thick lines indicate significance relative to chance. ¢, *Significant differences between the conditions, both by permutation tests (p << 0.05 for five con-

secutive bins).

rats were not engaged in the task. Importantly, these state repre-
sentations in OFC did not reflect memory traces of what out-
come had been delivered on the previous trial, and they
generalized across free- and forced-choice trials. Further the state
representations were largely dissociable from representation of
individual trial events, which were also present, as described in a
previous publication (Stalnaker et al, 2014); state was repre-
sented by portions of the neural population that did not distin-
guish trial events, and within individual neurons activity related
to state and activity related to trial events coexisted. Thus, the
state representations were not simply an ensemble property sec-
ondary to individual neurons encoding the defining

characteristics of trials in a given block (odor, reward availabil-
ity). Instead, the state representations are well positioned to pro-
mote the emergence of activity specific to the trial events in
particular blocks, as if setting the stage for neural activity encod-
ing the proper associations.

Similar representations have been reported previously in rat,
nonhuman primate, and human OFC (Wilson et al, 2014;
Bradfield et al., 2015; Saez et al., 2015; Schuck et al., 2016; Schuck
and Niv, 2019). Here we extend these findings by showing that
individual OFC neurons tend to maintain state representations
across time. This suggests that an abstract state representation
is not a property that emerges from multiple different
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the two functions.

representations in different neurons but is explicitly represented
by variance in single-unit activity in OFC. Additionally, we show
that the state representations in OFC are related to correct
behavior, particularly in the initial trials after a state transition,
and that recall of the appropriate state by OFC ensembles at the

trials 21-40 after block transition
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—s=strials w/ mistaken state decoding on previous trial (sig>chance)
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After transitions, OFC ensembles can only predict the outcome to be delivered when a matched
OFC ensemble had decoded the state accurately after reward delivery on the previous trial. a, Outcome-decod-
ing accuracy of OFC ensembles when a matched ensemble recorded in the same sessions accurately (blue) or
inaccurately (red) decoded the state on the previous trial, using the first 20 trials after block transitions. b, A
parallel analysis using trials 21-40 after block transitions. The state-decoding epoch was always a 1500 ms
epoch beginning 1500 ms after the initial reward delivery time stamp on the previous trial. ¢, d, Same analysis
as a function of outcome-decoding ensemble size. All rewarded trials were included, except those in which the
previous trial was itself not rewarded. *p << 0.01 comparing the estimated parameter values for the best fit of
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end of one trial predicts the recall of appropriate outcome
expectations by OFC neurons on the subsequent trial, as if the
state representation is setting the stage for which rules will be
activated.

It is worth noting that what we have demonstrated is just one
type of state that might be represented even in our simple task;
our result does not preclude the representation of other hier-
archically ordered states, either higher or lower in order than the
states as we have defined them. For example, in our experimental
design, because there were only four possible block orders, there
was a higher-order state structure consisting of the sequence of
the lower-order states. Such information might also be repre-
sented in OFC; however, because each session consisted of only a
single instance of this higher-order “state,” we were unable to
test whether rats or OFC neurons also tracked them. But regard-
less, there would be utility in keeping track of the lower-order
states, defined by the available outcomes, to know what action to
choose or which well at which to expect the preferred outcome.

Our findings generally support the proposal that OFC is a
critical node in the brain’s representation of a “cognitive map.” A
cognitive map is analogous to a spatial map in that it organizes
knowledge about the relationships between stimuli occurring in
a particular setting (Wilson et al., 2014; Behrens et al., 2018; Niv,
2019). In this case, the map would represent that in one state,
when a correct left response yields three drops of chocolate milk,
a correct right response would yield one drop of va-
nilla milk, and so on for each of the four possible
states. The state would therefore be akin to an
implicit context that links the available actions
and their probable outcomes during a particular
block of trials. Under this idea, the representation
of state that we observed in OFC neural activity
might be conceived of as a pointer indicating the
belief about the current state, facilitating the recall
of context-appropriate contingencies locally and in
distal structures.

OFC state representations changed quickly after
changes in the reward contingencies. That the state
representation first changes after reward delivery
suggests that reward size and flavor, which in com-
bination with the preceding response define the
state, provides sensory evidence as to the current
state that OFC neurons integrate over time. The
gradual integrative process can be interpreted as
the confidence in the current state, akin to decision
confidence, which is also represented in OFC (Lak
et al., 2014; Hirokawa et al., 2019). As more evi-
dence is accumulated over repeated trials, the con-
fidence as to the current state spreads to parts of
the trial in which the reward identity must be
remembered for longer. The mechanism for this
integrative process is unknown. One speculative
hypothesis would be that it depends on dopamine
input. Dopaminergic prediction errors are known
to occur at reward delivery after block transitions
in this task and others like it (Hollerman and
Schultz, 1998; Takahashi et al., 2017), and the
magnitudes of prediction errors are theoretically im-
portant to distinguish whether a new state has been
entered or the old state is changing (Gershman et al., 2010; Niv,
2019).

OFC state representations were also related to rats’ choice
behavior, specifically after changes in the reward contingencies

ITI

200
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early in each block. When rats were slow to adapt free-choice
behavior on a change in the number of drops delivered at both
wells, OFC state representations in the prechoice period strongly
represented the previous state in the first 10-15 trials after
the transition, whereas when rats quickly adapted free-choices
to the new contingencies, OFC represented the new state in the
prechoice period during those trials. This relationship was
only true in the prechoice period; it did not hold later in the
trial, where state representations were unrelated to choices,
nor was it true later in blocks, when rats’ behavior was more
stable, suggesting that they were more certain of the current
state. In this later period of the trial blocks, OFC state represen-
tations were equally accurate whether rats chose accurately (i.e.,
the preferred reward) or inaccurately (i.e., the antipreferred
reward). These findings suggest that OFC state representations
may be most important for accurate decision-making right after
state transitions when the state is ambiguous. This contrasts
with what we have previously observed in cholinergic inter-
neurons in dorsomedial striatum, in which the current state
was misrepresented when rats chose inaccurately throughout
blocks (Stalnaker et al., 2016). Interestingly, when the ipsilateral
OFC was lesioned, this relationship between striatal state repre-
sentations and choice was eliminated (Stalnaker et al., 2016).
Together, these results suggest a circuit in which OFC activity
sets the current belief about the state after switches, a setting
that striatal circuitry (Bradfield and Balleine, 2017; Sharpe et
al., 2019), or other interconnected areas, such as amygdala
(Saez et al,, 2015), are able to maintain thereafter to directly
drive choices.

Knowing the current state would be useful because it would
allow outcomes to be better predicted based on chosen, or
potentially chosen, actions. It has long been known that,
across species, OFC has prominent representations of the
value and sensory features of predicted outcomes (Gottfried et
al., 2003; Padoa-Schioppa and Assad, 2006; Mainen and
Kepecs, 2009; Wallis and Kennerley, 2011; Rudebeck and
Murray, 2014; Rich and Wallis, 2016; Rudebeck et al., 2017). If
OFC state representations are being used to generate outcome
predictions, representations of the expected outcome, within
OFC or elsewhere in the brain, should depend on an accurate
representation of the current state. We tested this prediction
within OFC by examining encoding of the expected outcome
by OFC ensembles when the state had been accurately or inac-
curately decoded after reward delivery on the previous trial.
We found that, when the state had been misrepresented right
after state transitions, outcome-decoding was inaccurate (at
chance levels) on the next trial until the outcome was deliv-
ered, at which time it quickly rose to match high and signifi-
cant levels of outcome-decoding when the state had been
accurately represented on the previous trial. This relationship
provides evidence that OFC has circuitry that combines
knowledge of the current state with knowledge of the chosen
action to predict the outcome when the state is ambiguous.
However, later in blocks, when the current state was presum-
ably unambiguous, outcome predictive decoding was inde-
pendent of the accuracy of OFC state representations. This
suggests that other parts of the brain are maintaining state
representations at that time, and conversely that OFC state
representations are only necessary when the state is ambigu-
ous. It has recently been proposed that more medial parts of
OFC represent the expected outcome, while more lateral OFC
represents the state (Bradfield et al., 2015; Bradfield and Hart,
2020). In the current study, we did not record in medial OFC,
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but our findings do not negate that possibility, since the neural
correlates of expected outcomes observed might be retrieved
from medial areas. More broadly, the current results are con-
sistent with a recent proposal that representations of expected
outcome or reward value would only be observed in OFC to
the extent that they are part of state representations (Niv,
2019). As such, understanding the mechanisms through which
OFC represents and uses cognitive maps may have important
implications for understanding OFC dysfunctions in addic-
tion and other affective disorders related to misevaluating
expected outcomes (Goldstein et al., 2007; Lucantonio et al.,
2012; Bernardi and Salzman, 2019).
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