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Abstract

According to the variance hypothesis, variety-seeking or exploration is a critical condition for

improving learning and performance over time. Extant computational learning models sup-

port this hypothesis by showing how individuals who are exposed to diverse knowledge

sources are more likely to find superior solutions to a particular problem. Yet this research

provides no precise guidelines about how broadly individuals should search. Our goal in this

paper is to elucidate the conditions under which variety-seeking in organizations is benefi-

cial. To this end, we developed a computational model in which individuals learn as they

interact with other individuals, and update their knowledge as a result of this interaction. The

model reveals how the type of learning environment (performance landscape) in which the

learning dynamic unfolds determines when the benefits of variety-seeking outweigh the

costs. Variety-seeking is performance-enhancing only when the knowledge of the chosen

learning targets (i.e., individuals to learn from) provide useful information about the features

of the performance landscape. The results further suggest that superior knowledge might

be available locally, i.e., in the proximity of an individual’s current location. We also identify

the point beyond which variety-seeking causes a sharp performance decline and show how

this point depends on the type of landscape in which the learning dynamic unfolds and the

degree of specialization of individual knowledge. The presence of this critical point explains

why exploration becomes very costly. The implications of our findings for establishing the

boundaries of exploration are discussed.

Introduction

According to the variance hypothesis, variety-seeking or exploration is a critical condition for

improving learning and performance over time [1]. Extant computational learning models

support this hypothesis by showing how individuals who are exposed to diverse knowledge

sources are more likely to find superior solutions to a particular problem [2–5]. Yet this

research provides no precise guidelines about how broadly individuals should search.

Although variety-seeking allows individuals to gain access to new information and knowledge

[6–8], there are also diminishing returns to exploration [9]. In organizations, for instance,

exploration that spans organizational boundaries often comes at the expense of the “time

needed to understand how external knowledge can be integrated with the firm” [1, pp. 283].
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As individuals expand their search, the amount of “new knowledge to be integrated into a

firm’s knowledge base increases [and] so do the technological and organizational challenges in

integration” [10, pp. 1185].

Previous research has discussed extensively how “learning and change are most often

incremental and involve trade-offs between local expediency and more distant optimality”

[11, pp. 356]. Yet much less attention has been devoted to establishing how broad exploration

should be. Unless individual actors are assumed to have a more accurate mental representation

of the performance landscape–i.e., the relationship between choices and performances [5, 12,

13]–the question of where in this landscape the requisite variety in terms of knowledge can be

found has remained unattended. Our goal in this paper is to elucidate the conditions under

which variety-seeking is more or less beneficial. We are therefore less concerned with the opti-

mal balance between exploitation and exploration, which has been center stage in the learning

literature, but we instead probe the boundaries of exploratory search by examining how

broadly individuals can effectively search in different learning environments.

Following the lead of previous computational studies [2, 4, 14], we model learning as a pro-

cess through which individuals interact with other individuals and, in the process, update their

knowledge about the performance landscape. This interpersonal learning dynamic leads to

novel combinations of knowledge, some of which represent superior solutions. This type of

knowledge re-combination is common in business practices and often times may have a signif-

icant impact on organizational performance. For instance, the task of making of a new anima-

tion movie at Pixar is assigned to a group of individuals working very closely together for

months. To enhance learning among group members, a well-established practice at Pixar is

the daily review process of giving and getting feedback in a positive way–a practice called ‘the

dailies.’ As Ed Catmull, co-founder of Pixar and former president of Walt Disney Animation

Studios, put it: “People show work in an incomplete state to the whole animation crew, and

although the director makes decisions, everyone is encouraged to comment” [15, pp. 7–8]. A

key benefit of this practice is that people learn from and inspire each other by identifying and

solving problems early in the production process instead of waiting for the movie to be com-

pleted, when making any change would prove extremely costly.

The results of the simulation reveal how variety-seeking does not necessarily lead to supe-

rior learning outcomes. The type of learning environment (i.e., performance landscape) in

which interpersonal learning unfolds is critical for establishing when variety-seeking is benefi-

cial. Our findings suggest that broadening search is performance-enhancing only when the

knowledge of the chosen learning targets (i.e., individuals to learn from) provide useful infor-

mation about the actual features of the performance landscape. The performance landscape

can be single- or multi-peak. In the model, the number of peaks captures the extent to which

interpersonal learning is frictionless, namely it is costless for individuals to interact and learn

from each other; or some frictions make it costly to learn from other individuals who hold

superior knowledge. Consider the case of Four Seasons–the luxury hotel chain. As David

Crowl–former vice president of sales and marketing–pointed out, Four Seasons typically learns

from each of its properties around the world because “we are an international hotel company,

we take our learning across borders. At our new property in Egypt, we are going to try to

incorporate indigenous elements to the spa, but we will still be influenced by the best practices

we have identified at our two spas in Bali” [16, pp. 3]. Despite Four Seasons’ longstanding

strategy of tailoring its properties to each location, the company encourages its employees to

access the requisite variety available in other locations, so fostering interpersonal learning even

across geographically distant properties, with people regularly visiting other locations to learn

from or educate others. Yet, while some best practices (or superior solutions) can be learned

and transferred across different locations, others are location-specific, i.e., valuable for one
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location but of little value or even harmful to another. In this case, the performance landscape

can be modeled as a multi-peak landscape in which variety-seeking might prove very costly

due to the frictions that make the sharing of superior knowledge less viable.

The results further reveal that the requisite variety can very often be available in the proxim-

ity of an individual actor’s current location in the performance landscape. For instance, when

Apple approached Corning looking for an ultrathin glass for cell phones that could be touch-

stone but without breaking in case it fell, Corning had to decide whether to develop this type

of glass from scratch or instead leverage its existing knowledge base. To develop such a glass,

eventually known as the Gorilla glass, the team in charge resurrected Chemcor–a strengthened

glass developed in the 1960s –which Corning had unsuccessfully attempted to apply in produc-

ing safety eyewear and windshields for cars, and shelved in September 1971 [11, 17]. In both

cases, local as opposed to distant exploration proved to be a more effective search strategy. If

the team had attempted to develop a completely new glass, it would never have succeeded in

delivering it within six months, as Apple had requested, thus missing out on a very lucrative

business opportunity. Unlike previous research findings, this implies that broad search may

not be the most effective search strategy.

We further identify the point beyond which variety-seeking causes a sharp performance

decline and show how this point depends on the type of landscape in which individuals learn

from each other and their degree of specialization. The presence of this critical point explains

why, as individuals change the scope of their search strategy, exploration becomes very costly.

Extant research emphasizes the benefits accruing to distant search; yet viable opportunities

might be available locally, that is, in the proximity of an individual’s current location. As our

findings suggest, undertaking a ‘long jump’ [18] (i.e., distant exploration) may not be the most

effective search strategy in this case. Therefore, we shed light on when distant search is useful

in finding the requisite variety.

The paper is organized as follows. In the next section, we review extant computational

research on learning and recent empirical studies that examine the impact of variety in knowl-

edge on the effectiveness of search, i.e., the ability to identify superior solutions to a particular

problem. We then explain the key features of our model and introduce the main questions that

the model is meant to address. Next, we present the results of a series of experiments designed

to analyze the influence of interpersonal learning on the effectiveness of search as individuals

learn from other individuals whose knowledge is more or less similar to theirs under varying

experimental conditions. The concluding section draws out the general implications of the

simulation results and identifies model extensions that represent viable avenues for future

research.

Literature review

The most influential treatment of the variance hypothesis in organization studies can be traced

to March’s [3] mutual learning model. In this model, organizational members learn from

other members indirectly via an organizational code. The organizational code draws upon the

knowledge of the best-performing individuals, i.e., individuals whose performance is higher

than the organizational code’s performance; individuals, in turn, learn from the code. It is

through this mutual learning process between the code and individuals that superior knowl-

edge is disseminated indirectly (i.e., via the code) across the entire organization. As individuals

learn from the code, they become socialized into the organization’s knowledge. Since the code

can learn only from individuals who deviate from it, preserving the requisite variety in knowl-

edge is critical to support the exploration that “allows the knowledge found in the organiza-

tional code to improve” [3, pp. 76]. Conformity to the organizational code, “drives out
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interpersonal heterogeneity, which results in lower long-run performance than would be pos-

sible through slower conformity to the code” [4]. One way in which the requisite variety can

be preserved is through personnel turnover, with newcomers bringing along new knowledge.

More generally, exploration creates and preserves the variety necessary for the organization to

sustain its learning–as well as performance–in the long term.

Extending March’s [3] original model, other scholars have modeled learning as a process in

which individuals learn directly from each other [2, 4]. Indeed, much of the learning that “goes

on within organizations occurs directly from person to person and is not limited to exchanges

mediated by organizational codes” [4, pp. 711]. Individuals compare the performance of their

own knowledge to the performance of other organizational members’ knowledge: if they dis-

cover that this knowledge could help them further improve their performance, they may

decide to update their knowledge by incorporating aspects of the higher-performing knowl-

edge set. As individuals update their knowledge, over time organizational performance will

also improve. Whether the organizational code learns from the best-performing individuals

(and individuals, in turn, from the code) or individuals learn from the best-performing indi-

viduals by interacting directly with them, in both cases organizational performance improves

over time.

The previous computational learning studies strongly support the variance hypothesis by

showing how variety in knowledge reduces the risk of being trapped on a suboptimal part of

the peak (i.e., an inferior technology or market product). By conducting exploration that spans

both intra- [2, 19–21] and inter-organizational [6–8, 14] boundaries, individuals within an

organization seek out the variety required to improve performance.

Two questions, however, remain unaddressed. First, this research assumes that no actual

impediment other than structural inhibits the dissemination as well as the incorporation of

superior knowledge. The emphasis on the performance-enhancing effects of variety in knowl-

edge rests on the implicit assumption that there is a single, optimal set of knowledge that indi-

viduals incorporate by learning from other individuals within and across organizational

boundaries [2–4]. Over time high performers’ knowledge is disseminated throughout the orga-

nization, thus contributing to improving its performance. The positive effect of incorporating

such knowledge makes intuitive sense if the performance landscape in which individuals inter-

act consists of a single, global peak–as the previous computational models implicitly assume.

In this type of learning environment, there are knowledge complementarities that allow indi-

viduals to incorporate the knowledge of others, but without experiencing a performance

decline. All individuals have to do is to update their knowledge by incorporating some of the

better-performing individuals’ knowledge.

We provide numerical evidence on why the single-peak is qualitatively different from the

multi-peak case in the “Probing the Model Assumptions” section (see below). When the

assumption about a single, optimal set of knowledge is relaxed and knowledge is allowed to

differ, the benefits of variety-seeking are less obvious because differences in individuals’

knowledge are costly to reconcile and integrate. This may occur because, for instance, inven-

tors who are active in different technological domains often disagree about the type of technol-

ogy or product to which a firm should allocate its scarce resources. Cognitive barriers may

prevent them from working effectively together [22–24], personal agendas may inhibit the

effective combinations of their knowledge, or simply knowledge cannot be reconciled, possibly

resulting in combinations that prove inferior solutions to a particular problem. For instance,

before the advent of digital imaging technology, Polaroid had adopted a ‘razor/blade’ business

model. This model was so successful that the top mangement felt that Polaroid “could not

make money on hardware, only software (i.e., film)” [25, p. 1152]. In the world of instant pho-

tography, this business model was effective because the learning environment was essentially
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single-peak. With digital imaging, the new learning environment was characterized by a new

peak, whose attractiveness increased as digital cameras gradually replaced instant cameras.

Polaroid created a division focused on digital imaging and a new set of knowledge emerged

within the company; yet the razor/blade business model continued to guide key investment

decisions, even though the model was less appropriate for digital cameras.

Extant learning models usually assume away possible frictions that constrain individuals’

ability to learn from each other. One the one end, exposure to a wider range of learning oppor-

tunities is expected to enhance performance; on the other, such exposure may prove very

costly, therefore curtailing the expected benefits. This raises the question of how expansive

exploration should be. In other words, what are the optimal boundaries of exploratory search?

To expose the tradeoffs that firms face in deciding how broad or focused their exploratory

search should be, it is necessary to examine the learning dynamic unfolding in a multi-peak

landscape where frictions and search boundaries can be explicitly modeled and analyzed. In pre-

vious models where individual actors are assumed to have the ability to determine the value of

all alternative locations on the landscape [18], such frictions–in the form of search costs–do not

affect learning outcomes (but for an exception see Rivkin [26]). To inspect when variety-seeking

is a viable search strategy, the next section introduces a computational model in which individu-

als hold knowledge under conflicting realities. Part of this effort is to develop a simple, multi-

peak landscape. Its relation to NK landscapes is also discussed in detail. We then probe the gen-

eralizability of the results by examining their sensitivity to varying experimental conditions.

The model

Following previous computational research, we model an organization as consisting of a set of

individuals located on a performance landscape. We start by considering the case of two dis-

tinct sets of individual knowledge: each set is a better fit for a different peak on the landscape.

This means that the landscape has two peaks. Individuals located in the vicinity of the same

peak are likely to be more similar as they share common knowledge about the region of the

landscape in which they are located. The opposite holds for individuals located on different

peaks. Returning to our Four Seasons example, this fits the case of individuals working in two

hotels highly adapted to the local needs. To the extent that knowledge reflects local needs that

differ substantially between locations, the benefits from interpersonal learning may diminish.

For instance, Four Seasons hired a celebrity chef for the restaurant of its property in Paris for

the first time in its history: this was an essential feature for a luxury hotel in a location where a

Michelin-starred restaurant was expected. This ‘local’ knowledge would not be useful in other

locations (especially in some Asian countries) where the possibility of choosing from among

different dining options is expected. In such places, learning from the hugely successful experi-

ence in Paris would have proven of little use, if not downright harmful [16].

Individuals try to learn by incorporating others’ knowledge; whether or not this interaction

enhances their fitness or performance level is represented by having individuals move up or

down the peak on which they are located. We show how our main arguments and findings

generalize to the case with (1) two peaks of equal height, (2) two peaks of unequal height, and

(3) multiple peaks. The second case refers to when one location offers better learning opportu-

nities, while the third case to when the reality is more complex and finding superior knowledge

is increasingly difficult.

Model of interpersonal learning on a two-peak landscape

Our model consists of three main parts: an external reality–which defines the shape of the per-

formance landscape–individuals, and learning rules. In March [3] and other studies in the
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same tradition, an external reality is modeled as an m-dimensional vector where each dimen-

sion is assigned a binary value with equal probability. As a result, the randomly created reality

corresponds to a landscape with a single peak. An alternative approach is to model the external

reality as a multi-peak landscape that allows for the co-existence of different–including con-

flicting–realities (e.g., competing technologies or production methods, different markets or

industries) to which individuals try to adapt.

In the simulation, we start with the simple case in which the external reality coincides with

a two-peak landscape. This is represented in Fig 1, an intuitive visual representation which

assumes a U-shaped landscape, with each peak located at each end of the performance land-

scape [27, p. 189], for a two-dimensional representation. This implies that the two peak points

correspond to two distinct realities sharing the least number of identical dimensions. We cre-

ated two realities as R1 and R2. Specifically, R1 is denoted as (r1, r2,.., ri,.., rm) and R2 as (r’1,

r’2,.., r’i,.., r’m)–where if ri = 0, then r’i = 1 and vice versa. We set R1 and R2 as (0, 0, . . ., 0) and

(1, 1, . . ., 1), respectively. But one can use other values for R1 and R2 as long as ri 6¼ r’i. An indi-

vidual’s knowledge about the external reality, denoted as X = (x1, x2,.., xi,.., xm), is also modeled

as an m-dimensional vector with a binary value 0 or 1. An individual’s task is to match a reality

as closely as possible. Thus, each dimension in the knowledge vector can be treated as a sub-

task an individual has to work on. To create a U-shaped landscape, the performance of an indi-

vidual, denoted as Y(X), is determined by the maximum value of the two functions that cap-

ture how closely an individual knowledge matches a specific reality. Following previous

computational models, the height of a point in a landscape captures the level of performance

corresponding to that point. For instance, a salesman is assigned the task of increasing the

sales of a particular product on the market: the height of the peak indicates how well or poorly

s/he fares in pursuing that goal. More formally, an individual’s performance is represented as

follows:

YðXÞ ¼ f ðR1;R2;XÞ ¼ maxð
1

m

Xm

i¼1
di;1;

1

m

Xm

i¼1
di;2Þ ð1Þ

where δi,j = 1 if the ith element of X matches the same dimension in the jth reality and δi,j = 0

otherwise (note that i2{1, 2, . . ., m} and j2{1, 2}). Intuitively, the payoff function takes the

maximum value of two payoff functions, each of which is an argument in the max function in

(1). As the two extreme points are the peak points and the payoff decreases as we move farther

Fig 1. Learning on a two-peaked landscape with limited learning targets. (A) Performance landscape indicating there are two knowledge sets at two

endpoints denoted by R1 and R2. (B) A contour plot view illustrating how learning unfolds under focused exploration (i.e., a small σ value; σ indicates

search boundary). H and L indicates a high and a low performer within σ. (C) A contour point view in the case of broad exploration.

https://doi.org/10.1371/journal.pone.0247034.g001
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away from each of them, taking the maximum value of the two superimposed functions results

in a U-shaped payoff function.

We initially seed the same number of individuals on each peak. Let n denote the entire

number of individuals in the organization. n/2 individuals are located on the R1 side while the

rest are on the R2 side. The parameter μ2(0,0.5] (i.e., 0 is not included in the set) captures how

dispersed individual knowledge is at the beginning. Intuitively, μ indicates the range within

which individual knowledge are initially located. Since the range starts from each end of the

landscape, μ = 0.5, the maximum value of μ, implies that individual knowledge is dispersed

over the entire range of the landscape. More formally, each element in an individual knowl-

edge set Xj = (x1,j, x2,j, . . ., xm,j) on the jth side follows the Bernoulli distribution B(1, Uj), where

Uj is uniform in [0, μ]. Each element on the other side, X¬j = (x1, ¬j, x2, ¬j, . . ., xm, ¬j), follows

the Bernoulli distribution B(1, U¬j), where U¬j is uniform in [1- μ, 1]. For each individual, Uj

or U¬j is drawn independently.

Starting from each end point, most initial individual knowledge is distributed within the

range represented by μ. As μ becomes larger and approaches 0.5, individuals are more spread

out over the entire performance landscape and, therefore, the density of individuals located on

a particular peak is lower. As a result, when μ is close to 0.5 individuals’ knowledge has not yet

become specialized for any particular application (i.e., peak in the landscape).

In every period, all n individuals in the organization have the opportunity to learn from

other organizational members: interpersonal learning is the mechanism through which indi-

viduals search for combinations of superior knowledge. The objective of learning is to adopt

the attributes of the best-performing individual from a chosen sample of learning targets (see

below). Individual performance is measured by Eq (1) and the best-performer is defined by an

individual whose performance, Y(X), is the highest within the chosen sample. Learning is

‘imperfect’ unless the sample of learning targets includes all the individuals in the organization.

Each individual chooses b (1�b�n-1) individuals to learn from within a search boundary.

A search boundary, denoted by σ, is defined in terms of Hamming distance divided by m
(total number of knowledge dimensions). The Hamming distance indicates the number of

dimensions at which the corresponding values are different. Thus, the theoretical range of σ is

0 to 1. If the Hamming distance between the learner and another individual is smaller than σ,

this individual is a potential learning target for the learner. When σ = 0, individuals do not

learn from other individuals; when σ = 1, individuals potentially can learn from any other indi-

vidual. Within the σ range, the learner randomly chooses b individuals and then learns from

the best-performing individual by copying a p fraction of the attributes of the learning target

(i.e., the best performing in the sample). Since only a fraction of the attributes of the best per-

forming individual in the sample is copied, learning is always imperfect. This model feature is

intended to enhance the empirical plausibility of our model: some knowledge is difficult to

absorb due to, for example, its tacit nature and therefore cannot be easily communicated even

when individuals are otherwise willing to share it. Indeed, the parameter p is meant to capture

the fact that even if one can identify the best performing individual in a group or organization,

only a fraction of this individual’s knowledge can be absorbed. Our model does not distinguish

whether this is due to the difficulty of communicating certain knowledge dimensions or the

reluctance to share them with others. Yet the ability to identify the best performing individual

is possible in several situations. Since 1972, for instance, the Institutional Investor magazine

has annually ranked the top analysts in equity industry group and investment specialty using

four levels of awards: first place, second place, third place, and runner-up [28]; the number of

awards and nominations individuals receive or the commercial success of their work is often

used to recognize top-performers in industries like film-making, music, advertising, TV and

publishing, among the others [29]; and scientists and engineers who file the largest number of
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patents and/or publish articles in prestigious scientific journals are regarded as top-performing

employees in many R&D intensive firms. For example, IBM has its “IBM Fellows” award to

celebrate the achievements of star performers and 3M honors its top scientists through their

induction into the Carlton Society [30]. It is therefore possible to identify best-performing

individuals based on a series of key performance indicators that are available and widely used

within and outside organizations operating in the same industry.

While individuals can identify the best-performing individual among the chosen ones, they

cannot anticipate the outcome quality of their learning efforts. In other words, individuals

have no foresight about the learning outcome. For instance, prior research [28, 29] has shown

how teams staffed with star performers only perform well after their members (i.e., stars and

non-star performers) have learned to work together over time: since star performers tend to

have big egos, they usually expect their co-workers to adapt to their work style. This is why

some firms that consider hiring star performers often hire their close collaborators in order to

recreate the same basic work environment that allowed stars to reach the level of performance

they had while working for their former employer. In this sense, our model differs from previ-

ous models that assume individuals to have such ability [13, 18, 31, 32]. This assumption

implies that no performance decline is observed when individuals learn from each other. We

discuss this important point in the section “Relationship with Prior Models” (see below). The

results that incorporate foresight and errors in evaluation are also described in the sensitivity

analysis section.

Fig 1 offers an intuitive visual representation of the interpersonal learning dynamic over a

two-peak landscape. In Fig 1A, the U-shaped performance landscape indicates that there are

two knowledge sets at two endpoints denoted by R1 and R2. We also tested the model on a

bimodal landscape in which the peak points were located in an interior part of the landscape:

the results were qualitatively similar to those of our baseline model. The range is colored on

the landscape surface with a different color: pink and blue for the range μ and yellow for the

rest (in a black and white color scheme, the μ range starts from each end of the landscape and

stops where there is a change in the color scheme). When μ is small, individuals located in the

vicinity of the same peak tend to be more similar to each other because they share similar

knowledge.

The degree of search boundary determines the extent to which the knowledge that individ-

uals incorporate by interacting with one another are diverse. Fig 1B, a contour plot view of Fig

1A, illustrates how learning unfolds under focused exploration (i.e., a small σ value). Each indi-

vidual seeks a sample of other individuals to learn from within a certain range. The range of

this search is expressed as the radius of the circle surrounding the ‘Learner.’ The radius thus

represents σ: The larger the radius, the larger the value of σ. As we described earlier, in the

actual computational model, σ is defined in terms of Hamming distance divided by m. This

implies that, if the Hamming distance divided by m between the learner and another individ-

ual is smaller than σ, the individual is a potential learning target for the learner.

Fig 1B also illustrates how the ‘Learner’ randomly chooses b individuals within the σ range

(in the current example b = 2 and, therefore, there are two individuals within the search

boundary). Among the chosen b individuals (denoted by red and yellow dots in a colored ver-

sion), the learner learns from the best-performing individual. Accordingly, in the current

example, the individual denoted by H (for High Performance) is chosen as a learning target

and the learner adopts p fraction of the learning target’s knowledge. On the landscape figure,

we can express this learning dynamic by moving the learner closer to the individual marked by

H. Fig 1C illustrates the case with broad exploration (i.e., σ = 1). Due to the broad nature of the

search boundary, the learner can choose an individual who is located on the other peak. In the
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current example, the individual on the other peak exhibits a higher performance and so is cho-

sen as a learning target.

Relationship with prior models

Our model differs from the NK modeling approach in several respects. The main difference is

the nature of landscapes. As the generation of landscapes in the NK models relies on a random

number generation process, knowing precisely how any particular choice configuration inter-

acts with other choice configurations is difficult to fathom. Consider the following example. A

configuration of choices with all 0’s would have a different fitness level from a configuration

with all 1’s (unless two random draws from the uniform distribution corresponding to contri-

bution values for the 0-element and 1-element happen to have the same value). This is the case

regardless of the values of N and K. Let’s assume that N = 3 and K = 1.

To calculate the performance value of 000 and 111, the only contribution values we need to

know are for 00 and 11 because each choice shares an interdependence relationship with a sub-

sequent choice (e.g., the contribution of the first 0 in 000 is influenced by the second 0). Let’s

further assume that, for example, the random draw performance contribution for 00 is 0.53

and for 11 is 0.75 (or you can draw any two numbers randomly between 0 and 1). Then, fitness

levels for 000 and 111 are 0.53 and 0.75, respectively. Because fitness calculations for other val-

ues between 000 and 111 –e.g., 010 –require additional random draws, recombining 000 and

111 involves uncertainty about whether the resulting choice configuration will have inferior or

superior fitness levels. In the NK setting it is not clear whether there is a conflicting relation-

ship between 000 and 111, nor does the modeler have control over that relationship. In our

model, on the contrary, we can impose a conflicting relationship between two choice configu-

rations according to the modeler’s intentions. In the S1 Appendix, we show how the results of

the simulation when an NK modeling approach is used still support the variance hypothesis:

on average broad exploration leads to higher performance or superior solutions to a given

problem-solving situation without incurring costs.

The other main difference is the rule of adaptation. Our rule of adaptation assumes that

agents are even more boundedly rational than in previous models where agents are assumed to

have the ability to evaluate new choice configurations, even before implementing any changes,

in both local and distant search [18, 32] (see also Ganco and Hoetker [33] for other search

rules in the NK modeling setting). In the canonical NK models, agents can evaluate new alter-

natives, regardless of their locations. In the case of local search, “if the organization’s perfor-

mance declines, then the organization returns to its prior starting point for its subsequent

efforts at local search” [13, pp. 123]. In the case of a long-jump, “an organization draws at ran-

dom a new organizational form in the space of 2N alternatives. The organization then com-

pares the fitness value of this new organizational form with its current form and adopts the

new form if it is superior to its current one” [18, pp. 938]. By relaxing these assumptions, our

approach is similar to Posen et al.’s [14] model of imperfect imitation: while their model looks

at how firms learn from other firms via imitation, we argue that a very similar learning

dynamic may unfold also at other levels of analysis.

In Posen et al.’s model, firms are modeled as a configuration of an m-dimensional vector

which corresponds to an individual knowledge in our and March’s model [3]. Thus, to follow

the ‘keep-it-simple’ principle and focus on inter-entity dynamics, it is common to model both

a firm and an individual as an m-dimensional vector. Within the range of μ, the way individu-

als choose other learning targets is the same as the imitation rule in Posen et al. Although we

model inter-personal learning behaviors, our model can also be used in other settings like

when, for instance, learning occurs among individuals in different organizational settings.
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Besides the fact that we model inter-personal learning while Posen et al. modeled inter-firm

imitation, it is important to note that there are two major differences. First, while our major

theoretical focus is on search boundary, μ, there is no restriction in search boundary in Posen

et al. Their major restriction in search is the number of firms one can consider as imitation tar-

gets. Thus, how far or closely an imitation target is located is not an important consideration.

Second, we set the situation with conflicting constraints (i.e., multi-peak) as a baseline. The

type of situation Posen et al. consider is a single-peak landscape: although they allow for inter-

dependence among choices by letting one attribute be interdependent with k other attributes,

what they model is essentially a single-peak landscape. There is a single set of attribute configu-

ration that gives the highest performance (i.e., when all the firm level attributes coincide with

the attributes of the external reality) and all other configurations are strictly inferior–and the

performance gap with the best-performing attributes gets larger as the number of non-identi-

cal attributes between the firm level attributes and those of the external reality increases.

An important advantage of introducing a more conservative assumption on bounded ratio-

nality is the possibility of modeling the costs of combining diverse knowledge explicitly. In

previous models, individuals are assumed to have the ability to evaluate new alternatives and

so they do not bear such costs. Rivkin labeled these costs as “search costs” and assumed them

away from his model: “search costs are set to zero; indeed, the incremental improver knows

the value of all neighboring strategies within a radius of M perfectly without cost or commit-

ment” [26, pp. 829]. In our model, we define cost as intertemporal performance decline. It is

not a direct way of modeling cost involved in search, but an “ex-post” search cost. For instance,

if performance decreases from time t to t+1, the organization incurs a cost. Since we consider

the performance difference between two consecutive periods, a cost can be applied to any

period except for the first period. Thus, we examine whether an organization incurs a cost in

the short or long run, or both. It is possible to incorporate search cost more directly by sub-

tracting a certain portion of the achieved performance level in proportion to the search dis-

tance. This would, in principle, reduce the reported performance level and the amount of

decrease would be proportional to μ. What might be more interesting is to assume individuals

who can do marginal calculations, seeking the point where the marginal cost is equal to the

marginal benefit of search. Since this requires another level of rationality, we do not incorpo-

rate this possibility in the current study. We also report the results of a series of sensitivity anal-

yses in which individuals have foresight about what would happen as a result of learning. We

find that, unless individuals have very strong foresight, our main results still hold.

An additional point on the relationship with prior imitation and recombination models

needs clarification. The “identifying the best performer in the population” imitation rule–i.e.,

Rivkin’s [26] “follow-the-leader” imitation strategy–is a special case of our interpersonal learn-

ing model. Once we increase b (learning target size) to its maximum level, the learner copies

the traits of the best performer.

Simulation

We analyze the effect of exploration boundary by varying the level of σ. A high level of σ (i.e.,

broad exploration) implies that individuals learn from other individuals who are located on

the same or different peaks. In all results reported below, we computed the average of 100 sim-

ulated organizations. Unless otherwise specified, we used the following parameter setting. The

performance landscape consists of 50 dimensions (m = 50), meaning that there are 50 inde-

pendent tasks each individual needs to perform. Each organization consists of 100 individuals

(n = 100), while the learning rate (p) and the learning target size (b) are set at 0.3 and 2, respec-

tively. In the sensitivity analysis sections (see below), we vary these values and confirm that our

PLOS ONE Variety-seeking, learning and firm performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0247034 March 8, 2021 10 / 26

https://doi.org/10.1371/journal.pone.0247034


baseline results are robust under different experimental conditions. Each simulated organiza-

tion allows individuals to learn from one another until there is no better solution to be found–

i.e., a steady-state.

Since we are concerned with the steady-state performance as well as the performance trajec-

tory before reaching the steady-state, we explicitly account for the costs that are incurred to

reach that state. Consistently with prior learning models, and in order to ensure comparability

between the results of our model and those of these prior models, we measured the average

performance across all individuals as a proxy of team or organization level performance.

Depending on the number of individuals, the average performance can in fact represent per-

formance at the team or group level, including the case of an organizational unit (e.g., a divi-

sion) or a small firm (e.g., start-up) whereby it is plausible to assume that individuals not only

know but also interact with one other. Thus, hereafter we call it performance. Table 1 reports

all the parameter values used to generate the results below.

Results

We now present the main results of our simulation model. We consider the impact of variety-

seeking on performance over time under different exploration boundaries (parameterized by

σ). The goal of the first experiment is to understand when incorporating different knowledge

is more or less likely to be beneficial. In results not reported here, we also examined the role of

exploration boundary when there is only a single set of optimal knowledge (i.e., the landscape

has a single peak). Under this scenario, consistent with prior models [3], broader exploration

(i.e., larger σ) provides access to greater knowledge variety and enhances performance without

causing a performance decline. We further distinguish between the case in which the land-

scape has two peaks of equal height and the case in which the two peaks have uneven height.

Learning in the presence of different optimal knowledge

Fig 2 presents the average performance over time for different levels of σ with 95% confidence

intervals. We fixed μ (initial dispersion of individual knowledge) at 0.1. For presentation pur-

poses, we chose three levels of σ – 0.3, 0.83, and 1.0 –each representing a focused, moderate,

and broad exploration scope for learning targets, respectively. We chose σ = 0.83 because it is a

level of exploration that exhibits a performance pattern between the two extreme cases. In

other words, a transition occurs at around σ = 0.83. Such transition emerges only within a

small range of σ around 0.83. As we elaborate later, where the transition point occurs depends

on the type of learning environment in which individuals interact, namely whether individu-

als’ knowledge is more or less specialized (as captured by μ). Thus, the transition range can

Table 1. Parameter values for presented results.

Parameter Remarks Range of parameter values in the

presented results

n Number of individuals 100

m Number of dimensions in the external reality and

individual knowledge

50

μ Initial dispersion of individual knowledge 0.1, 0.5

b Learning target size 2

σ Search boundary in learning 0.3 (more restrictive search), 0.83, 1.0 (no

restriction)

p Learning rate (i.e., copying p fraction of the target

attributes)

0.3

https://doi.org/10.1371/journal.pone.0247034.t001
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vary depending on how specialized individuals’ knowledge is around two different peaks. We

elaborate on the meaning of this range in the discussion. Decreasing or increasing σ above and

beyond this range results in patterns similar to σ = 0.3 or σ = 1.0, respectively. Two findings

are noteworthy from Fig 2: (1) there is a significant performance decline initially for a broad

range of exploration (i.e., σ higher than 0.83); (2) the degree of variance in performance is larg-

est for σ = 0.83 (i.e., the range for 95% confidence interval is widest for σ = 0.83). The maxi-

mum variance across all time periods for σ = 0.83 is 68.5 (when Time = 20), while it is 0.07 and

11.8 for σ = 0.3 and 1.0, respectively.

The first finding shows how interpersonal learning experiences a significant performance

decline before reaching the maximum performance level. This decline is due to the cost that

individuals incur as they try to learn from other individuals located on a different peak. When

individuals maintain focused exploration (e.g., σ = 0.3), on the contrary, performance increases

in a steady manner and eventually reaches the maximum level. When individuals engage in

very broad exploration (e.g., σ = 1.0), interpersonal learning reaches the steady-state more

slowly compared to the other two levels of σ, but also experiences a sharp performance down-

turn initially. This model thus reveals the costs of variety-seeking in learning that do not

emerge in prior modeling studies.

Why do we observe such costs under the broad exploration condition? A rather intuitive

explanation is that the incorporation of diverse knowledge is not automatic. As individual

knowledge is ‘specialized’ for a given peak (i.e., useful for a specific task or application), it may

Fig 2. Effects of search restriction (σ): An equal peak case. The shades represent 95% confidence intervals. μ (initial dispersion of

individuals) is set to be 0.1.

https://doi.org/10.1371/journal.pone.0247034.g002
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be costly to incorporate the knowledge of individuals located on other peaks. As individuals do

not know the actual shape of the landscape, they can experience a performance decline even if

they learn from better-performing individuals located on a different peak. The Four Seasons

example of hiring a celebrity chef at its property in Paris is an apt illustration of this particular

situation, whereby knowledge that reflects too closely the reality of one location is much less

valuable in a different location. Visually (Fig 1), this decline corresponds to an individual

being repositioned in the middle area of the landscape.

In subsequent periods, underperforming individuals try to improve their performance by

learning from better-performing others. In choosing the learning target, neither the location

of the learning target nor the peak toward which the learner might move is known a priori.

This implies that a learner who lands on the landscape’s middle area can move back and forth

between the two peaks. Accordingly, the learner’s performance level will also fluctuate. In con-

trast, under focused exploration (σ = 0.3) individuals located on one peak would not consider

individuals on the other peak as learning targets. Learning occurs among individuals within
each peak, but not between peaks. Under focused exploration, therefore, the performance out-

come resembles interpersonal learning on a single landscape: steady increase in performance

without significant costs.

To confirm our conjecture regarding the costs under broad exploration, we measured inter-

temporal performance variation between time t and t+1, and the Hamming distance between

the source (i.e., the learning individual) and the learning target. A high degree of intertemporal

performance variation would indicate that learners change their positions more frequently,

moving back and forth between the two peaks, instead of steadily improving their performance

by learning from other individuals located in the vicinity of the same peak. We thus expect per-

formance variations over time to be larger for the high σ case, but smaller for the low σ case.

We also expect that the Hamming distance between the learner and the learning target to be

larger (i.e., the source learns from a target located at a more distant position) when the learner

experiences a larger performance decline. The top panels in Fig 3 (Fig 3A and 3B) show inter-

temporal performance variations from a single realization for focused and broad exploration

under the same parameters as in Fig 2.

When σ = 1.0 (Fig 3B), we observe two significant patterns compared to the low σ case.

First, the degree of intertemporal performance variation is much larger. While the range of

performance variation under σ = 1.0 is as large as ±0.2, it becomes as small as ±0.05 when σ =

0.3. Second, the length of the fluctuation is significantly longer. Fluctuation lasts until t = 55

under σ = 1.0, while it ends before t = 20 when σ = 0.3. We can thus conclude that individual

learners experience a higher degree of performance fluctuation for a longer period when

exploration is broader (σ = 1.0). The Hamming distance between the learning source and the

target helps better understand the relationship between the learning target’s location and the

resulting learning outcome. In Fig 3B, the learning events that resulted in inferior performance

(below the zero point) were mostly from learning targets located in distant areas of the land-

scape (colors near red on the colorbar, i.e., close to the value 1 on the vertical bar on the right

end side the figure). This pattern is confirmed in Fig 3A, in which learners choose targets

nearby and so do not experience performance fluctuations.

The patterns from the previous two cases are observed not only in this particular single real-

ization, but also in a more general setting. The bottom two panels in Fig 3 (Fig 3C and 3D)

repeat the same experiment of the panels above, except that the results are based on averages

across 100 individuals. The costs involved in learning from distant individuals become more

apparent. In Fig 3D, for the first several consecutive periods, learners experience decreasing

performance. In the subpanel of Fig 3D, we provide a magnified view from t = 3 to t = 30.

From this, we can see that a performance decline during the first ten periods is followed by
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performance improvement. This pattern is consistent with, but also explains, the initial perfor-

mance decline in the case of σ = 1.0 observed in Fig 2. On the other hand, the magnified view

in Fig 3C explains the consistent performance increase in the case of σ = 0.3. By learning from

nearby targets, individuals experience performance improvement for the first twenty periods,

consistently with the performance-enhancing pattern in the case of σ = 0.3 (Fig 2). So, the

comparison between the two σ cases suggests that learning from individuals whose knowledge

is more diverse (i.e., σ = 1.0) entails a higher level of performance variation for a longer period

compared to learning from individuals whose knowledge is less diverse (i.e., σ = 0.3). This is

the source of initial costs that learners experience as they try to learn from individuals holding

different knowledge.

The next question is why the degree of variance in performance is largest for σ = 0.83. From

the first finding–performance decline resulting from incorporating diverse knowledge–and

the explanation we gave in the previous paragraph, it follows that values of σ less than 1.0

should generate less variance in performance than the value of σ = 1.0. One might expect this

to happen because the performance decline is the largest for σ = 1.0. However, we observe that

variance in performance tends to be higher for σ = 0.83 than σ = 1.0. What is the reason for

this unexpected result?

To answer this question, we need to examine performance variations across multiple simu-

lation runs, namely beyond the intertemporal performance variation within a single simula-

tion run. One way to do so is to determine whether all individuals converge to the top of the

Fig 3. Search restriction and intertemporal variation in performance. Colors in data plot and color bars represent Hamming distance between the

source and the learning target. (A) σ = 0.3 for a single Individual (B) σ = 1.0 for a single Individual (C) σ = 0.3 for average of 100 individuals (D) σ = 1.0

for average of 100 individuals.

https://doi.org/10.1371/journal.pone.0247034.g003
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peak on which they were located initially or they all converge to the same peak, regardless of

their initial location. It turns out that eventually every individual reaches a peak. Intuitively

speaking, for small σ values, a certain proportion of individuals will converge toward one peak

and the rest toward the other; for high σ values, all the individuals will converge toward one

single peak, that is, the peak where the best performing individual is located. As we show

below, a less intuitive pattern takes place for a small range of values of σ around 0.83 and this is

what generates the high variance in performance.

In Fig 4, we present varying converging patterns across different levels of σ. On the horizon-

tal axis, we indicate the proportion of individuals who converge to one peak (we picked the R1

peak.). On the vertical axis, we indicate the frequency of each proportion out of 100 indepen-

dent runs. The parameter setting is the same as in Fig 2. When σ = 0.3 (Fig 4A), all 100 cases

have a proportion value of 0.5. This implies that in each of the 100 runs, one half of the individ-

uals converges to the top of one peak (the R1 peak) and the other half to the top of the other

peak (the R2 peak). Specifically, all individuals reach the top of the peak on which they were

initially located. However, when σ = 1.0 (Fig 4C), a different pattern emerges. In 50 out of 100

cases, individuals converge to one peak; in the other 50 cases, individuals converge to the other

peak. In each simulation run, all individuals converge to one peak with probability 0.5. The

case with σ = 0.83 (Fig 4B) exhibits a pattern that lies in between the two extreme cases: 78

cases show a pattern similar to the case of σ = 0.3, while 22 cases are similar to the case of σ =

1.0.

Our results in Fig 4 indicate that when σ = 0.83, individuals may converge to one peak or

spread out over two peaks. Predicting ex ante whether a single-peak or two-peak convergence

is likely to ensue is not possible. Sometimes individuals converge to the peak closer to their

starting position; other times individuals converge to a single peak after experiencing a signifi-

cant initial performance decline. A combination of these two possibilities causes a high vari-

ance in performance.

We now ask whether the non-deterministic convergence pattern takes place in a wide or

narrow σ range. From the results above, it is apparent that a transition from two-peak conver-

gence (i.e., individuals are spread out over two peaks) to one-peak convergence (i.e., all indi-

viduals converge to one peak) occurs near σ = 0.83. In Fig 5, we examine whether this

transition happens abruptly or in a more gradual manner. Understanding how this transition

unfolds is important because when the transition is abrupt, expanding exploration boundaries

might prove costly. On the vertical axis of Fig 5, we report the absolute value of the difference

between the number of individuals on one peak and the number of individuals on the other,

divided by the total number of individuals. If this ratio is 0, it means that the number of

Fig 4. Distribution after convergence. On the horizontal axis, we indicate the proportion of individuals who converge to one peak (we picked the R1

peak.). On the vertical axis, we indicate the frequency of each proportion out of 100 independent runs. (A) σ = 0.3 (B) σ = 0.83 (C) σ = 1.0.

https://doi.org/10.1371/journal.pone.0247034.g004
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individuals on each peak is the same. For example, if 50 out of 100 individuals are on one peak

and the other 50 are on the other peak, the value is |50–50|/100 = 0. As the ratio approaches 1,

this means that more individuals are on one peak than on the other. When the value is equal to

1 (i.e., |0–100|/100 = 1), all individuals are located on a single peak.

In Fig 5, we report the transition pattern for two values of μ. For μ = 0.1 the transition to a

‘one peak convergence’ takes place when σ = 0.83, whereas for μ = 0.5 the transition begins

when σ is around 0.5. These differences in transition patterns suggest that the point at which

the costs of variety-seeking in learning outweigh the benefits depends on whether individuals’

knowledge is more or less specialized (as captured by μ). Although the starting points differ, in

both cases the non-deterministic convergence pattern occurs within a narrow range of σ. In

principle, a transition from two-peak to one-peak convergence can be either continuous or

discontinuous [34]. However, precisely classifying the current transition patterns into one of

the two types requires more computational analyses and is beyond the scope of our study.

High vs. low levels of knowledge specialization

We also examine the effect of different levels of knowledge specialization by varying μ, the ini-

tial diversity. Fig 6 shows the effect of σ when μ = 0.5 across different levels of σ. A high level of

μ, implies that there are only a few ‘experts’ (i.e., individuals tend to be more spread out and

Fig 5. Transition to one-peak convergence. On the vertical axis, we report the absolute value of the difference between the number

of individuals on one peak and the number of individuals on the other, divided by the entire number of individuals. If this ratio is 0,

it means that the number of individuals on each peak is the same. For example, if 50 out of 100 individuals are on one peak and the

other 50 are on the other peak, the value is |50–50|/100 = 0. As the ratio approaches 1, this means that there are more individuals on

one peak than on the other. When the value is equal to 1 (i.e., |0–100|/100 = 1), all individuals are located only on one peak.

https://doi.org/10.1371/journal.pone.0247034.g005
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located in the low/middle region of the landscape). Having more expert individuals seems to

enhance learning.

This beneficial effect is represented by the initial performance levels in Figs 2 and 6. The ini-

tial level of performance for μ = 0.1 is much higher (around 0.95) than when μ = 0.5 (around

0.75). However, this benefit comes with a substantial cost. As in Fig 2, the degree to which per-

formance decreases is much larger when μ = 0.1. While performance drops from 0.95 to 0.619

(the difference is 0.331) under μ = 0.1, it drops from 0.753 to 0.601 (the difference is 0.152)

under μ = 0.5. When individuals are located close to the top of different peaks, their knowledge

becomes more specialized. Hence, in this case, variety-seeking (i.e., incorporating the knowl-

edge of individuals from a different peak) may dampen performance because this specialized

knowledge cannot be effectively combined.

Superior vs. inferior knowledge

So far, we have assumed that no reality is superior to the other. That is why the two peaks were

of equal height. We now consider the case with two unequal peaks: one peak is higher than the

other. To construct the case with unequal peaks, we increase performance levels on one side of

the landscape by 20% (choosing a different percentage value yields similar results). Fig 7

reports the effect of search boundaries on performance for three levels of σ. The reported per-

formance levels are normalized between 0 and 1.

Several things are noteworthy. First, as exploration boundary expands (i.e., a large σ range),

the steady-state performance levels tend to be higher. When σ = 0.3 individuals do not search

beyond the peak on which they are initially located, thus the resulting performance level is the

average of the highest point of each peak. As σ increases, migration from one peak to the other

Fig 6. Effects under high initial dispersion of individual knowledge (μ = 0.5). The shades represent 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0247034.g006
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takes place, and the higher peak tends to attract more individuals. Over time, everyone reaches

the higher peak. Performance improves for increasing values of σ because the peaks have dif-

ferent heights and hence there is a superior solution in a region of the performance landscape.

Under these conditions, engaging in broader exploration is beneficial.

Probing the model assumptions

It is important to establish to what extent the previous results are an artifact of our modeling

approach. Since our model explicitly considers the costs of variety-seeking, it might seem

hardly surprising that we observe a performance decline. Yet, this is not an entirely obvious

finding. To understand why, let’s consider the properties of a single-peak landscape compared

to a multi-peak landscape. We created the landscapes over which the learning dynamic unfolds

by following a modified version of March’s [3] model. We used m-dimensional binary vectors

to represent points in the performance landscape. To create a single peak landscape, we ran-

domly chose one of 2m possible binary vectors. This chosen vector (called “reality”) is the loca-

tion of the peak and its fitness is 1. Fitness levels for other vectors are the number of matching

dimensions with the reality divided by m. For k-peak landscapes (k>1), we chose k binary vec-

tors as realities such that Hamming distance between two adjacent realities is maximized. For

example, when k = 2 and m = 6, we can choose (0,0,0,0,0,0) and (1,1,1,1,1,1) as two realities.

When k = 3, we can choose a vector with three 0’s and three 1’s.

Fig 8 plots the learning outcomes when one individual learns from another individual on

landscapes that vary in the number of peaks. We considered two individuals on a landscape

under two different scenarios: μ = 0.1 and 0.5. We present the case with μ = 0.1 only because

we see a similar pattern for the other case. We placed two individuals on each side of the land-

scape. We let one individual learn from the other individual with a rate of p = 0.3. We created

Fig 7. Effects under unequal peak case. The shades represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0247034.g007
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1,000 learning events. For each event, we create two new individuals. For Fig 8A, we report the

performance difference after learning with 95% confidence intervals. Negative values indicate

a performance decline. For Fig 8B, we report the number of times the learning individual expe-

riences non-negative performance changes. This captures the situation in which the learning

individual lands on an equally good or better position after learning.

For the single-peak case, in 934 out of 1,000 times performance either increases or remains

the same, while in only 66 times it drops slightly–which explains why ‘on average’ there is no

performance decline. The results change dramatically in the presence of two or more peaks.

When there are two peaks, on average performance drops by 27% compared to the initial per-

formance (Fig 8A) and the learner experiences non-negative outcomes only 36 times out of

1,000 times (Fig 8B). In the case with 1,000 peaks, a ‘non-performance’ decline occurs more

than 61% of the times (i.e., 612 out of 1,000 times) and when a performance decline is

observed, the decline is very small–i.e., the performance difference is only 4% less than the ini-

tial performance. After the big drop in performance when there are two peaks, then perfor-

mance gradually improves as the number of peaks increases. In sum, there is a significant

difference between the single-peak and the multi-peak case. This explains why it is important

to examine the variance hypothesis beyond a single-peak landscape and consider landscapes

with two or more peaks. In the next paragraph, we generalize the previous results by re-run-

ning the simulation by creating a landscape with more than two peaks.

Additional sensitivity analysis

To check whether our results are robust in other plausible scenarios, we conducted several sen-

sitivity analyses. First, we checked whether our baseline results–the larger search boundaries

are, the higher the initial costs–hold in the multi-peak case. To create a multi-peak landscape,

we controlled the number of peaks on the landscape in the same way as we did in our two-

peak case, and set the distance between one peak and the next constant: peaks would otherwise

overlap with each other and, in the case with many peaks, the number of peaks would be

smaller than the number we intend to have. The results show that the previous findings con-

tinue to hold in multi-peak landscapes. The initial costs that individuals experience as they

learn from other individuals with diverse knowledge decrease as the number of peak increases.

Intuitively, in a multi-peak landscape, an area of the landscape that was a ‘valley’ can be filled

Fig 8. Number of peaks and learning consequences. (A) Performance difference after learning; negative values

indicate a performance decline (B) Number of times the learning individual experiences non-negative performance

changes out of 1,000 learning events.

https://doi.org/10.1371/journal.pone.0247034.g008
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with new peaks. Because of these new peaks, individuals are more likely to land on a peak

instead falling down a valley as they incorporate the knowledge of other individuals.

Furthermore, we examine the sensitivity of the results by varying the following parameters:

(1) number of individuals (n); (2) number of dimensions in the external reality and individual

knowledge (m); (3) learning rate (p) and the size of the learning target (b). We treat the param-

eter setting in Fig 2 as the baseline. First, we vary the number of individuals in the firm by set-

ting this number to 50 and 150, respectively. Although not reported here, the main pattern of

the results is almost identical to that of the baseline case in which the number of individuals is

100. While we believe this range of n is reasonable, decreasing or increasing n to an extreme

level does not change the results. For example, an extremely small organization with two indi-

viduals would not reach the maximum performance level because there is not enough variety

in knowledge. Yet, even in this case, the cost of variety-seeking would emerge if these two indi-

viduals occupy different peaks.

Next, we vary the number of dimensions in both the external reality and individual knowl-

edge by setting them first to 10 and then to 100. Again, the pattern from the baseline results

(when m = 50) is essentially the same. One noteworthy observation from this variation, how-

ever, is that performance begins to improve earlier and faster when the number of dimensions

is low (e.g., m = 10). This is an intuitive result because individuals have a smaller number of

knowledge dimensions to learn from the best performer. Then, we vary the learning rate (p)

and the size of learning targets (b) by setting them at p = 0.1 and 0.9, and b = 1, 4, 50, and 99,

respectively. The intuition from the case of varying m applies here as well. When the learning

rate is high (e.g., p = 0.9), interpersonal learning improves performance faster but also experi-

ences a smaller performance decline initially. Likewise, increasing the size of the learning tar-

get improves performance because it raises the likelihood of learning from the best performer

and, at the same time, reduces the likelihood of incorporating the ‘wrong’ knowledge.

We also consider the case in which an individual has the ability to (imperfectly) forecast the

learning outcome (i.e., foresight). The screening function in Knudsen and Levinthal [35, p. 41]

allows for this ability by setting the probability of accepting the new alternative as a function of

the difference between the status quo and this new alternative. We experimented with various

levels of screening ability from zero (no foresight) to close to infinity (near-perfect screening

or foresight). In our baseline case, the acceptance probability is set equal to 1 (very low fore-

sight), regardless of the fitness difference. We find that, unless the screening ability gets closer

to the near-perfect foresight condition, the basic pattern of our results still holds. To summa-

rize, these additional analyses (which are available from the authors upon request) suggest that

the main results are robust to parameter variations. Finally, we relax the assumption that indi-

viduals are able to identify the better performer out of b learning targets by allowing for errors

in perceiving other individuals’ performances. We do so by adding a randomly drawn number

from a normal distribution in which the mean is equal to zero and the variance equal to 1 in

one case, and 9 in the other. The transition from two-peak to one-peak convergence takes

place near σ = 0.8 when the variance is 1, and σ = 0.78 when the variance is 9. Although not

reported here, the overall pattern still holds.

Discussion and conclusions

Following the publication of March’s [3] paper, the terms exploration and exploitation have

become almost ubiquitous, dominating “organizational analyses of technological innovation,

organizational design, organizational adaptation, organizational learning, competitive advan-

tage, and organizational survival” [20, pp. 693]. On the premise that a firm’s long-term success

depends on its ability to balance exploitation and exploration, a large body of theoretical and
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empirical research has examined this fundamental tension in organizational learning and

adaptation [4]. Indeed, one of the main challenges for a firm’s long-term performance is to

conduct sufficient exploitation to ensure its current viability, while devoting enough energy to

exploration to ensure its future viability. As Levinthal and March [36, pp. 107] noted, attaining

an optimal mix of exploration and exploitation is difficult because of “the tendency of rapid

learners and successful organizations to reduce the resources allocated to exploration.” A cen-

tral tenet of research on learning is that variety in knowledge over time improves organiza-

tional learning and performance. Preserving and expanding the requisite variety are the

ultimate goals of exploration. Yet this research provides no precise guidelines about how

broad exploration should be.

Building on this basic insight, prior research has examined how managers can leverage the

organizational structure to foster boundary spanning interactions [2, 32, 37]. Connecting oth-

erwise isolated individuals or groups allows superior solutions to be identified and exploited–

an insight that is consistent with early organizational theorists’ intuition that creating lateral

relations (from direct contacts to task forces to more complex integrating roles) across separate

organizational units [38] enhances a firm’s decision-making and long-term performance. A

few scholars have also argued that “cultivating a broad external search has an opportunity cost

as it takes attention away from other activities internal to the firm” [1, pp. 280]. This point res-

onates with attention-based theories that emphasize how any allocation of attention implies

focusing on some opportunities while foregoing other (possibly even better) opportunities [39,

40]. From this perspective, exposure to diverse sources of knowledge provides access to the

requisite variety, but also increases the costs of efforts at variety-seeking. Drawing from these

two streams of research, we examined the tension underlying the variance hypothesis. We

developed a simulation model that allows us to probe the conditions under which variety-seek-

ing enhances or hinders firm performance.

The results of the simulation depict a more nuanced picture than those offered in previous

computational studies that model search in terms of interpersonal learning. In particular, we

show that there are situations in which the benefits from variety-seeking might accrue to indi-

viduals engaging in local as opposed to more distant exploration. In the model, this is captured

by individuals’ initial location on the performance landscape. When individuals are located

close to the top of a given peak, the variety needed to reach the top may be available locally

rather than in a more distant location of performance landscape. In this type of learning envi-

ronment, interacting with individuals located on different peaks might prove of little help to

climb the focal peak–even as individuals incorporate the knowledge of better performing oth-

ers located on those peaks.

This explains why expanding the search breadth may entail diminishing returns [9, 41]. As

Dahlander et al. [1] found out in their study of the search behaviors of élite boundary spanners

at IBM, low external search breadth–coupled with high attention to localized information

sources–is an effective search approach for generating innovative outcomes; besides, it does

not entail the costs of a long-jump. Focused exploration, in other words, might prove a viable

search strategy. For instance, Corning took advantage of the broad knowledge base it had

accumulated in specialty glass when, in 1966, the British Post Office approached it asking for a

glass that could be used to make optical glass fibers for long-distance telecommunication appli-

cations–which Corning ultimately did by leveraging its long-standing expertise in fused silica

[42]. Since the range of possible applications for a firm’s knowledge base is typically wider

than its applications at any given moment, firms can capitalize on previous technological

investments by transferring over time knowledge already available in-house [43–45]. The case

of Gorilla Glass discussed earlier illustrates this process as well.
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A very different learning environment is the one in which performance-enhancing knowl-

edge is spread out over the performance landscape. In this case, a firm can increase the likeli-

hood of gaining access to the requisite variety by expanding the breadth of its search activities.

The results of the simulation afford a more nuanced window into the conditions under which

variety-seeking is a viable strategy. In particular, they reveal how the type of learning environ-

ment determines the point beyond which variety-seeking (exploration) translates into a sharp

performance decline. The presence of this critical point explains why departing from familiar

learning paths is difficult and, when it happens, a performance decline is to be expected. The

logic of this explanation resonates with the finding that adaptive search through exploration

may be costly, especially when it entails “breaking off neighborhood search before exhausting

the potential of local improvements” [46, pp. 94]. The existence of a curvilinear–inverted U-

shape–relationship between search breadth and performance is in line with prior empirical

research showing that having a number of external linkages with different types of partners

(e.g., consumers, suppliers, universities, competitor, and so on) increases “the likelihood of

innovation not only by directly increasing the flow of useful external knowledge, but also by

increasing the chances of productive complementarities between external and internal knowl-

edge” [47, p. 1704]. Despite the benefits of collaborating with different types of partners, Love,

Roper, and Vahter [47] further argue that there are limits to the value of external linkages

because search is costly. These costs may arise from the need to “write appropriate contractual

agreements for numerous formal linkages, and to maintain these linkages through time,” or

the cognitive limits of management in processing information “since the span of attention of

any individual is limited” [47, pp. 1704]. Regardless of whether learning unfolds within or

across organizational boundaries, our model suggests that the point at which the costs of vari-

ety-seeking outweigh the benefits depends on the type of learning environment. Differences in

transition patterns reflect the extent to which individuals’ knowledge is more or less special-

ized. As knowledge becomes more specialized, individuals have to broaden their search to find

better-performing others whose knowledge can be recombined with their own to improve per-

formance, which explains why the transition point occurs for higher levels of search breadth.

However, after this point, the costs of broadening search–i.e., the costs of variety-seeking–tend

to increase even more, thus hampering performance.

An important question that deserves more careful consideration is whether, in the process

of exploring new solutions, the transition point preceding a sharp performance decline can be

detected. Where this critical point lies might be a function of a firm’s prior history, identity, or

accumulated knowledge. When the exploration of alternative courses of action implies depart-

ing from what a firm does, the costs of this move may drastically reduce or even offset the

corresponding benefits. One of the main challenges for managers is to recognize when explo-

ration means incorporating knowledge that is hardly compatible with a firm’s existing knowl-

edge. The issue of how expansive or localized exploration should be, therefore, demands

further investigation. By modeling different learning environments, where individual knowl-

edge exhibits different levels of specialization, our study represents one of the first attempts to

address this important question more systematically.

Limits and future research directions

There are several extensions of our model that future research may find worth pursuing. We

identified the nature of the learning environment as a critical factor in shaping the relationship

between variety-seeking and performance. However, other contingent factors might be impor-

tant as well. Experimental research has shown, for instance, that groups whose members are

involved in stable collaborations tend to develop transactive memory systems or shared mental
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models that help them coordinate their actions more effectively and perform better than

groups lacking such stable collaborations [48–52]. Developing shared mental models is an

essential aspect of learning in groups [50] as it fosters the diffusion and recombination of

knowledge, and a more accurate sense of ‘who knows what’ inside the group [21, 29, 53–55].

In our model, we do not examine the role of transactive memory systems. Over time, however,

individuals will end up sharing the same or very similar understandings as they interact and

incorporate each other’s knowledge. Making this link more explicit by allowing individuals to

remember ‘who knows what’ from previous interactions is an interesting extension of our

model: the existence of transactive memory systems could help individuals recognize which

knowledge should be incorporated and which one ignored, therefore reducing the risk of

experiencing a performance decline.

Our approach to modeling interpersonal learning is consistent with a well-established tradi-

tion in computational studies of learning in organizations. Although there are obvious limita-

tions to this approach, the purpose of a model is to generate insight that has some empirical

plausibility–even if it does not capture more specific details of real-world organizations. For

instance, in larger organizations the learning dynamic–as we model it–is better suited to cap-

turing interpersonal learning at the team level: as organizations grow larger, individuals are

unlikely to interact with everyone else–and especially so with those further up in the hierarchy.

In relatively smaller organizations such as a start-up or in organizations with a flat organiza-

tional structure, however, our model retains its empirical plausibility. As discussed above, our

interpersonal learning model captures important aspects of the learning dynamic unfolding in

firms like Pixar, whose organizational structure is relatively flat and there are close interactions

not only within and between team members, but also between them and senior managers. At

Pixar, for example, when a movie director and his or her team feel in need of assistance, they

can call upon a group of senior directors–known as the brain trust–and show them the current

version of the work in progress. After the meeting, “it’s up to the director of the movie and his

or her team to decide what to do with the advice; there are no mandatory notes, and the brain

trust has no authority” [15, p. 6]. The interaction between the team working on a movie and

the brain trust members has proven critical in fostering learning and making a movie better.

When variety-seeking involves learning across organizational boundaries, the experience

accumulated in processing information from a variety of different sources contributes to

reducing the costs of broadening search. There is indeed a “learning process involved in man-

aging external innovation relationships, so that previous experiences shape the relationship

between current breadth of linkages and innovation outputs” [47, pp. 1704]. Similarly, intra-

organizational learning can be enhanced when organizational routines and practices are in

place that facilitate the exchange of knowledge and the reconciliation of differences that do not

necessarily reflect the specificity of the local reality. For instance, Four Seasons has established

a task force, composed of experienced managers and staff, that “helps establish norms and

helps people understand how Four Season does things” [16, pp. 9], in addition to assisting the

local managers in getting the new property up and running. By contributing to instilling the

same core knowledge in the management of all properties, the task force has been instrumental

in fostering the exchange of knowledge between different locations, as well as helping manag-

ers realize when knowledge is more or less specialized, and so less easily transferable.

In the analysis, we kept the external reality stable–yet, in the sensitivity analyses, we

changed the complexity of the performance landscape by varying dimensions in the external

reality and individual knowledge. Several studies have explicitly modeled the interplay between

learning within organizations and environmental dynamism, and how it affects efforts to

resolve the tension between exploration and exploitation [33]. For instance, exploration

becomes even more critical, and organizations should consider allocating more resources to
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variety-seeking, when the level of environmental turbulence increases. Yet, even in this case,

the extent to which exploration should be more or less focused remains an open question.

Examining interpersonal learning under varying degrees of environmental dynamism is a nat-

ural extension of our model. These represent avenues for future research that we hope will

contribute to a better understanding of the complexities of learning and performance in

organizations.
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performance of star-studded projects. Industrial and Corporate Change. 2013; 22(6):1629–1662.

30. Gundling E. The 3M way to innovation: balancing people and profit: Kodansha Amer Incorporated;

2000.

31. Ethiraj SK, Levinthal D, Roy RR. The dual role of modularity: Innovation and imitation. Management Sci-

ence. 2008; 54(5):939–955.

32. Rivkin JW, Siggelkow N. Balancing search and stability: Interdependencies among elements of organi-

zational design. Management Science. 2003; 49(3):290–311.

33. Ganco M, Hoetker G. NK modeling methodology in the strategy literature: Bounded search on a rugged

landscape. Research methodology in strategy and management: Emerald Group Publishing Limited;

2009.

34. Achlioptas D, D’Souza RM, Spencer J. Explosive percolation in random networks. Science. 2009; 323

(5920):1453–1455. https://doi.org/10.1126/science.1167782 PMID: 19286548

35. Knudsen T, Levinthal DA. Two faces of search: Alternative generation and alternative evaluation. Orga-

nization Science. 2007; 18(1):39–54.

36. Levinthal DA, March JG. The myopia of learning. Strategic management journal. 1993; 14(S2):95–112.

37. Siggelkow N, Rivkin JW. Speed and search: Designing organizations for turbulence and complexity.

Organization Science. 2005; 16(2):101–122.

38. Galbraith JR. Designing complex organizations: Addison-Wesley Longman Publishing Co., Inc.; 1973.

39. Ocasio W. Towards an attention-based view of the firm. Strategic management journal. 1997; 18

(S1):187–206.

40. Ocasio W. Attention to attention. Organization science. 2011; 22(5):1286–1296.

41. Koput KW. A chaotic model of innovative search: some answers, many questions. Organization Sci-

ence. 1997; 8(5):528–542.

42. Cattani G. Technological pre-adaptation, speciation, and emergence of new technologies: how Corning

invented and developed fiber optics. Industrial and Corporate Change. 2006; 15(2):285–318.

43. Andriani P, Cattani G. Exaptation as source of creativity, innovation, and diversity: Introduction to the

special section. Industrial and Corporate Change. 2016; 25(1):115–131.

44. Cattani G. Preadaptation, firm heterogeneity, and technological performance: A study on the evolution

of fiber optics, 1970–1995. Organization Science. 2005; 16(6):563–580.

45. Garud R, Nayyar PR. Transformative capacity: Continual structuring by intertemporal technology trans-

fer. Strategic management journal. 1994; 15(5):365–385.

46. Billinger S, Stieglitz N, Schumacher TR. Search on rugged landscapes: An experimental study. Organi-

zation Science. 2014; 25(1):93–108.

PLOS ONE Variety-seeking, learning and firm performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0247034 March 8, 2021 25 / 26

https://doi.org/10.1126/science.1167782
http://www.ncbi.nlm.nih.gov/pubmed/19286548
https://doi.org/10.1371/journal.pone.0247034


47. Love JH, Roper S, Vahter P. Learning from openness: The dynamics of breadth in external innovation

linkages. Strategic management journal. 2014; 35(11):1703–1716.

48. Austin JR. Transactive memory in organizational groups: the effects of content, consensus, specializa-

tion, and accuracy on group performance. Journal of applied psychology. 2003; 88(5):866.

49. Edmondson AC, Bohmer RM, Pisano GP. Disrupted routines: Team learning and new technology

implementation in hospitals. Administrative science quarterly. 2001; 46(4):685–716.

50. Lewis K. Knowledge and performance in knowledge-worker teams: A longitudinal study of transactive

memory systems. Management science. 2004; 50(11):1519–1533.

51. Lewis K, Lange D, Gillis L. Transactive memory systems, learning, and learning transfer. Organization

Science. 2005; 16(6):581–598.

52. Liang DW, Moreland R, Argote L. Group versus individual training and group performance: The mediat-

ing role of transactive memory. Personality and social psychology bulletin. 1995; 21(4):384–393.

53. Edmondson AC, Dillon JR, Roloff KS. 6 three perspectives on team learning: outcome improvement,

task Mastery, and group process. Academy of Management annals. 2007; 1(1):269–314.

54. Huckman RS, Staats BR, Upton DM. Team familiarity, role experience, and performance: Evidence

from Indian software services. Management science. 2009; 55(1):85–100.

55. Reagans R, Argote L, Brooks D. Individual experience and experience working together: Predicting

learning rates from knowing who knows what and knowing how to work together. Management science.

2005; 51(6):869–881.

PLOS ONE Variety-seeking, learning and firm performance

PLOS ONE | https://doi.org/10.1371/journal.pone.0247034 March 8, 2021 26 / 26

https://doi.org/10.1371/journal.pone.0247034

