Skip to main content
. 2020 Dec 16;5(1):e116. doi: 10.1097/EE9.0000000000000116

Table 1.

Simulation results for case 1: Correct model specification

Variance = 2.45 LOD = 0.2 (16% under) LOD = 0.25 (20% under) LOD = 0.45 (30% under) LOD = 0.95 (50% under)
β1 SE MC SE β1 SE MC SE β1 SE MC SE β1 SE MC SE
True exposure 0.95 0.06 0.06 0.95 0.06 0.06 0.95 0.06 0.06 0.95 0.06 0.06
Maximum likelihood 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.06 0.06
Multiple imputation 0.95 0.06 0.06 0.95 0.06 0.06 0.93 0.06 0.06 0.82 0.07 0.06
Cox regression 0.84 0.05 0.05 0.85 0.05 0.05 0.89 0.05 0.06 1.02 0.06 0.07
Complete case analysis 0.95 0.06 0.06 0.95 0.07 0.07 0.95 0.08 0.08 0.96 0.11 0.11
Fill-in LOD/√2 0.99 0.06 0.06 1.01 0.06 0.06 1.106 0.07 0.07 1.33 0.09 0.09
Missing indicator 0.95 0.06 0.06 0.95 0.07 0.07 0.95 0.08 0.08 0.96 0.11 0.11
Variance = 1 LOD = 0.2 (6% under) LOD = 0.25 (8% under) LOD = 0.45 (20% under) LOD = 0.95 (47% under)
β1 SE MC SE β1 SE MC SE β1 SE MC SE β1 SE MC SE
True exposure 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05
Maximum likelihood 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05 0.95 0.05 0.05
Multiple imputation 0.95 0.05 0.05 0.94 0.05 0.05 0.91 0.05 0.05 0.81 0.06 0.05
Cox regression 1.25 0.05 0.06 1.26 0.05 0.06 1.31 0.05 0.06 1.45 0.06 0.06
Complete case analysis 0.95 0.05 0.05 0.95 0.06 0.06 0.96 0.07 0.06 0.96 0.09 0.09
Fill-in LOD/√2 1.05 0.05 0.05 1.07 0.05 0.05 1.17 0.06 0.06 1.36 0.07 0.08
Missing indicator 0.95 0.05 0.05 0.95 0.06 0.06 0.96 0.07 0.06 0.96 0.09 0.09

Coefficients represent the average β1 over the 1,000 datasets, the SE corresponds to the average SE over the 1,000 datasets, and MC SE corresponds to the standard deviation of β1 over the 1,000 datasets.

MC SE indicates Monte Carlo standard error; SE, standard error.