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Abstract

Members of the highly conserved pleiotropic CK1 family of serine/threonine-specific kinases are 

tightly regulated in the cell and play crucial regulatory roles in multiple cellular processes from 

protozoa to human. Since their dysregulation as well as mutations within their coding regions 

contribute to the development of various different pathologies, including cancer and 

neurodegenerative diseases, they have become interesting new drug targets within the last decade. 

However, to develop optimized CK1 isoform-specific therapeutics in personalized therapy 

concepts, a detailed knowledge of the regulation and functions of the different CK1 isoforms, their 

various splice variants and orthologs is mandatory. In this review we will focus on the stress-

induced CK1 isoform delta (CK1δ), thereby addressing its regulation, physiological functions, the 

consequences of its deregulation for the development and progression of diseases, and its potential 

as therapeutic drug target.
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1. Introduction

CK1δ, a member of the CK1 (formerly named casein kinase 1) family, has been first isolated 

by Graves and colleagues in the early 1990s. The human gene encoding CK1δ (CSNK1D) is 

located on the long arm of the chromosome 17 (17q25.3) (Graves et al., 1993). In the last 

decades the roles of CK1δ have been characterized more and more, both in physiological 

and in pathologic conditions. In fact, dysregulation of the expression and activity of CK1δ 
has been observed in different types of cancers, as well as in different neurological 

disorders, among them Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and 

Amyotrophic Lateral Sclerosis (ALS). CK1 isoforms δ and ε exhibit high identity within 

their kinase domains but no differences of their functional roles were detected in several 

early studies. Even though it still remains challenging to assign distinct functions to one of 

the human CK1 isoforms (α, γ1–3, δ, ε), new studies are now focusing on this issue. 

Considering the fact that even CK1δ transcription variants (TVs) exhibit different functions, 

there is a need to clearly state, which isoform or even TV has been used to receive detailed 

information and to increase reproducibility of the data by other researchers (Fustin et al., 

2018; Narasimamurthy et al., 2018). From this point of view there is a high demand to 

develop highly specific, isoform- or even TV-specific therapeutics which could be of use in 

personalized therapy concepts for the treatment of neurodegenerative diseases and cancer. 

The present review will focus on CK1δ, its regulation, functions, its relevance in human 

diseases, and as a target for drug development.

2. Genetic coding of CK1δ

Historically, the initial gene sequence of CK1δ was isolated by Graves et al. in form of 

cDNA from the testicles of rats in the year 1993. The gene construct was sequenced and 

characterized as a 1284 nucleotide sequence transcribing into a 49 kDa protein consisting of 

428 amino acids (aa) (Graves et al., 1993). This sequence was followed by the human gene 

construct with 1245 nucleotides describing a protein containing 415 aa (Kusuda et al., 

1996). In the following years CK1δ was discovered and described in yeasts, various animals, 

plants, and even parasites (Barik et al., 1997; Donald et al., 2005; Allocco et al., 2006; 

Urbaniak, 2009; Rachidi et al., 2014; Dorin-Semblat et al., 2015) (Table 1).

Although there are various variants of CK1δ in different organisms, three different TVs of 

CK1δ are present in humans, in rat (Rattus norvegicus) and in mice (Mus musculus).

All three different CK1δ TVs expressed in human, rat, and mouse do not differ in their 

amino acid sequences until position 381. After position 399 three distinct sequences for the 

respective TVs can clearly be distinguished as illustrated in Fig. 1.
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The Clustal Omega algorithm (Madeira et al., 2019) identifies three distinct sequences that 

are shared between the three different organisms: the shortest sequence containing 409 aa 

(TV2 in humans and rat as well as CRAc in mouse), followed by a sequence consisting of 

415 aa (TV1 in humans and rats/CRAa in the mouse), and a sequence containing 428 aa for 

the mouse (CRAb) and the rat (TV3) homolog as well as a human TV3 sequence, which is 

missing one aa at the second to last position, resulting in a length of 427 aa.

In addition to the shown sequences of human, rat, and mouse, CK1δ sequences in most 

eukaryotic organisms are homologous. The phylogenetic tree displayed in Supplementary 

Fig. 1 resembles the degree of evolutionary relationship between various sequences of 

CK1δ.

2.1. Analysis of transcription variants of CK1δ

Various TVs of the gene CSNK1D have been described in the “Mammalian Gene 

Collection”. Two different TVs of CK1δ were postulated during the early analysis of human 

and murine genes in 2002 (Strausberg et al., 2002). Since then TV1 (accession number: 

AAH03558.1, GI: 13097702) and TV2 (accession number: AAH15775.1, GI: 16041786) 

have been well described in literature. Recently, it could be clearly shown that both variants 

exhibit opposite functions in the circadian rhythm (Fustin et al., 2018). Both sequences are 

highly homologous and are alike for the first 399 aa, but differ at the following 16 aa for 

TV1 and ten aa for TV2, respectively. They do share the first eight exons. The variance 

occurs due to the fact that TV1 is finished by exon 10, while TV2 uses exon 9. TV2 also 

includes exon 10, but after the first ten amino acids of exon 9 a stop codon halts the 

translation and prevents the translation of exon 10 (Fig. 2).

Additionally, a third human TV (TV3, accession number: NP_001350678.1, GI: 

1393428169), which is very similar to the original CK1δ rat sequence published by Graves 

and colleagues (Graves et al., 1993), can be found on chromosome 17 (accession number: 

NG_012828.2, GI: 1428083528). TV3 uses exon 11 instead of 9 and 10. Exon 11 is located 

downstream of exon 10 and is overlapping with the gene Slc16a3. However, exon 11 is 

located in a non-coding area. The use of the different exons resulting in the three 

transcription variants is depicted in Fig. 2.

The inclusion of exon 11 used for TV3 increases the initially postulated length of the CK1δ 
gene (CSNK1D) from 29.3 kb to approximately 35 kb, which means the length is similar to 

the rat CSNK1D gene with 34.6 kb.

All three transcription variants were identified in 2014 by the data bank analysis approach 

by Ezkurdia et al. (2014). Even though the study combined the detection of cellular protein 

expression by peptide mass spectrometry with the protein-coding potential of the genome, at 

that time no specific evidence was provided indicating that all three TVs are actually 

translated. Furthermore, TV3 is listed as “unreviewed” entry in the UniProtKB data base 

(H7BYT1_HUMAN).
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2.2. Polyadenylation patterns of transcription variants

Analysis of polyadenylation sites using the tool RegRNA 2.0 for identification of functional 

RNA motifs (Chang et al., 2013) revealed that TV1 and TV2 share the same polyadenylation 

pattern downstream of the stop codon on exon 10, starting at position 1246. The identified 

motif is 32 nucleotides long (AGUAGAGUCUGCGCUGUGACCUUCUGUUGGGC).

Since exon 10 is not present in TV3, a 32 nucleotides long sequence 

(AGUGGCUUGUUCCACCUCAGCUCCCAUCUAAC) located downstream of the stop 

codon on exon 11, at the starting nucleotide 320, is used. The various motifs result in 

different minimum free energy values (−28.70 kcal/mol for TV1 and TV2, and −16.03 

kcal/mol for TV3). The predicted RNA folding structures of the respective motifs with 

flanking regions are depicted in Fig. 3.

3. CK1δ structure and domains

As an own family within the superfamily of serine/threonine-specific kinases all CK1 

members are composed by two lobes, basically building all eukaryotic protein kinases 

(ePKs): the N-terminal lobe (N-lobe) mainly consists of β-sheet strands while the larger C-

terminal lobe (C-lobe) is mainly composed by α-helices and loop structures (Fig. 4). Apart 

from five twisted antiparallel β-strands (β1-β5), the N-lobe also contains a prominent α-

helix (αA) crucial for conformational regulation of kinase activity. Within the C-lobe, loop 

L-78 has previously been attributed to the modulation of CK1 inhibitor selectivity (Peifer et 

al., 2009) and binding of a tungstate derivative (as a phosphate analog) identified a 

recognition motif (W1) for the binding of phosphorylated substrates. Major sites involved in 

mediating substrate recognition are Arg-178, Gly-215, and Lys-224. Positively charged side 

chains of Arg-178 and Lys-224, but also Lys-217, Lys-221, and Arg-222 enable the 

formation of ionic interactions with acidic or phospho-primed substrates. This also applies 

for binding of the C-terminal domain to the substrate binding region for the purpose of 

autoregulatory function (Longenecker et al., 1996). Upon substrate binding the phospho-

acceptor group of the targeted Ser/Thr residue is directed to the γ-phosphate of 

simultaneously bound ATP, located in close proximity within H-bonding range. Also loop L-

EF is putatively involved in substrate recognition and binding, although some residues of 

this loop could not be modelled in several studies due to poor electron density. Therefore, 

this loop has been found to be partially disordered in previously performed analyses of 

CK1δ structure (Longenecker et al., 1996; Zeringo et al., 2013). Additionally, residues 

Asn-172 and Thr-176 seem to be crucial for substrate binding and/or kinetic activity of 

CK1δ. The amino acid exchange N172D was identified by analyzing the CK1δ sequence of 

the simian virus 40 (SV40)-minimally transformed rat fibroblast cell line Rev2. The 

substitution of asparagine by aspartic acid is supposed to significantly alter the electrostatic 

potential of the protein surface from neutral to acidic, resulting in impaired kinase activity 

(Hirner et al., 2012). Within the same region of this substrate binding area also residue 

Thr-176 can be found. A point mutation leading to the amino acid replacement T176I was 

originally identified in Hrr25, the CK1δ ortholog in Saccharomyces cerevisiae (Murakami et 

al., 1999). This amino acid exchange resulted in a loss-of-function phenotype with only little 

residual kinase activity and has been used in various studies in order to create mutants of 
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CK1δ with insufficient kinase activity (Murakami et al., 1999; Milne et al., 2001; 

Mehlgarten and Schaffrath, 2003).

A catalytic cleft for binding of substrates and ATP is formed between the N- and C-terminal 

lobe of CK1, which are connected via a hinge region (Xu et al., 1995, Longenecker et al., 

1996). The ATP active site is formed by two binding regions: a deep hydrophobic pocket 

(HPI, also known as selectivity pocket) and a second spacious hydrophobic region (HRII). 

Furthermore, sugar and phosphate binding domains can be found in the ATP active site 

(Peifer et al., 2009). The glycine-rich P-loop contains the motif Gly-X-Gly-X-X-Gly and 

bridges strands β1 and β2 (L-12) by forming a β-strand-turn-β-strand motif. This P-loop 

builds the top cover of the ATP binding site, usually holds the non-transferable phosphate of 

ATP in place, and is assumed to be more flexible as long as no ATP is present in the ATP 

binding pocket (Hantschel and Superti-Furga, 2004; Zeringo et al., 2013).

Residues directly involved in forming interactions in the ATP binding site have been 

analyzed by Singh and Gupta (Singh and Gupta, 2015). In this study the incomplete 

structure of CK1δ has initially been completed by homology modeling (starting from the 

structure of CK1α). By using FTsiteserver active site residues Gly-18, Ser-19, Phe-20, 

Asp-22, Lys-38, Leu-39, Glu-40, Gln-48, Leu-49, and Glu-52 were predicted for the newly 

created CK1δ structure, termed dCK1-M (Singh and Gupta, 2015). Lysine residue 38 is also 

conserved in isoforms CK1α (Lys-46) and CK1ε (Lys-38) and is crucial for ATP binding 

and kinase activity, since substitution of this residue, usually by arginine or methionine, 

completely abolishes kinase activity creating a kinase-dead CK1δ mutant (Rivers et al., 

1998; Budd et al., 2000; Milne et al., 2001; Zeringo et al., 2013; Singh and Gupta, 2015). 

Furthermore, the so called catalytic loop (L-67) with the sequence Asp-Val-Lys-Pro-Asp-

Asn (amino acids 128–133) is also essential for ATP binding. Residue Asp-128 can even be 

considered as catalytic base (Xu et al., 1995; Zeringo et al., 2013) (Fig. 5).

Kinase activity of eukaryotic protein kinases in general can be regulated by conformational 

changes affecting the so called activation loop, which in the case of CK1δ is represented by 

loop L-9D (Xu et al., 1995, Longenecker et al., 1996). Switching to an active conformation, 

the activation loop moves out of the catalytic site and the aspartate residue of the DFG motif 

(residues Asp-149, Phe-150, and Gly-151 in the case of CK1δ, located in loop L-89) shifts 

to an internal position. There, the aspartate of this highly conserved motif chelates a Mg2+ 

ion essential for ATP binding and orientation (Endicott et al., 2012). Another conserved 

eukaryotic protein kinase motif, the APE motif at the end of the activation loop, is modified 

in CK1δ and is represented by the SIN motif in helix αD (Hanks and Hunter, 1995). In 

conclusion, residues Lys-38, Lys-130 (catalytic loop residue), Asp-149 (DFG residue), and 

the P-loop act together to form interactions with the triphosphate moiety of ATP.

In addition, especially for the regulation of kinase activity, as well as for forming 

interactions with small molecule inhibitors, several residues of CK1δ encoded by exon 3 are 

essentially involved (Long et al., 2012, Richter, Ullah et al. 2015). One of them is the so 

called gatekeeper residue located directly within the ATP binding pocket. While the catalytic 

activity of the kinase usually is not affected by the size of the gatekeeper side chain, the 

affinity of small molecules, and their access to certain binding pockets (selectivity pockets) 

Xu et al. Page 5

Gene. Author manuscript; available in PMC 2021 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beyond the gatekeeper position can be limited by gatekeeper mutations. In the case of CK1δ 
residue Met-82 (located in loop L-5B) takes the role of the gatekeeper and substitution to the 

more space-filling residue phenylalanine (M82F) actually abolished binding of a certain 

class of imidazole-based inhibitors to the selectivity pocket (HPI) in the ATP active site of 

CK1δ (Peifer et al., 2009).

In other studies however, increased affinity of benzimidazole- and benzothiazole-based 

inhibitors to the CK1δ M82F gatekeeper mutant could be observed, caused by additional π-

hydrogen bonds or π-stacking interactions between Phe-82 and the inhibitor molecules 

(Bischof et al., 2012; Garcia-Reyes et al., 2018). For another CK1δ point mutation localized 

in exon 3 resulting in S97C substitution the loss of ATP binding affinity has been detected 

by molecular dynamics simulations and docking studies, respectively (Kumar et al., 2014). 

In contrast, a CK1δ T67S mutant displayed increased kinase activity in vitro and enhanced 

oncogenic potential in cell culture experiments and in a subcutaneous tumor 

xenotransplantation model. Moreover, CK1δ T67S showed increased sensitivity toward 

CK1-specific inhibitors (Richter, Ullah et al. 2015).

Besides substrate and ATP binding regions further functional domains being involved in 

mediating protein-protein interactions are located in the CK1δ protein. Additionally, the 

kinase domain, which extends between amino acids 9 to 277, contains a kinesin homology 

domain (KHD) as well as a putative dimerization domain (DD). The DD includes residues 

from β-strands β1, β2, β3, and β7, as well as from loops L-12, L-78, helix αB, and the 

hinge region (Longenecker et al., 1998). The KHD, located within the activation-loop 

(L-9D), is supposed to mediate interactions between CK1 isoforms and components of the 

cytoskeleton (Roof et al., 1992, Xu et al., 1995, Behrend et al., 2000b). At the junction 

between L-EF and the αF-helix also a nuclear localization signal sequence (NLS) is located 

which, however, is not sufficient for nuclear localization of CK1δ (Hoekstra et al., 1991; 

Graves et al., 1993). Finally, a centrosome localization signal (CLS) domain can be found 

between residues 278 and 364 (Greer and Rubin, 2011).

Because sequences of human CK1δ TV1, 2, and 3 are fully conserved up to amino acid 399 

structural elements described so far can be found in all variants (sequence alignment of 

human CK1δ TV1, 2, and 3 can be found in Fig. 1A). Unfortunately, analysis of the three-

dimensional structure of CK1δ has only been performed with truncated proteins e.g. 
terminating at amino acids 295 or 318, respectively. This procedure is necessary in order to 

circumvent problems occurring due to C-terminal proteolysis and variable 

(auto-)phosphorylation states of the full-length protein (Longenecker et al., 1996). Although 

these proteins still contain the full kinase domain, however, no validated structural data 

regarding the C-terminal domain could be made available so far.

4. Regulation of CK1δ activity

Because CK1δ is ubiquitously expressed and its activity is essential for proper function of 

several important cellular signal transduction pathways, its expression and activity needs to 

be strictly controlled. First of all, expression of CK1δ varies between different tissues and 

cell types and is related to certain physiological and pathophysiological conditions and 
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stimuli (Lohler et al., 2009). DNA-damaging substances like the topoisomerase inhibitors 

etoposide and camptothecin, as well as γ-irradiation, resulted in tumor protein 53 (p53)-

dependent increased levels of CK1δ mRNA (Knippschild et al., 1997; Behrend et al., 

2000b). Furthermore, gastrin has been shown to induce CK1δ/ε-mediated phosphorylation 

of protein kinase D2 (PKD2) (von Blume et al., 2007), while elevated CK1-specific activity 

in general has been detected in cells upon stimulation with insulin (Cobb and Rosen, 1983) 

or viral transformation (Elias et al., 1981).

Apart from transcriptional or translational control of CK1δ protein expression, its kinase 

activity can also be regulated at protein level by sequestration to particular subcellular 

compartments, interaction with other proteins, and posttranslational modifications.

By sequestration of CK1δ to distinct subcellular compartments well defined pools of 

substrates can be made available to the kinase in order to guide its activity toward specific 

functions (Wang et al., 1992; Vancura et al., 1994; Sillibourne et al., 2002). Subcellular 

sequestration is mainly mediated by scaffolding structures containing distinct interaction 

motifs. In general, the purpose of these scaffolds is to bring interacting molecules into close 

proximity within interaction complexes in order to enable their orchestrated function in 

certain signal transduction pathways. Additionally, these scaffolds are supposed to 

allosterically control the activity of their interaction partners (Locasale et al., 2007; Good et 

al., 2011).

One of these scaffolds involved in sequestration of CK1 is A-kinase anchor protein (AKAP) 

450 (also known as AKAP350, AKAP9, or centrosomal and Golgi N-kinase anchoring 

protein [CG-NAP]). AKAP450 has been shown to specifically interact with CK1δ and ε, 

resulting in recruitment of both isoforms to the centrosome to exert centrosomespecific 

functions contributing to cell cycle regulation (Sillibourne et al., 2002; Greer and Rubin, 

2011). Moreover, interaction of AKAP450 and CK1δ has been demonstrated as one 

mechanism essential for primary ciliogenesis (Greer et al., 2014). As another example, 

previously identified as a scaffolding adaptor activating the inhibitor κB kinase (IKK), X-

linked DEAD-box RNA helicase 3 (DDX3X) has been shown to promote CK1ε-mediated 

phosphorylation of Dishevelled (Dvl) in the canonical Wingless/Int-1 (Wnt) signal 

transduction pathway (Cruciat et al., 2013; Gu et al., 2013). Apart from CK1ε, DDX3X also 

has the potential to increase the activity of CK1δ by up to five orders of magnitude, thereby 

representing an important co-factor for CK1-mediated Wnt-specific functions (Cruciat et al., 

2013). Additional interacting proteins were identified in a study screening for interaction 

partners that direct CK1δ to ubiquitinated lesions of Alzheimer’s disease. These all 

contained a common single open reading frame which was termed casein kinase-1 binding 

protein (CK1BP). Sequence alignment demonstrated that CK1BP is structurally homologous 

to the acidic domain of dysbindin, a component of dystrophin-associated protein complex 

(DPC) and biogenesis of lysosome-related organelles complex-1 (BLOC-1). CK1BP inhibits 

CK1δ kinase activity in a dose-dependent manner as demonstrated for the in vitro 
phosphorylation of tau and α-synuclein (Yin et al., 2006). Interestingly, interaction with 

heparin has been reported to activate CK1δ in vitro. Heparin presumably interacts with the 

C-terminal regulatory domain and finally prevents autoinhibition. Although being unlikely 

to represent a physiological regulator of CK1δ kinase activity, experiments performed with 
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heparin impressively demonstrate the autoinhibitory potential of the C-terminal domain 

(Graves et al., 1993; Cegielska et al., 1998).

Dimerization of CK1δ can also be seen as a mechanism for regulation of enzymatic activity 

and is made possible via an extensive dimer interface inside the DD. In more detail, an α-

helix from the CK1δ C-lobe binds to the hydrophobic cavity in the N-lobe of a second CK1δ 
protein (Ye et al., 2016). Finally, the binding of ATP and perhaps also the binding of large 

substrates is prevented by Arg-13 inserting into the adenine binding pocket upon 

dimerization (Longenecker et al., 1998). In solution, CK1δ is always purified as a monomer 

leading to the question if dimerization can actually be considered biologically relevant. 

However, dimerization of CK1δ has been confirmed by studies in which kinase activity of 

endogenous CK1δ was down-regulated by binding of a transfected/transgenic dominant-

negative and less active CK1δ mutant (Hirner et al., 2012). Interestingly, also a kinase-dead 

mutant of CK1ε demonstrated dominant-negative potential, leading to the conclusion that 

dimerization as a regulatory mechanism is not restricted to CK1δ (Cerda et al., 2015). 

Results of a study analyzing the interaction between the yeast (Saccharomyces cerevisiae) 

CK1δ ortholog Hrr25 and the meiosis-specific monopolin subunit Mam1 even led to the 

hypothesis that the hydrophobic dimerization site may be a conserved site for the binding of 

recruiters or regulators in general (Ye et al., 2016).

As a measure to reversibly modulate and fine-tune kinase activity also in the short term, 

CK1δ can be postranslationally modified either by intramolecular autophosphorylation or 

site-specific phosphorylation by upstream cellular kinases (Fig. 6). Generally, CK1 kinase 

activity is decreased upon (C-terminal) phosphorylation and can be regulated in vivo by the 

action of kinases and phosphatases (Rivers et al., 1998). Autophosphorylation processes 

result in the generation of sequences with the motif pSer/pThr-X-X-Y (X stands for any 

amino acid while Y stands for any amino acid except serine or threonine). These motifs can 

subsequently act as pseudo-substrates blocking the catalytic center of the kinase. Within the 

C-terminal domain of CK1δ residues Ser-318, Thr-323, Ser-328, Thr-329, Ser-331, and 

Thr-337 were identified as candidate sites targeted by autophosphorylation (Graves and 

Roach, 1995; Rivers et al., 1998). The presence of an autoinhibitory domain is furthermore 

confirmed by the observation that proteolytic cleavage of the C-terminal domain results in 

increased CK1 kinase activity in vitro (Carmel et al., 1994; Graves and Roach, 1995). As a 

mechanism leading to dephosphorylation of inhibitory C-terminal autophosphorylation sites 

activation of group I metabotropic glutamate receptors (mGluRs) was identified. Following 

activation of mGluRs Ca2+-dependent stimulation of the phosphatase calcineurin finally 

initiates dephosphorylation. Although the underlying study was performed using CK1ε the 

respective target sites are also conserved in CK1δ (Liu et al., 2002).

Within the last decade also site-specific phosphorylation of CK1δ by upstream kinases has 

been extensively described and target sites have been identified. However, most of these 

studies were only performed in vitro and final proof for site-specific phosphorylation in vivo 
is pending in many cases. Within the C-terminal domain of CK1δ Ser-370 could be detected 

as major residue targeted by protein kinase A (PKA), protein kinase B (PKB/Akt), CDC-like 

kinase 2 (CLK2), protein kinase C α (PKCα), and checkpoint kinase 1 (Chk1) (Giamas et 

al., 2007; Bischof et al., 2013; Meng et al., 2016). CK1δ kinase activity was enhanced after 
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mutation of Ser-370 to alanine (S370A) and the key role of Ser-370 was furthermore 

demonstrated in vivo by expressing a S370A mutant of CK1δ in Xenopus laevis embryos. 

By affecting Wnt/β-catenin-mediated signal transduction overexpression of the hyperactive 

S370A mutant led to enhanced formation of an ectopic dorsal axis in Xenopus embryos 

(Giamas et al., 2007).

Apart from Ser-370 site-specific phosphorylation of CK1δ by Checkpoint kinase 1 (Chk1) 

has additionally been identified for Ser-328, Ser-331, and Thr-397. Also for these sites 

mutation to alanine resulted in significantly increased kinase activity (Bischof et al., 2013). 

Ser-328 and Thr-329 were also identified to be targeted by PKCα. Mutation of Ser-328, 

Thr-329, and Ser-370 to alanine significantly affected the kinetic parameters of CK1 and 

resulted in an increase of the catalytic efficiency (kcat/Km) as well, which was most 

impressive for S328A and T329A (Meng et al., 2016).

Cyclin dependent kinase 2/cyclin E (CDK2/E) and cyclin dependent kinase 5/p35 (CDK5/

p35) were also identified as cellular kinases able to modulate CK1δ activity through site-

specific phosphorylation within the C-terminal domain. Phosphorylation of Ser-331 and 

Thr-344 by CDK2/E has been shown by two independent methods, while phosphorylation of 

Thr-329, Thr-347, Ser-356, Ser-361, and Thr-397 finally could not be confirmed. 

Furthermore, no clear evidence could be generated confirming phosphorylation of Thr-329, 

Thr-344, Thr-347, Ser-356, Thr-397 by CDK5/p35 (Ianes et al., 2016). Recently however, 

Eng et al. identified Thr-347 to be phosphorylated by CDKs (Eng et al., 2017).

While most studies focused on the identification of phosphorylation sites in the C-terminal 

domain of CK1δ, potential targeted sites for cellular kinases can also be found in the kinase 

domain. Recent reports demonstrate that residues Ser-53, Thr-176, and Ser-181 can be 

phosphorylated by PKCα (Meng et al., 2019, Bohm et al., 2019). Furthermore, 

phosphorylation of residues Thr-161, Thr-174, Thr-176, and Ser-181 has recently also been 

demonstrated for Chk1 (Bohm et al., 2019). Subsequently performed enzyme kinetic 

analysis and experiments pre-incubating CK1δ with either PKCα or Chk1 led to 

identification of domain-specific effects of PKCα- or Chk1-mediated phosphorylation: 

while kinase activity can be effectively regulated by site-specific phosphorylation within the 

C-terminal domain (Bischof et al., 2013, Meng et al., 2016), phosphorylation events 

occurring in the kinase domain might be involved in fine-tuning kinase activity by regulating 

interactions of the kinase with different substrates or ATP (Bohm et al., 2019, Meng et al., 

2019, Bohm et al., 2019).

When being incubated together with Chk1, PKCα, CDK2/E, or CDK5/p35 the in vitro 
kinase activity of CK1δ is significantly reduced (Bischof et al., 2013; Ianes et al., 2016; 

Meng et al., 2016). While these observations were only generated in vitro, there is also 

evidence from cell culture-based analyses demonstrating inhibitory effects of site-specific 

phosphorylation on CK1δ kinase activity. CK1-specific kinase activity was reduced in the 

fibrosarcoma cell line HT1080 after activating Chk1 by hydroxyurea treatment (Bischof et 

al., 2013). After treating COLO357 pancreatic cancer cells with the PKC-specific inhibitor 

Gö-6983 cellular CK1-specific kinase activity was increased (Meng et al., 2016). A similar 

effect could be observed after treating COLO357 cells with the pan-CDK inhibitor 
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dinaciclib (Ianes et al., 2016). Furthermore, the CDK-targeted phosphorylation sites Thr-344 

and Thr-347 are essential for regulation of CK1δ activity toward period circadian protein 

homolog 2 (PER2) and degradation of PER2 was promoted when Thr-344 and Thr-347 were 

mutated to alanine (Eng et al., 2017).

Although much is known about localization of site-specific phosphorylation of CK1δ, only 

very few studies were performed using low-throughput methods and mechanistic 

investigations. Several phosphorylation sites within CK1δ were only identified by using 

high-throughput approaches and proteome-wide screenings without further analysis of the 

effect of phosphorylation or even the identification of the associated upstream kinase.

By performing proteome-wide analysis also additional posttranslational modifications could 

be identified for CK1δ like ubiquitination (Lys-54, Lys-57, Lys-140, and Lys-263), 

acetylation (Lys-242), and methylation (Arg-335 and Arg-375) (information obtained from 

PhosphoSitePlus®, Hornbeck et al., 2015) (see Fig. 6). However, until now no specific 

functions or effects have been linked to the observed modifications.

Recently, the expression of all three transcription variants in human and mouse was clearly 

shown by using primers specific for TV1, TV2, and TV3, respectively (own unpublished 

results). Furthermore, Michaelis-Menten kinetics clearly revealed that Km and Vmax of the 

three mouse TVs differ in regard to phosphorylation of both, substrates either containing a 

canonical (α-casein) (Fig. 7A and Table 2) or a non-canonical consensus sequence (GST-β-

catenin1–181) (Fig. 7B and Table 2). TV3 is able to phosphorylate α-casein significantly 

stronger than TV1. Moreover, β-catenin is significantly stronger phosphorylated by TV3 in 

comparison to TV1 as well as TV2. These variances could be explained by differences in the 

degree of autophosphorylation mainly occurring within the C-terminal domains of the 

different transcription variants ((Bischof et al., 2012) and Fig. 7C). In addition, it also has to 

be considered that due to sequence differences within their C-terminal regulatory domains 

the presence of consensus sequences for CK1δ targeting kinases is varying, resulting in 

differences of site-specific phosphorylation and consequently, also in altered kinase activity 

(Bischof et al., 2013). Additionally, the phosphorylation state of CK1δ is not only 

modulating kinase activity and functions of the different CK1δ splice variants, it has also 

been shown to influence the binding of specific ATP-competitive inhibitors e.g. resulting in 

different IC50 values associated to different phosphorylation states (Bischof et al., 2012; 

Bischof et al., 2013; Richter et al., 2014).

5. Substrates and substrate recognition

At physiological pH CK1δ carries positive charges at residues Arg-178 and Lys-224, which 

are mainly involved in substrate binding, preferentially enabling interactions with acidic 

substrates. Whereas mammalian CK1 isoforms have so far only been shown to exclusively 

phosphorylate serine and threonine residues of their substrates, the Saccharomyces 
cerevesiae CK1δ homolog Hrr25 and Xenopus laevis CK1α have been shown to 

additionally phosphorylate tyrosine residues (deMaggio et al., PNAS, 1992; Pulgar et al., 

1996). Substrates being primed by previous phosphorylation represent the canonical CK1 

consensus sequence motif pSer/pThr-X-X-(X)-Ser/Thr with X standing for any amino acid 
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and pSer/pThr for the phospho-primed residue. The Ser/Thr residue to be phosphorylated by 

CK1δ is located three to four residues upstream to the primed residue. The primed residue 

can also be replaced by a cluster of negatively charged acidic residues like aspartic (Asp) or 

glutamic acid (Glu) (three or four residues). However, phospho-primed motifs are favored 

over Asp or Glu containing motifs and Asp is favored over Glu (Agostinis et al., 1989; 

Flotow et al., 1990; Flotow and Roach, 1991; Meggio et al., 1991; Graves et al., 1993).

In addition to the canonical consensus motif alternative sequence motifs have been 

identified, which can also represent targets for CK1-mediated phosphorylation. One of these 

motifs is the so-called SLS (Ser-Leu-Ser) motif in which the first serine residue is 

phosphorylated by CK1. This motif can be found in β-catenin and nuclear factor of activated 

T cells (NFAT). In both cases the SLS motif is followed by a cluster of acidic amino acids 

essential for efficient binding to CK1 (Marin et al., 2003). Phosphorylation of β-catenin at 

Ser-45 has been demonstrated for CK1 isoforms α and δ (Amit et al., 2002) while CK1 

isoforms α, δ, and ε co-fractionated with the sensitivity to red light reduced 1 (SRR-1) 

domain of NFAT1 (Okamura et al., 2004). Moreover, the consensus motif Lys/Arg-X-Lys/

Arg-X-X-Ser/Thr has been identified in several sulfatide and cholesterol-3-sulfate (SCS)-

binding proteins, among them myelin basic protein (MBP), the Ras homolog family member 

A (RhoA), and tau. SCS-mediated stimulation of CK1δ-mediated phosphorylation could be 

observed for the two basic brain proteins MBP and tau, and also for the acidic protein RhoA 

(Kawakami et al., 2008).

To date, > 150 substrates have been identified to be phosphorylated by members of the CK1 

family, at least in vitro. Although many substrates can be phosphorylated by more than one 

CK1 isoform and in many cases it is not possible to assign particular isoforms to particular 

substrates, Table 3 aims to list substrates, which were identified to be phosphorylated by 

CK1δ.

6. Subcellular localization of CK1δ and interaction with cellular proteins

In cells CK1δ is distributed within both, the cytoplasm and the nucleus. Increased levels of 

CK1δ can permanently be detected in peri-nuclear regions in close proximity to the Golgi 

apparatus and the trans Golgi network (TGN) (Behrend et al., 2000b; Milne et al., 2001; 

Greer et al., 2014; Stoter et al., 2014). Depending on cellular conditions CK1δ can also be 

temporarily associated to membranes and receptors, transport vesicles, components of the 

cytoskeleton, centrosomes, or spindle poles (Behrend et al., 2000b; Milne et al., 2001; 

Lohler et al., 2009; Greer et al., 2014; Wang et al., 2015). Studies using kinase-dead mutants 

or truncated CK1δ variants demonstrated that the CK1δ kinase domain is required for 

nuclear localization of CK1δ. However, the present nuclear localization signal (NLS) alone 

is not sufficient for nuclear localization. Moreover, not only the presence of a kinase domain 

but also its enzymatic activity is essential for correct distribution of CK1δ within the cell 

(Hoekstra et al., 1991; Graves et al., 1993; Milne et al., 2001). This hypothesis has been 

confirmed for the localization of CK1δ and its yeast ortholog Hrr25 to centrosomes (Milne 

et al., 2001, Peng et al., 2015a, Peng et al., 2015b). However, there are also contradicting 

reports showing that kinase activity is dispensable to target CK1δ to the centrosome (Qi et 

al., 2015; Elmore et al., 2018).
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Further guidance to distinct subcellular compartments is achieved by interaction of CK1δ 
with interacting and scaffolding proteins. These interactions are mediated by docking motifs 

like the Phe-X-X-X-Phe motif, which has been identified in NFAT, β-catenin, and PER 

proteins, or the Ser-Gln-Ile-Pro motif present in microtubule plus-end-binding protein 1 

(EB1) (Vielhaber et al., 2000; Okamura et al., 2004; Bustos et al., 2006; Etchegaray et al., 

2009; Zyss et al., 2011). Although some of these proteins are also substrates for CK1δ-

mediated phosphorylation the docking motifs are not necessarily localized adjacent to the 

phosphorylated residues, but contribute to proper orientation of the interaction partners and 

to stabilization of the interaction (Bustos et al., 2006). Another protein containing the Phe-

X-X-X-Phe interaction motif is family with sequence similarity 83 member H (FAM83H), 

which has originally been identified as a protein involved in the formation of enamel. By its 

interaction with FAM83H nuclear CK1δ is localized to nuclear speckles, which supply 

splicing factors to active transcription sites (Kuga et al., 2016; Wang et al., 2016). FAM83H 

contains four Phe-X-X-X-Phe interaction motifs, one of them located in a conserved domain 

of unknown function (DUF1669). This domain is common to other FAM83 family members 

as well and interactions with CK1δ could also be found for FAM83A, FAM83B, and 

FAM83E (Fulcher et al., 2018). Although FAM83 proteins are substrates for CK1δ-

mediated phosphorylation they are rather considered as regulatory partners directing CK1 

isoforms to specific cellular compartments and substrate pools (reviewed in Bozatzi and 

Sapkota, 2018).

In addition to interaction partners, which have already been mentioned above, numerous 

additional interacting proteins have been described for CK1δ within recent years (Table 4). 

These proteins are not (only) targets for CK1δ-mediated phosphorylation, but are also 

involved in more complex regulatory processes and form strong interactions with CK1δ. 

Apart from the already mentioned scaffolding protein AKAP450 also the Ran-binding 

protein in the microtubule-organizing center (MTOC) (RanBPM) was identified as a 

centrosome-targeted interacting protein for CK1δ. The proteins interacted in a yeast two-

hybrid screen, partially co-localized, and RanBPM was even phosphorylated by CK1δ 
(Wolff et al., 2015). Furthermore, interaction between CK1δ and microtubule-associated 

protein 1A (MAP1A) has been demonstrated by yeast two-hybrid screen and co-

immunoprecipitation. Consequently, microtubule dynamics might be changed via CK1δ-

mediated phosphorylation of the light chain LC2 of MAP1A (Wolff et al., 2005). CK1δ is 

also involved in the regulation of vesicle transport and synaptic functions, underlined by the 

fact that CK1δ interacts with snapin, a protein associated with SNAP25, regulating 

neurotransmitter release in neuronal cells (Wolff et al., 2006). In developmental processes 

CK1δ has been found to interact with the pro-neural basic helix-loop-helix (bHLH) 

transcription factor Atoh1, which plays a key role in sensory hair development. Following 

phosphorylation by CK1δ degradation of Atoh1 is initiated by the E3 ubiquitin ligase 

Huwe1 (Cheng et al., 2016). As another developmental-associated factor also lymphocyte 

enhancer factor (LEF-1) can be bound and phosphorylated by CK1δ, resulting in disruption 

of binding between LEF-1 and β-catenin while DNA-binding of LEF-1 is not impaired 

(Hammerlein et al., 2005). Association of CK1δ has also been reported for the regulatory 

and complex-building/-initiating molecule 14-3-3 ζ, which also interacts with CK1α and 

CK1ε (Dubois et al., 1997; Zemlickova et al., 2004). In order to mediate this interaction 
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CK1δ contains the sequence Leu-Gly-Ser-Leu-Pro, which is quite similar to a putative motif 

described for 14-3-3 binding (Muslin et al., 1996). Finally, almost two decades ago 

interaction between CK1δ and the circadian clock proteins PER and cryptochrome (CRY) 

has been demonstrated by Lee and colleagues. In the circadian cycle CK1 isoforms facilitate 

the translocation of PERs and CRYs to the nucleus (Lee et al., 2001).

7. CK1δ-associated cellular functions

7.1. CK1δ in the circadian rhythm

The circadian rhythm is controlled by the cellular clock, permitting a cellular rhythm of 

approximately 24 h. Alterations in the circadian rhythm could be observed in different 

disorders such as sleeping, metabolic, and neurological disorders, which will be discussed in 

more detail in the following paragraphs (Ferrell and Chiang, 2015; De Lazzari et al., 2018; 

Leng et al., 2019; Stenvers et al., 2019).

The circadian rhythm is characterized by a negative feedback loop mediated by PER and 

CRY proteins, whose expression levels oscillate over the circadian clock. PERs and CRYs 

can form heterodimers, shuttle into the nucleus (Lee et al., 2001; Aryal et al., 2017), and 

inhibit their own expression through the inhibition of the CLOCK/BMAL1-responsive 

circadian gene transcription (Virshup et al., 2007). Once in the nucleus, CK1δ seems to 

enhance the inhibition of circadian-driven transcription by reducing CLOCK/BMAL1 

binding affinity to DNA (Aryal et al., 2017). Since mRNA levels of CK1δ/ε could vary in 

light-induced phase-shift in mice, CK1δ/ε seems to play an important role in balancing the 

circadian rhythm (Ishida et al., 2001). In fact, the regulation of PER degradation is mainly 

influenced by reversible phosphorylation controlled by kinases and phosphatases (so called 

“phosphoswitch”) (Gallego and Virshup, 2007; Virshup et al., 2007). CK1δ and ε are among 

the most important kinases, controlling PER phosphorylation (Camacho et al., 2001; Lee et 

al., 2001; Xu et al., 2005; Narasimamurthy et al., 2018). CK1δ seems to have a more 

important and essential role in the circadian clock compared to CK1ε (Etchegaray et al., 

2009; Walton et al., 2009). When CK1δ is disrupted or inactivated, an elongation in the 

circadian clock has been observed (Etchegaray et al., 2009, Isojima et al., 2009, Lee et al., 

2011b, Mieda et al., 2016), while overexpression of CK1δ leads to a shortening of the 

circadian rhythm (Lee et al., 2009; Mieda et al., 2016). Inhibition of CK1δ/ε by PF-670462 

also has shown inhibitory effects on the expression of clock genes such as Bmal1, Per1, Per2 
and Nr1d1 in rats (Kennaway et al., 2015).

After inhibition of N6-methylation (m6A) of CK1δ mRNA, enhancement of CK1δ 
translation permits the expression of CK1δ TV1 and TV2, which seem to differently 

influence the circadian rhythm, first by acceleration following increased degradation of 

PER2 and secondly by deceleration consequently leading to PER2 stabilization (Fustin et 

al., 2018). Moreover, a recent study identified CK1δ TV2 with a stronger role in priming 

phosphorylation of PER2 compared to CK1δ TV1, which permits subsequent 

phosphorylation events on PER2 (Narasimamurthy et al., 2018).

Robustness of the circadian clock has been analyzed by Nakajima and colleagues, who 

confirmed that the inhibition of PER2 phosphorylation by CK1δ/ε leads to destabilization of 
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the oscillation (Nakajima et al., 2015). Moreover, CK1δ-mediated phosphorylation of PER2 

seems to be a temperature-insensitive process, being responsible for the robustness of this 

process (Isojima et al., 2009). Nevertheless, the activity of CK1δ in phosphorylating PER2 

seems to be controlled by upstream kinases, likely by cyclin-dependent kinases or proline-

directed kinases, which can phosphorylate CK1δ on Thr-344 or Thr-347, thereby reducing 

its activity (Ianes et al., 2016; Eng et al., 2017). Interestingly, the circadian rhythm seems to 

be coupled with – and also be influenced by – the cell cycle (Unsal-Kacmaz et al., 2005). In 

fact, mutations and deregulation of circadian rhythm components have been observed in 

cancer (Wood et al., 2008).

7.2. CK1δ in DNA damage and cellular stress

Stress-conditions, among them genotoxic stress and DNA damage, lead to p53-dependent 

activation of CK1δ, finally resulting in CK1δ-mediated phosphorylation of key regulatory 

proteins involved in these processes, like p53 and Mdm2 (Knippschild et al., 1997). CK1δ 
phosphorylates p53 within its N-terminal domain on residues Ser-4, Ser-6, Ser-9 

(Knippschild et al., 1997; Higashimoto et al., 2000), and Ser-20 (MacLaine et al., 2008; 

Venerando et al., 2010). When p53 is phosphoprimed on Ser-15 additional CK1δ-mediated 

phosphorylation on Thr-18 results in lower binding affinity between p53 and Mdm2 and 

consequently elevated p53 activity (Dumaz et al., 1999; Alsheich-Bartok et al., 2008). 

Moreover, not only p53 but also its negative regulator Mdm2 can be phosphorylated by 

CK1δ. Under normal conditions, CK1δ-mediated phosphorylation of Mdm2 on Ser-240, 

Ser-242, Ser-246, and Ser-383 stabilizes the Mdm2-p53 complex and consequently leads to 

increased degradation of p53 (Blattner et al., 2002; Winter et al., 2004). Interestingly, REGγ 
(11S regulatory particles, 28-kDa proteasome activator γ) seems to have a role in promoting 

degradation of CK1δ, finally leading to stabilization of Mdm2 protein levels and therefore 

decreased p53 activity (Li et al., 2013). Upon DNA damage, ataxia telangiectasia mutated 

(ATM)-mediated phosphorylation of CK1δ leads to phosphorylation of Mdm2, permitting 

SCFβ-TrCP (skp cullin F-box containing complex beta-transducin repeat containing protein)-

mediated ubiquitination of Mdm2 and its proteasomal degradation (Inuzuka et al., 2010a, 

Inuzuka et al., 2010b, Wang et al., 2012). Under hypoxia, a hypoxia-inducible factor 1 

(HIF-1) heterodimer (HIF-1α and aryl hydrocarbon receptor nuclear translocator (ARNT)) 

can form and activate the transcription of hypoxia-responsive genes. CK1δ plays a role in 

phosphorylating HIF-1α on residue Ser-247, thereby interfering with its binding to ARNT 

and resulting in decreased HIF-1 activity (Kalousi et al., 2010). Interestingly, under hypoxic 

conditions CK1δ can also reduce cell proliferation and lipid droplet formation by reducing 

HIF-1α/ARNT complex formation (Kourti et al., 2015). The activity of topoisomerase II α 
(TOPOII-α), another important regulator of DNA replication and cell division, is also 

influenced by CK1δ-mediated phosphorylation on residue Ser-1106, finally resulting in 

increased TOPOII-α function (Grozav et al., 2009). Furthermore, CK1δ phosphorylates the 

ubiquitin-like containing PHD and RING finger domains 1 protein (UHRF1), which plays 

an important role in the maintenance of DNA methylation during DNA replication. Upon 

DNA damage, enhanced degradation of UHRF1 can be observed due to increased CK1δ-

mediated phosphorylation on Ser-108, permitting binding of the SCFβ-TrCP E3 ligase and 

subsequent proteasomal degradation of UHRF1 (Chen et al., 2013).

Xu et al. Page 14

Gene. Author manuscript; available in PMC 2021 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.3. CK1δ in cell cycle, mitosis, and meiosis

CK1δ was shown to have important roles in microtubule dynamics, cell cycle progression, 

genomic stability, mitosis, and meiosis (Behrend et al., 2000a, Behrend et al., 2000b, 

Sillibourne et al., 2002, Stoter et al., 2005, Johnson et al., 2013, Greer et al., 2014, Penas et 

al., 2014, Penas et al., 2015, Phadnis et al., 2015, Sakuno and Watanabe, 2015, Chan et al., 

2017, Greer et al., 2017). As already mentioned before, CK1δ is anchored to the centrosome 

via its interaction with AKAP450 (Sillibourne et al., 2002), allowing CK1δ-mediated 

phosphorylation of EB1, a component relevant for centrosome positioning during T cell 

activation (Zyss et al., 2011). In order to ensure centrosomal integrity and maintenance of 

genomic stability centrosome-associated CK1δ might also cooperate with a centrosomal 

subpopulation of p53 (Wahl et al., 1996; Meek, 2000; Tarapore and Fukasawa, 2002). 

Consequently, CK1δ/ε play an important role in cell cycle progression as well as in genomic 

stability. Following its inhibition by IC261 cells undergo a transient mitotic arrest (Behrend 

et al., 2000a), even though additional studies reported that cell cycle arrest upon treatment 

with IC261 is a result of severe off-target effects mediated by IC261 (Cheong et al., 2011; 

Stoter et al., 2014). Nevertheless, mouse embryonic fibroblasts (MEFs) lacking CK1δ are 

characterized by multiple centrosomes and the presence of micronuclei, indicators of 

genomic instability (Greer et al., 2017). Accordingly, silencing of CK1δ leads to lower 

amounts of Chk1 and cell division cycle 2 (CDC2)/CDK1, both having important roles in 

DNA damage response and mitotic checkpoints (Greer et al., 2017). Interestingly, Chk1-

mediated regulation of CK1δ as well as their physical binding have previously been shown, 

confirming interaction of CK1δ with Chk1 (Bischof et al., 2013). Moreover, CK1δ-mediated 

phosphorylation of Wee1-G2 checkpoint kinase (Wee1) can lead to its proteasomal 

degradation resulting in increased levels of active CDK1 and the consequent entrance of 

cells into mitosis (Penas et al., 2014). In line with these results, inhibition of CK1δ or its 

destruction after APC/CCdh1 (adenomatous polyposis coli/cyclosome cadherine 1)-

mediated ubiquitination increases the stability of Wee1 kinase, which elevates CDK1 

phosphorylation, leading to cell cycle exit (Penas et al., 2014; Penas et al., 2015). On the 

other hand, CK1δ is also able to phosphorylate phosphoprimed septation initiation protein 4 

(Sid4), thereby initiating the recruitment of Chk2/Cds1 (checkpoint kinase 2/replication 

checkpoint kinase Cds1) and a subsequent mitotic commitment (Chan et al., 2017). On the 

other hand, under mitotic stress, Hhp1 and Hhp2 (Hhp1/2), orthologous forms of CK1 in 

Schizosaccharomyces pombe, have been identified to play an important role in the mitotic 

checkpoint by delaying cytokinesis. By co-localization with spindle pole bodies (SPBs), 

CK1 can phosphorylate Sid4, thereby inducing Dma1-mediated ubiquitination and 

degradation of Sid4, leading to cytokinesis suspension (Johnson et al., 2013; Elmore et al., 

2018). Inhibition of CK1 isoforms by D4476 also increases the mitotic cell rate via 
increased stability of β-catenin and elevated β-catenin-mediated transcription, confirming an 

important role of CK1 in mitosis and cell cycle progression (Benham-Pyle et al., 2016).

Apart from its involvement in mitosis CK1δ also plays an important role in the regulation of 

meiotic processes. CK1δ and its ortholog Hrr25 have been detected within P-bodies, 

cytoplasmic RNA-protein granules present in meiotic cells. This binding seems to reduce 

CK1 turnover into the cytoplasm, thereby preserving protein integrity for subsequent stages 

of meiosis (Zhang et al., 2016; Zhang et al., 2018). Localization of Hrr25 to P-bodies is 
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necessary for completion of the meiotic program (Zhang et al., 2018). Hrr25 has also been 

observed to be involved in the induction of nuclear division of meiosis as well as in the 

synthesis of membranes to engulf newly synthetized nuclei, thereby mediating the exit from 

meiosis II (Arguello-Miranda et al., 2017). In oocytes in metaphase I and in metaphase II 

CK1δ co-localizes with γ-tubulin at the spindle poles (Qi et al., 2015). However, CK1δ 
seems not to be essential for spindle organization and meiotic progression in human cells. 

This is in contrast to earlier studies performed in yeast. Ishiguro and colleagues showed that 

Hhp2, the CK1δ/ε ortholog in S. pombe, acts as cohesion kinase promoting cleavage of the 

cohesion subunit Rec8 (meiotic recombination protein Rec8) during meiosis (Ishiguro et al., 

2010; Katis et al., 2010). This observation is supported by a report from Rumpf and 

colleagues showing that the CK1δ/ε orthologs Hhp1 and Hhp2 in S. pombe are essential to 

achieve full phosphorylation of Rec8 and subsequent efficient removal of Rec8 during 

meiosis I (Rumpf et al., 2010). This data impressively shows that results based on 

investigations in yeast models cannot necessarily be transferred to mammalian cells. 

However, stromal antigen 3 (STAG3), the mammalian ortholog of meiotic recombination 

protein Rec11, is also phosphorylated by CK1, thereby confirming the conservation of this 

process and the observations made in yeast, showing that Rec11 is phosphorylated by Hhp1 

and Hhp2, subsequently permitting DNA breakage and consequent meiotic recombination 

(Phadnis et al., 2015; Sakuno and Watanabe, 2015).

7.4. CK1δ-specific functions associated with cytoskeleton components

Numerous studies report cellular localization of CK1δ to components of the cytoskeleton, 

where CK1δ exercises essential regulatory tasks: CK1δ is able to modulate microtubule 

polymerization and stability at the spindle apparatus and the mitotic centrosome by directly 

phosphorylating α-, β-, and γ-tubulin (Behrend et al., 2000b; Stoter et al., 2005). Not only 

tubulin itself, but also microtubule-associated proteins (MAPs) are interacting with – and are 

phosphorylated by CK1δ, subsequently resulting in modulated interaction of MAPs with 

microtubules and altered microtubule dynamics (Brouhard and Rice, 2018). So far, site-

specific phosphorylation by CK1δ has been demonstrated for MAP4, MAP1A, and tau, as 

well as for the microtubule-destabilizing protein stathmin (Behrend et al., 2000b; Li et al., 

2004; Wolff et al., 2005; Hanger et al., 2007; Leon-Espinosa et al., 2013). Microtubule 

nucleation at the Golgi apparatus was inhibited by siRNA-mediated knock-down of CK1δ. 

Furthermore, the localization of CK1δ to the centrosome plays a crucial role in ciliogenesis: 

based on a study specifically knocking-down CK1δ kinase activity (by either using a CK1δ-

specific inhibitor or specific siRNA) CK1δ has been shown to mediate primary ciliogenesis 

by interaction with AKAP450 proteins as well as by maintaining Golgi organization and 

directed protein trafficking (Greer et al., 2014). This is supported by another study 

suggesting a role for CK1δ in the assembly of primary cilia (Lee et al., 2012). In contrast, 

the same study impressively showed an involvement of the highly related isoform CK1ε in a 

Wnt5a-CK1ε-Dvl2-Plk1-mediated pathway for cilia disassembly.

Ciliogenesis in general can be linked to the activity of distinct cellular signal transduction 

pathways. By compartmentalization of essential signal molecules the cilium has been shown 

to restrain signaling via the canonical Wnt as well as the Hedgehog (Hh) pathway (Rohatgi 

et al., 2007; Corbit et al., 2008; Lancaster et al., 2011). Furthermore, ciliogenesis can be 
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promoted by activity of the Hippo pathway (Kim et al., 2014). In conclusion, with its role in 

direct regulation of ciliogenesis, CK1δ might not only able to directly modulate the activity 

of the Wnt, Hh, and Hippo pathways (see chapters below), but also to indirectly control their 

activity by regulating (dis-)assembly of the primary cilium as a physical signal transduction 

platform used by the mentioned pathways.

7.5. CK1δ in the Wnt pathway

The Wnt signaling pathway plays an important role in developmental processes, 

regeneration, cell proliferation and tissue homeostasis. In many types of cancers alterations 

or mutations in the Wnt pathway have been observed (Clevers and Nusse, 2012; Polakis, 

2012; Nusse and Clevers, 2017; Krishnamurthy and Kurzrock, 2018). Briefly, in absence of 

Wnt ligand, β-catenin is phosphorylated and ubiquitinated by the β-catenin destruction 

complex, leading to its proteasomal degradation. Upon Wnt binding to Frizzled (Fzd), the 

co-receptor LRP5/6 can be phosphorylated by CK1α and glycogen synthase kinase 3 

(GSK3). Subsequently, Axin binds to LRP5/6 and recruits the β-catenin destruction 

complex, permitting higher stability of β-catenin. β-catenin shuttles into the nucleus, 

associates with TCF transcription factor, and induces the transcription of Wnt target genes 

(Clevers and Nusse, 2012; Nusse and Clevers, 2017).

As previously summarized in different focused review articles, CK1 isoforms are involved in 

different ways in the Wnt signaling pathway (Cruciat, 2014; Knippschild et al., 2014; Price, 

2006). CK1δ has been shown to phosphorylate the Wnt pathway components Dishevelled 1 

(Dvl1) as well as Axin, APC, and β-catenin (Amit et al., 2002; Gao et al., 2002; Xing et al., 

2003; Ha et al., 2004). Accordingly, CK1δ was also observed to have an essential role in 

neurite formation and dopaminergic neuron differentiation by phosphorylating Dvl (Bryja et 

al., 2007; Greer and Rubin, 2011). Moreover, CK1δ/ε phosphorylate Dvl2, thereby playing 

an important role for intestinal stem cell (ISC) maintenance. In fact, co-ablation of CK1δ 
and ε leads to the elimination of ISCs (Morgenstern et al., 2017). In addition, CK1δ seems 

to be important for the regulation of planar cell polarity (PCP), which depends on proper 

phosphorylation of planar cell polarity protein Van Gogh-like 2 (Vangl2), mediated by 

CK1δ/ε following Wnt-5a-mediated induction of the non-canonical Wnt signaling pathway 

(Yang et al., 2017).

CK1δ can either (i) positively or (ii) negatively influence the Wnt pathway: (i) CK1δ can 

stabilize β-catenin after the phosphorylation of lipoprotein receptor-related protein 6 (LRP6) 

and the subsequent recruitment of Axin and the β-catenin destruction complex, thereby 

avoiding β-catenin phosphorylation and ubiquitination (Zeng et al., 2005; Wu et al., 2009). 

Moreover, CK1δ/ε activity as well as stability are influenced by the tumor promoter TPA 

(12-O-tetra-decanoylphorbol-13-acetate), which also permits increased binding of β-catenin 

to TCF4E in a CK1δ/ε-dependent manner, resulting in an activation of Wnt target genes (Su 

et al., 2018). (ii) CK1δ negatively influences the Wnt pathway by directly phosphorylating 

β-catenin on Ser-45, thereby priming β-catenin for further GSK3β-mediated 

phosphorylation and subsequent degradation (Amit et al., 2002).
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7.6. CK1δ in the Hedgehog pathway

The Hedgehog (Hh) signaling pathway plays an important role in embryonic development 

by regulating cell differentiation, regeneration, proliferation, and organogenesis. 

Deregulation and mutations of main players of this pathway can influence tumorigenesis and 

cancer development (Jiang and Hui, 2008; Yao and Chuang, 2015; Wu et al., 2017). Briefly, 

in absence of Hh ligand (Sonic Hedgehog (Shh), Indian hedgehog (Ihh), or Desert hedgehog 

(Dhh)) the twelve-pass-membrane receptor Patched (Ptch) inhibits the seven-pass membrane 

receptor Smoothened (Smo). In this context, cubitus interruptus/glioma-associated oncogene 

(Ci/Gli) transcription factor can be phosphorylated, undergoes partial proteasomal 

degradation, and shuttles into the nucleus where it can act as a repressor of Hh-targeted gene 

transcription. Once Hh binds to Ptch, Smo receptor can be phosphorylated and Ci/Gli 

transcription factor can migrate into the nucleus to activate Hh target genes (Jiang and Hui, 

2008; Heretsch et al., 2010; Wu et al., 2017). CK1 isoforms play different roles in the Hh 

pathway. CK1δ has recently been shown to increase Smo activity by phosphorylating Smo at 

Ser-683 after priming phosphorylation mediated by PKC (Jiang et al., 2014). Upon Hh 

stimulation, CK1δ phosphorylates the full-length Cubitus interruptus positive transcription 

factor (CiA), protecting it from proteasomal degradation (Shi et al., 2014). In contrast, site-

specific phosphorylation of Ci by CK1 results in enhanced binding of SCFSlimb E3 ubiquitin 

ligase to Ci, subsequently leading to proteasomal degradation of Ci (Smelkinson et al., 

2007). Additionally, after priming phosphorylation by PKA, CK1 phosphorylates CiA, 

thereby increasing its proteolysis and generation of the repressive form of Ci (CiR) (Price 

and Kalderon, 2002).

7.7. CK1δ in the Hippo pathway

The Hippo pathway is involved in embryonic development to determine organ size by 

influencing cell proliferation, apoptosis, and tissue homeostasis (Zeng and Hong, 2008; Bae 

and Luo, 2018; Moon et al., 2018). Hippo signaling is activated by high cell density. A 

phosphorylation cascade is induced after phosphorylation of mammalian sterile-20 like 

kinase 1/2 (MST1/2), which further phosphorylates large tumor suppressor kinase 1/2 

(LATS1/2), ultimately phosphorylating yes-associated protein (YAP)/tafazzin (TAZ). As 

major downstream target YAP/TAZ can either be ubiquitinated and degraded or retained in 

the cytoplasm after binding to 14–3–3. Under conditions of low cell density, the Hippo-

signaling cascade is not activated and YAP/TAZ is able to translocate into the nucleus and to 

bind TEAD (TEA domain)/SMAD (SMA/mothers against decapentaplegic) transcription 

factors, inducing Hippo target gene transcription for growth and differentiation (Zeng and 

Hong, 2008, Bae and Luo, 2018, Moon et al., 2018). YAP degradation is also influenced by 

CK1δ/ε-mediated phosphorylation on Ser-381, after its priming phosphorylation by LATS 

on Ser-127, which permits the recruitment of the E3 ubiquitin ligase SCFβ-TrCP, 

ubiquitination, and subsequent degradation of LATS (Zhao et al., 2010). Interestingly, the 

Hippo pathway seems to be connected to the Wnt pathway in different ways, for instance by 

interaction of YAP/TAZ with DVL, β-catenin, and the β-catenin destruction complex 

(Varelas et al., 2010; Heallen et al., 2011; Azzolin et al., 2012; Imajo et al., 2012; Rosenbluh 

et al., 2012; Konsavage Jr. and Yochum, 2013; Azzolin et al., 2014; Wang et al., 2018), as 

well as with regulation of p53 (Ferraiuolo et al., 2017; Furth et al., 2018). Hippo signaling 

can negatively influence Wnt signaling via Dvl protein, which in presence of Wnt ligand 
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binding is phosphorylated by CK1δ/ε and inhibits the β-catenin destruction complex. In this 

context, YAP/TAZ binds Dvl, thereby reducing its CK1δ/ε-mediated phosphorylation as 

well as the subsequent transduction of Wnt signaling (Varelas et al., 2010; Imajo et al., 

2012). Moreover, phosphorylated YAP/TAZ is able to bind β-catenin, which is then retained 

in the cytoplasm, resulting in a decreased transcription of Wnt target genes (Heallen et al., 

2011; Imajo et al., 2012). Interestingly, YAP/TAZ have also been identified as downstream 

effectors of the non-canonical Wnt signaling pathway, whose target genes seem to have 

inhibitory potential on canonical Wnt signaling (Park et al., 2015).

8. Involvement of CK1δ in pathological processes

Most studies in regard to the involvement of CK1δ in the development and progression of 

certain diseases and disorders concentrate on the relation of CK1δ to cancer and neurologic 

diseases. Apart from those, also disorders affecting cell cycle, metabolism, and stem cell 

functions associated with CK1δ are another main topic. Furthermore, metabolic diseases as 

well as inflammatory and infectious diseases related to CK1δ-specific functions are also 

reported in some studies and will be discussed in the following sections.

8.1. CK1δ in tumorigenesis and tumor progression

Cancer-associated functions of CK1δ are closely related to the above described roles of 

CK1δ in Wnt/β-catenin-, p53-, Hh-, and Hippo-related signaling. Meanwhile numerous 

studies described the oncogenic features of CK1δ in different types of cancer. These include, 

among others, gastrointestinal tumors, breast cancer, kidney cancer, hematological 

malignancies, and skin cancer. A database research analyzing microarray datasets generated 

from the analysis of certain tumor cell lines and tumor tissues revealed that CK1δ mRNA is 

overexpressed in many cancer types like bladder cancer, brain cancer, breast cancer, 

colorectal cancer, kidney cancer, lung cancer, melanoma, ovarian cancer, pancreatic cancer, 

and prostate cancer, as well as in hematopoietic malignancies (Fig. 8 and Table 5) (Schittek 

and Sinnberg, 2014).

Animal experiments and cell culture-based analysis confirmed increased expression of 

CK1δ in cells of hyperplastic B cell follicles and B cell lymphoma in p53-deficient mice, but 

also in choriocarcinoma cells and pancreatic ductal adenocarcinoma (Maritzen et al., 2003; 

Stoter et al., 2005; Brockschmidt et al., 2008). The function of CK1δ in lymphoid 

neoplasms was first described using a mouse model leading to the observation that the 

expression level of CK1δ is increased in cells of hyperplastic B follicles and advanced B cell 

lymphomas in p53-deficient mice. Later, CK1δ mRNA and protein levels were also 

analyzed in 18 lymphoma cell lines and strong expression of CK1δ could be found in all 

analyzed cell lines (Maritzen et al., 2003; Winkler et al., 2015).

Interestingly, in some other studies low expression of CK1δ in cancer tissues has also been 

described (Fig. 8 and Table 5). Decreased expression levels of CK1δ may result in cell cycle 

arrest and apoptosis in various cancer cell lines. These effects are independent of Wnt/β-

catenin-mediated signal transduction. However, they seem to depend on activation of RAS 

and inactivation of p53 (Cheong et al., 2011; Cheong and Virshup, 2011). Decreased activity 

of CK1δ has also been characterized in SV40-transformed cells in vitro and in SV40-

Xu et al. Page 19

Gene. Author manuscript; available in PMC 2021 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



induced mammary carcinogenesis in a bitransgenic mouse model in vivo. In this model 

CK1δ kinase activity is impaired by site-specific mutations (e.g. N172D) and transgenic, 

mutant CK1δ exercises a dominant-negative effect on endogenous CK1δ. The resulting 

partial inhibition of CK1δ activity reduced transformation of SV40-transformed cells, 

decelerated tumor progression, and prolonged survival of WAP-mutCK1δ/WAP-T 

bitransgenic mice (Hirner et al., 2012). In contrast, the R324H mutation in the C-terminal 

region of CK1δ is associated with increased oncogenic potential and results in promotion of 

the development of adenomas in the intestinal mucosa (Tsai et al., 2007). Furthermore, the 

T67S mutant identified in colorectal cancer tissue exhibits increased kinase activity also 

resulting in higher oncogenic potential. Overexpression of CK1δT67S leads to enhanced 

colony formation of HT29 cells and increased tumor formation in xenografts (Richter et al., 

2015).

Studies on the analysis of a correlation of CK1δ and the overall survival of cancer patients 

revealed that high expression levels of CK1δ are associated with shorter patient survival in 

glioblastoma, lung cancer, and colorectal cancer patients (Schittek and Sinnberg, 2014; 

Richter et al., 2016). In contrast, a high expression of CK1δ with longer patient survival 

time can be found in breast cancer, chronic lymphocytic leukemia, and astrocytic glioma 

patients (Schittek and Sinnberg, 2014).

8.2. Neurologic diseases and disorders

Immunohistochemistry and gene expression studies have demonstrated that CK1 isoforms 

are expressed to a different extend in various parts of the nervous tissue (Schwab et al., 

2000; Camacho et al., 2001; Yasojima et al., 2001; Chergui et al., 2005; Lohler et al., 2009). 

Other studies have been conducted to examine the relationship of CK1δ in brain tissue to 

specific pathological hallmarks by immunohistochemistry. Those studies found that CK1δ is 

associated with the corresponding specific pathological hallmarks of Alzheimer’s disease 

(AD), Down syndrome (DS), progressive supranuclear palsy (PSP), parkinsonism dementia 

complex of Guam (PDC), Pick’s disease (PiD), pallido-ponto-nigral degeneration (PPND) 

(Schwab et al., 2000), and familial advanced sleep phase syndrome (FASPS) (Xu et al., 

2005; Ebisawa, 2007).

Alzheimer’s disease is a progressive neurodegenerative disease characterized by two specific 

brain lesions. One lesion is described by the appearance of neurofibrillary tangles (NFTs), 

abnormal neurites, known as neuropil threads, and neuritic plaques (NPs) in nerve cells 

(Buee et al., 2000). The second lesion is represented by granulovacuolar degeneration bodies 

(GVBs) formed in the hippocampus (Okamoto et al., 1991). Filaments of accumulated 

microtubule-associated tau protein can be considered as reliable marker for neurofibrillary 

degeneration (Flament et al., 1990). Localization analysis of CK1δ in pathological tissue of 

patients with Alzheimer’s disease revealed that the highest expression levels of CK1δ in 

pathological tissues can be detected in GVBs, and the second highest levels were detected in 

NPs. Low CK1δ expression levels could be detected in NFTs. In addition, hippocampal 

expression levels of CK1δ in Alzheimer’s patients were higher than in the control group. 

Interestingly, analysis of expression levels of CK1δ in different organs of AD patients 

revealed that elevated levels of CK1δ could only be found in the brain but not in peripheral 

Xu et al. Page 20

Gene. Author manuscript; available in PMC 2021 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organs. In brain tissue, the expression levels of CK1δ are remarkably increased in brain 

areas with increased tau pathology, while the expression levels of CK1δ are modestly 

elevated in areas with low NFT burden (Yasojima et al., 2000). Moreover, co-localization 

studies confirmed that CK1δ is co-localized with its interaction and substrate protein tau in 

the specific pathological tissue lesions like NFTs or GVBs (Schwab et al., 2000).

Typically, NFTs are composed of aggregated filaments formed by hyperphosphorylated tau. 

Tau can be phosphorylated by CK1δ at Ser-202, Thr-205, Ser-396, and Ser-404 in vitro. 

Furthermore, exogenous expression of CK1δ in HEK293 cells induced tau phosphorylation 

and resulted in reduced binding of tau to microtubules (Li et al., 2004). Mass spectrometry-

based analysis of tau phosphorylation revealed that CK1δ and GSK3β are responsible for 

phosphorylation of most sites detected in hyperphosphorylated tau protein and that CK1δ 
together with GSK3β might play an important role in the pathogenesis of AD (Hanger et al., 

2007). Therefore, CK1δ could be a potential target for AD treatment and recently, different 

inhibitors have been developed and may be therapeutically useful in the future. Interestingly, 

[11C]-labeled CK1 inhibitors have been developed as derivatives of already published 

difluoro-dioxolo-benzoimidazol-benzamide compounds (Richter et al., 2014), and have been 

used as radiotracers for CK1 in positron emission tomography (PET) imaging for both, 

diagnosis and therapeutic follow up (Gao et al., 2018). TDP-43 (transactive response DNA-

binding protein of 43 kDa) has been characterized as a hallmark of frontotemporal lobar 

degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) (Amador-Ortiz et al., 2007; 

Bigio, 2011). Moreover; some studies have also shown that TDP-43 is deposited in GVBs 

and can also be strongly associated with the clinical phenotype of AD. Here, TDP-43 

contributes to the AD neurodegenerative process through beta-amyloid (Aβ)-dependent and 

Aβ-independent pathways (Chang et al., 2016). The relationship between CK1δ and TDP-43 

is first reflected in their localization to GVBs. Moreover, by studying different stages of 

granulovacuolar degeneration the increased distribution areas of TDP-43 in brain lesions 

were found to be consistent with the distribution of CK1δ (Thal et al., 2011). In ALS, 

phosphorylation of TDP-43 by CK1δ has been indicated in vitro and by liquid 

chromatography-ion trap mass spectrometry (LC–MS/MS), thereby identifying 29 sites 

within TDP-43 being targeted by CK1δ (Kametani et al., 2009). TDP-43 intracellular 

accumulation and mislocalization seems to be influenced by CK1δ-mediated 

phosphorylation (Nonaka et al., 2016). Accordingly, inhibition of CK1δ-mediated 

phosphorylation of TDP-43 by different CK1δ inhibitors in a neuronal cell model as well as 

in a Drosophila model resulted in prevention of neurotoxicity and rescue of cells from cell 

death (Alquezar et al., 2016). Recently, a newly developed CK1δ inhibitor (IGS3.27) could 

also reduce phosphorylation of TDP-43 and additionally led to normalization of TDP-43 

translocation (Posa et al., 2018). Therefore, CK1δ seems to be an interesting target of 

inhibition for ALS therapy concepts and a lot of effort has been made to improve CK1δ-

selectivity as well as permeability of CK1δ-specific inhibitors through the blood-brain-

barrier (BBB) (Alquezar et al., 2016; Joshi et al., 2016; Wager et al., 2017). Interestingly, the 

FDA-approved drug riluzole, which is already used as a clinical treatment for ALS, can 

inhibit CK1δ/ε, even though with a quite high half maximal inhibitory concentration (IC50) 

value (~16 μM) (Bissaro et al., 2018).
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CK1δ is also involved in Parkinson’s disease (PD) as indicated by its ability to 

phosphorylate α-synuclein, one of the main component of Lewy bodies (LB), on Ser-87 and 

Ser-129 (Okochi et al., 2000). However, priming phosphorylation of α-synuclein on Tyr-125 

seems to be necessary for CK1δ-mediated phosphorylation on Ser-129 (Kosten et al., 2014). 

Different mutations of α-synuclein have been characterized in PD, among them E46K, 

which seems to enhance Ser-129 phosphorylation (Mbefo et al., 2015).

Familial advanced sleep phase syndrome (FASPS) is a circadian rhythm sleeping disorder 

(CRSD) characterized by very early sleep onset and offset, as well as by a short τ period (the 

period in which behavior continues to oscillate in the absence of external cues) (Jones et al., 

1999). The mammalian clock protein PER2 plays a key role in the regulation of circadian 

rhythms in FASPS. Etiology studies carried out by screening patients’ genes detected a 

missense mutation (T44A) in the PER2-binding domain of human CK1δ or a S662G 

mutation in the clock gene PER2 to be causative for FASPS (Xu et al., 2005; Xu et al., 

2007). Introduction of human CK1δ T44A changed the circadian rhythm in both, transgenic 

Drosophila and transgenic mice. However, only changes observed in the mouse model were 

similar to the shortened circadian period observed in human. Changes observed in transgenic 

Drosophila were associated with a lengthened circadian period (Xu et al., 2005). A 

subsequently performed study confirmed in vivo phosphorylation of PER2 by CK1δ at 

Ser-662. Following site-specific phosphorylation of PER2 at Ser-662 the protein is 

characterized by increased stability and longer half-life compared to non-phosphorylated 

PER2 (Shanware et al., 2011). Hyeong-Min Lee and colleagues could show that orchestrated 

action of CK1δ and protein phosphatase 1 (PP1) can determine cell circadian periodicity 

thorough their influence on PER phosphorylation state. In CK1δ/ε-deficient fibroblasts, 

PER phosphorylation was significantly reduced and cell rhythm disappeared. In contrast, 

inhibition of PP1 is able to induce high phosphorylation levels of PER resulting in shortened 

cell rhythm (Lee et al., 2011a). Furthermore, different multi-phosphorylation site mutants of 

CK1δ were characterized to have different activity on PER2 stability, while the most 

significant impact on PER2 stability was observed for the CK1δ T347A mutant. These 

results indicate that PER2 stability can be influenced by site-specific phosphorylation of 

CK1δ at Thr-347, performed by other intracellular kinases (Eng et al., 2017).

8.3. CK1δ in the mediation of drug addiction

Via modulation of the circadian rhythm-regulating PER proteins or the dopaminoceptive 

signal integrator dopamine and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), 

CK1δ (but also CK1ε) can be involved in the development of drug addiction (Nairn et al., 

2004; Falcon and McClung, 2009). Certain mutations in the gene coding for PER2 proteins 

have previously been linked to conditioned place preference (CPP) of cocaine and increased 

alcohol consumption, highlighting the role of PER2 in the development of addictive 

behavior (Abarca et al., 2002; Spanagel et al., 2005). Using the CK1δ/ε-specific inhibitor 

PF-670462 relapse-like alcohol consumption in rats could successfully be prevented by 

centrally mediated modulation of PER2 phosphorylation (Perreau-Lenz et al., 2012).

The neurotransmission integrator protein DARPP-32 is involved in mediating the motoric 

and rewarding effects of drugs like heroin (Fernandez et al., 2006; Mahajan et al., 2009). 
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Following activation of dopamine D1 receptors by heroin PKA-mediated phosphorylation of 

DARPP-32 is induced, finally leading to inhibition of PP1 by phosphorylated DARPP-32 

and subsequent increase in drug-related rewarding properties (Fernandez et al., 2006). In this 

pathway CK1δ and ε can be involved by phosphorylating DARPP-32 at Ser-130, resulting in 

increased phosphorylation of Thr-34 by PKA and subsequent DARPP-32/PP1 signaling 

(Nairn et al., 2004; Svenningsson et al., 2005). Also here, treatment with the CK1δ/ε-

specific inhibitor PF-670462 attenuated methamphetamine-induced locomotor activity by 

inhibition of DARPP-32 phosphorylation mediated by CK1δ and ε (Bryant et al., 2009). 

Furthermore, treatment with the highly potent CK1δ/ε-specific inhibitor PF-5006739 

resulted in attenuation of drug-seeking behavior in rats trained to self-administer the 

synthetic opioid fentanyl (Wager et al., 2014). In conclusion, specific inhibitors of CK1δ 
(and ε) might be of future use for the treatment of drug addiction or alcohol abuse.

8.4. Metabolic diseases

Apart from sleeping disorders also the onset and severity of metabolic diseases, including 

obesity and type 2 diabetes, can be linked to circadian clock disorders. Therefore, as a key 

regulator of the circadian clock, CK1δ can also affect metabolic dysfunction and can serve 

as promising drug target. In this context, glucose tolerance was improved by daily 

administration of a CK1δ- (and ε-)specific inhibitor (PF-5006739) to mice in a model for 

diet-induced obesity or in a genetic mouse model for obesity (ob/ob) (Cunningham et al., 

2016). CK1δ can furthermore be linked to circadian metabolic regulation via PGC-1α 
(peroxisome proliferator-activated receptor γ co-activator 1α), a transcriptional coactivator 

coordinating circadian metabolic rhythms by simultaneously regulating the expression of 

metabolic and clock genes. Phosphorylation of PGC-1α by CK1δ enhances its proteasomal 

degradation, thereby inhibiting the transcriptional function of PGC-1α in cultured 

hepatocytes, resulting in decreased gluconeogenesis gene expression and glucose secretion 

(Li et al., 2011b). In contrast to this observation, the treatment of a human adipocyte cell line 

with CK1δ-specific inhibitors resulted in increased basal and insulin-stimulated glucose 

uptake (Xu et al., 2015). Xu and colleagues reported that the expression of adiponectin, an 

important adipokine secreted by adipose tissue, was associated with CK1δ expression in 

adipose tissue of morbidly obese patients. Furthermore, in vitro studies revealed that Ser-174 

and Thr-235 of adiponectin are phosphorylated by CK1δ in vitro, contributing to modulation 

of the ability of adiponectin to form biologically active high molecular complexes (Xu et al., 

2015).

8.5. Hijacking of mammalian CK1 pathways by CK1s from parasites

There is increasing evidence suggesting that CK1 is associated with infectious diseases by 

the manipulation of host cell CK1 signaling pathways by intracellular parasites, mediated 

through the export of their own CK1 into the host cell (Sacerdoti-Sierra and Jaffe, 1997; 

Silverman et al., 2010a; Silverman et al., 2010b; Dorin-Semblat et al., 2015; Jiang et al., 

2018). Their survival depends on their ability to subvert the host cell to acquire nutrients or 

to evade the immune response (Lamotte et al., 2017). For instance, Leishmania resides in the 

parasitophorous vacuole of macrophages from where it modifies macrophage biology and 

attenuates the immune response (Lamotte et al., 2017). Plasmodium infects red blood cells 

(RBCs), and modifies their cell membrane to favor the adhesion of the infected RBCs to the 
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vascular endothelium and thus avoid clearance by the spleen (Zhang et al., 2015b). In these 

two parasites, CK1 has been shown to be excreted and could thus contribute to the 

reprogramming of the respective host cells (Sacerdoti-Sierra and Jaffe, 1997; Silverman et 

al., 2010a; Dorin-Semblat et al., 2015). The identified host functions of parasitic CK1s 

imply that these kinases could replace mammalian CK1s to ensure similar functions, 

including phosphorylation of human CK1 substrates and regulation of human CK1 signaling 

pathways (Liu et al., 2009). The BLAST and reverse BLAST of the parasitic CK1s with 

human CK1 shows that they are closely related to human CK1 (see Supplementary Fig. 2 for 

alignment). More specifically, these kinases display a higher level of identity toward human 

CK1δ TV1, suggesting that they might be preferentially hijacking the functions of this 

paralog. The protein sequences of these orthologs is absolutely conserved within each 

different species for Trypanosoma brucei, Trypanosoma cruzi, Plasmodium, and Leishmania 
(Rachidi et al., 2014). This finding suggests that there is a strong evolutionary selection 

pressure to maintain the protein sequence unchanged and as closely related to its human 

counterpart as possible.

The protein organization of parasitic CK1s is very similar to that of human CK1δ. Indeed, 

all the residues involved in ATP binding, the gatekeeper (Met-82), the DFG, the KHD, and 

the SIN motifs, as already defined in Fig. 5, are conserved, suggesting that they are crucial 

for CK1 function. In contrast, other motifs like the CLS are less conserved. The glycine-rich 

ATP binding loop is conserved in all the selected CK1 sequences, except for TcCK1. The 

amino acid substitution present in TcCK1 does not affect ATP binding as those residues are 

conserved, but instead its potential regulation is affected. Indeed, the GSGSFG domain is 

replaced by GAGSFG in TcCK1. However, in Leishmania CK1.2, the two serines of this 

motif are phosphorylated during differentiation, suggesting that they could have a regulatory 

effect for LmCK1.2 ((Tsigankov et al., 2014) and own unpublished data); in Trypanosoma 
brucei, Plasmodium falciparum, and in Toxoplasma gondii, the first serine of the motif is 

phosphorylated (Nett et al., 2009; Treeck et al., 2011). However, despite phosphorylation of 

the glycine triad during differentiation, it has been shown that LmCK1.2 is still active, 

although its activity is lower after differentiation (Rachidi et al., 2014). The catalytic loop 

motif represents a domain for which a T. cruzi-specific substitution has been identified. In 

all parasitic CK1s except for T. cruzi the motif DVKPDN (present in human CK1δ) is 

replaced by the motif DIKPDN, which is similar to that of human CK1α. In T. cruzi CK1 

the human motif is replaced by the motif DMKPDN. These changes could be important, as 

they seem to be conserved. Altogether, these findings indicate that parasitic CK1s are 

closely related to CK1δ, but additionally have characteristics of CK1α and CK1ε.

However, still very little is known about the functions of these kinases in the parasites and 

more importantly about their functions in the host cell. The most studied CK1s are that of 

Plasmodium and Leishmania:

Plasmodium falciparum has only one CK1, PfCK1 (PF3D7_1136500), which presents 69% 

of identity with human CK1 in the kinase domain (Barik et al., 1997). PfCK1 was shown to 

be essential for completion of the asexual intra-erythrocytic cycle (Solyakov et al., 2011). It 

is expressed throughout blood stage, localizes in the parasite but also in the host red blood 

cell, especially associated to the surface of the RBC during the first step of infection (Dorin-
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Semblat et al., 2015). Indeed, data from Magowan et al. suggests that PfCK1 could be 

phosphorylating protein 4.1 and the mature-parasite-infected erythrocyte surface antigen 

(MESA), two components of the erythrocyte membrane skeleton (Magowan et al., 1998). 

Moreover it has been shown to be secreted in the culture medium. This finding suggests that 

PfCK1 could be involved in priming other RBCs for subsequent invasion (Dorin-Semblat et 

al., 2015). A study of the PfCK1 interactome indicates that, similarly to other CK1s, it has 

multiple binding partners and thus regulates multiple pathways, including transcription, 

translation, and protein trafficking. Finally, PfCK1 function is likely to be essential for 

parasite proliferation in erythrocytes.

Leishmania donovani has six CK1 paralogs. Two paralogs, LdBPK_351020.1 and 

LdBPK_351030.1 (LmCK1.2), are closely related (67% identity), but mainly differ within 

their C-terminal domains (Martel et al., 2017). They display the highest identity to human 

CK1. Recently, Martel et al. showed that LdBPK_351020.1 is not essential for parasite 

survival and could have a role during stationary phase (Martel et al., 2017). The four other 

paralogs, LdBPK_303530.1, LdBPK_251640.1, LdBPK_041230.1, and LdBPK_271680.1, 

are extremely divergent from the first two (Rachidi et al., 2014). Little is known about the 

functions of the six paralogs, except for LdBPK_271680.1, which contains an excretion 

signal and is important for regulating growth of cultured parasites and virulence (Dan-Goor 

et al., 2013), and LdBPK_351030.1, which is the most abundant CK1 in Leishmania and the 

only paralog described as having a function in the host cell (Rachidi et al., 2014; Silverman 

et al., 2010a). LdBPK_351030.1 (LmCK1.2) is active in both, promastigotes and 

amastigotes, and can be inhibited by D4476, a CK1-specific inhibitor (Rachidi et al., 2014). 

LmCK1.2 seems to have been selected for its capacity to interact with and phosphorylate 

host proteins to modulate macrophage-mediated processes to favor the survival of the 

parasite. Four pieces of evidence support this hypothesis: (i) LmCK1.2 is released into 

extracellular compartments inside vesicles (Silverman et al., 2010a), (ii) LmCK1.2 is strictly 

conserved between Leishmania species and closely related to human CK1δ, (iii) Leishmania 
CK1 phosphorylates human interferon alpha/beta receptor 1 (IFNAR1), which leads to the 

attenuation of the cellular response to interferon alpha (Liu et al., 2009), and (iv) LmCK1.2 

is essential for Leishmania intracellular survival in the mammalian host. Little is known 

about the functions of LmCK1.2 in the parasite, as only few substrates have been found, 

among them heat shock proteins 90 and 70 (Hsp90 and Hsp70), and no interaction partners 

((Hombach-Barrigah et al., 2019) and Martel et al., manuscript in preparation). LmCK1.2 is 

sensitive to known human CK1 inhibitors and is inhibited by CKI-7, IC261, and D4476 

(Rachidi et al., 2014). Interestingly, results obtained for IC261 (IC50 of 10 μM for LmCK1.2 

versus 4.8 μM for mammalian CK1) suggest that the ATP binding pocket of LmCK1.2 might 

be structurally closer to that of CK1α than to that of CK1δ (Rachidi et al., 2014). As 

Leishmania CK1 is essential for parasite survival in the macrophage, it constitutes a perfect 

target for anti-leishmanial therapy. Several screens looking for small molecules able to 

inhibit LmCK1.2 and thus kill the parasites were performed and despite the high identity to 

human CK1, small molecules were identified to more specifically target Leishmania CK1 

(Allocco et al., 2006; Marhadour et al., 2012; Durieu et al., 2016).

Altogether, by being exported into the host cells, parasitic CK1s take over functions 

normally performed by human CK1. Studying these orthologs could bring more knowledge 
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on the functions of human CK1s and lead to new therapeutic strategies preventing hijacking 

of the host cell by parasites.

9. Modulating CK1δ activity

Recently, interest in modulating the activity of CK1δ has increased enormously. The main 

focus is directed to the development of highly effective small molecule inhibitors (SMIs) 

since deregulation of CK1δ expression and activity levels contributes to the pathogenesis of 

severe disorders, among them cancer and neurologic diseases like AD, PD, ALS, and 

sleeping disorders. However, due to the existence of several highly conserved CK1 isoforms 

(CK1α, γ1–3, δ, ε) with overlapping or opposed physiological and pathophysiological 

functions, it is very challenging to design SMIs being selective for CK1δ only. Furthermore, 

there is increasing evidence that posttranslational modifications of CK1δ, especially site-

specific phosphorylation within its C-terminal regulatory domain, modulates the efficiency 

of SMIs (Bischof et al., 2012; Bischof et al., 2013; Richter et al., 2014). It is also very 

challenging and of high clinical interest to develop SMIs with higher affinity toward CK1δ 
mutants with increased oncogenic potential since their use would expand the therapeutic 

window and decrease the occurrence of severe side effects enormously.

Within the last 30 years more and more CK1-specific SMIs have been developed. Since 

most of the compounds described so far are classified as ATP-competitive inhibitors (type I 

inhibitors), it cannot be excluded that due to structural similarities within the ATP binding 

site additional kinases and other ATP binding proteins are also inhibited to some extent.

Whereas the first CK1 inhibitor, CKI-7 (N-(2-aminoethyl)-5-chloroisoquinoline-8-

sulfonamide), did not show any CK1 isoform-specificity (Chijiwa et al., 1989), IC261 

(3-[(2,4,6-trimethoxyphenyl)-methylidenyl]-indolin-2-one) (Mashhoon et al., 2000) and 

D4476 (4-[4-(2,3-dihydro-benzo)[1,4]dioxin-6-yl)-5-pyridin-2-yl-1H-imidazol-2-yl]-

benzamide) (Rena et al., 2004) exhibit a higher selectivity toward CK1δ and ε. Although 

CK1δ/ε-specific inhibition by IC261 affects site-specific phosphorylation of Bid and 

induces apoptosis in tumor cells (Izeradjene et al., 2004), several cellular effects of IC261 

are not due to inhibition of CK1δ/ε. Among these effects are the inhibition of microtubule 

polymerization, which is due to the direct binding of IC261 to tubulin (Cheong et al., 2011; 

Stoter et al., 2014), and the blocking of voltage-gated sodium channels, which are implicated 

in tumor progression (Fohr et al., 2017). Furthermore, due to the fact that many CK1-

specific inhibitor compounds are classified as ATP-competitive inhibitors (type I inhibitors) 

comparison of their efficacy is difficult since their IC50 values have been assessed at 

different ATP concentrations (Supplementary Table 1) (reviewed in Knippschild et al., 

2014).

Several structure-based virtual screens resulted in the identification of various CK1δ-specific 

inhibitors, among them amino-anthraquinone analogues (Cozza et al., 2008), N6-phenyl-1H-

pyrazolo[3,4-d]pyrimidine-3,6-diamine derivatives (Yang et al., 2012), and the 

dihydroxyquinoline sulphonamide NSC45572 (Myrianthopoulos et al., 2017). A group-

based quantitative structure and activity relationship (GQSAR) model based on N-

benzothiazolyl-2-phenyl acetamide derivatives (Salado et al., 2014) was generated by Joshi 
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and co-workers. Using this model, site-specific molecular fragments of individual 

compounds allow for the interpretation of observed differences in the biological activity of 

these compounds. Compounds identified using this approach could be used as lead 

substances against CK1δ, able to block CK1δ-mediated site-specific phosphorylation of 

TDP-43 and might be useful for developing new therapeutic concepts for the treatment of 

ALS (Joshi et al., 2016).

In addition, several benzimidazole-based CK1-specific inhibitors have demonstrated their 

potential to specifically inhibit CK1δ and ε (SR-3029 and SR-2890 (Bibian et al., 2013); 

Bischof-5 and Bischof-6 (Bischof et al., 2012); Richter-2 (Richter et al., 2014); IWP-2, 

IWP-4, and compound 19 (Garcia-Reyes et al., 2018)). Although Bischof-5, a 2-benzamido-

N-(1H-benzo[d]imidazol-2-yl)thiazole-4-carboxamide derivative with a trifluoromethyl 

substitution on the phenyl ring, exhibits IC50 values toward rat CK1δ and human CK1δ 
transcription variants 1 and 2 between 22 and 42 nM, its ability to inhibit proliferation of 

various tumor cell lines is limited (Bischof et al., 2012). However, the specificity, activity, 

and anti-proliferative activity has further been increased by a difluoromethyldioxolo group 

on the benzimidazole, finally leading to the development of Richter-2 (IC50 CK1δ = 0.14 

μM vs. IC50 CK1ε = 0.52 μM (Richter et al., 2014)).

Optimization of benzimidazole derivatives by Bibian and coworkers included enhancement 

of the interaction of compounds with Arg-13 of CK1δ, thereby reducing off-target effects by 

altering the substituents on the benzimidazole unit (either R1 or R2) and increasing 

inhibition of CK1δ, which could be achieved by using piperazine or N-methyl piperazine as 

R4 and thiophene, furan, and 3-fluorophenyl groups as R3. These modifications finally 

resulted in development of the highly CK1δ/ε-selective inhibitors SR-2890 and SR-3029 

with improved inhibitory and anti-proliferative features (Bibian et al., 2013).

Interestingly, due to structural similarities to benzimidazole-based CK1 inhibitors, especially 

to Bischof-5 (Bischof et al., 2012), inhibitors of Wnt production (IWPs), known to be 

antagonists of the Wnt pathway by preventing Wnt ligand palmitoylation through inhibition 

of the membrane-bound O-acyltransferase porcupine (Porcn), have recently been described 

to specifically inhibit CK1δ. This led to the development of improved IWP-based ATP-

competitive inhibitors of CK1δ and to the conclusion that the effects observed for IWPs are 

not only due to Porcn inhibition, but also to effects on CK1δ/ε-related signaling (Garcia-

Reyes et al., 2018).

Quite recently, [11C] labeled highly potent difluoro-dioxolo-benzoimidazol-benzamides have 

been generated, which have a high potential to be prognostically used as PET radiotracers 

for imaging of AD (Gao et al., 2018).

Several additional small molecule inhibitors, which have been described to exhibit dual 

specificity, will be introduced in the following paragraph. Compound (R)-DFR053 

((R)-2-(1-hydroxybut-2-ylamino)-6-[3-(2-pyridyl)phenylamino]-9-isopropylpurine), a 

roscovitine derivative, specifically targets CK1δ and CDK5, and could be useful for the 

analysis of pathways involved in neurodegeneration and therapeutic applications in AD 

(Oumata et al., 2008). The pyrazolo-pyridine analogues MRT00055778 (N1-[4-(5-methyl-3-
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phenylisoxazol-4-yl)pyrimidin-2-yl]acetamide) and MRT00033659 (5-(3-

acetamidophenyl)-3-methyl-1H-pyrazolo[3,4-b]pyridine) have been shown to inhibit CK1δ 
and Chk1, finally resulting in stabilization of the p53 pathway (Huart et al., 2013). In 

addition, the Clk-specific inhibitor TG003, a benzothiazole derivative (Muraki et al., 2004), 

has been described to inhibit Clk and CK1 isoforms in a mouse model for mechanical 

allodynia and thermal hyperalgesia (Kurihara et al., 2014). Based on structural similarity 

between N-(benzo[d]thiazol-2-yl)-2-phenylacetamide derivatives with CK1 inhibitory 

activity and 1-(benzo[d]thiazol-2-yl)-3-phenylureas which have been designed as Aβ-

binding alcohol dehydrogenase (ABAD) inhibitors, several benzothiazolylphenylureas could 

be identified as dual-specific inhibitors, among them K690 and K691, presenting an 

interesting class of dual-specific anti-AD therapeutics (Benek et al., 2018).

Several diaryl-isoxazoles and -imidazoles have been described as dual inhibitors against 

p38α MAPK and CK1δ/ε. Whereas PF-670462 (4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-

imidazol-4-yl]-pyrimidin-2-ylamine) possesses only poor CK1 isoform selectivity 

compound PF-4800567 exhibits a much stronger inhibition of CK1ε than CK1δ (Badura et 

al., 2007; Walton et al., 2009).

Seerden and colleagues could demonstrate structure-activity relationship of 4-(40-

fluorophenyl)imidazoles as specific inhibitors of p38α MAPK, CK1δ, or JAK2 with IC50 

values lower than 100 nM (Seerden et al., 2014).

In addition, substituted isoxazoles 1 and 2 with the typical vicinal pyridin-4-yl/4-F-phenyl 

pharmacophore (Peifer et al., 2009), which have been originally generated and characterized 

as ATP-competitive inhibitors for p38α MAPK (IC50 p38α MAPK 1 = 0.45 μM and p38α 
MAPK 2 = 2.2 μM) (Peifer et al., 2007; Peifer et al., 2008), exhibited significant inhibition 

of CK1δ at 10 μM. Molecular modeling of compound 1 resulted in an optimizing strategy to 

develop (E)-3-(2,4-dimethoxy-phenyl)-N-(4-[5-(4-fluoro-phenyl)-2-methylsulfanyl-3H-

imidazol-4-yl]-pyridin-2-yl)-acrylamide (compound 17) and (E)-3-(2,4-dimethoxy-phenyl)-

N-(4-[5-(4-fluoro-phenyl)-2-methanesulfinyl-3H-imidazol-4-yl]-pyridin-2-yl)-acrylamide) 

(compound 18) as dual-specific inhibitors with high selectivity toward CK1δ at an ATP 

concentration of 100 μM (compound 17: IC50 p38α MAPK = 19 nM, IC50 CK1δ = 4 nM, 

IC50 CK1ε = 73 nM; compound 18: IC50 p38α MAPK = 41 nM, IC50 CK1δ = 5 nM, IC50 

CK1ε = 447 nM) (Peifer et al., 2009).

Recently, 3-(2,5-dimethoxyphenyl)-N-(4-(5-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-4-

yl)-pyridin-2-yl)-propanamide (compound 11b) and 4-(2,5-dimethoxyphenyl)-N-(4-(5-(4-

fluorphenyl)-2-(methylthio)-1H-imidazol-4-yl)-pyridin-2-yl)-1-methyl-1H-pyrrole-2-

carboxamide (compound 16b) have been developed with high specificity toward CK1δ 
(compound 11b: IC50 CK1δ = 4 nM, IC50 CK1ε = 25 nM, IC50 p38α MAPK = 10 nM), 16b 

(IC50 CK1δ = 8 nM, IC50 CK1ε = 81 nM, p38α MAPK = 10 nM) and remarkable efficacy 

for inhibiting the growth of various pancreatic tumor cell lines (Halekotte et al., 2017).

In order to develop a CK1δ/ε-specific inhibitor able to cross the blood-brain-barrier (BBB) 

structure-based drug design resulted in synthesis of PF-5006739 (4-{4-(4-

fluorophenyl)-1-[1-(1,2-oxazol-3-ylmethyl)piperidin-4-yl]-1H-imidazol-5-yl}pyrimidin-2-
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amine), exhibiting an IC50 value of 3.9 nM for CK1δ and 7 nM for CK1ε and showing 

centrally mediated delay of the circadian rhythm in animal models (Wager et al., 2014).

Furthermore, N-(1H-pyrazol-3-yl)-quinazolin-4-amines have been developed to specifically 

inhibit CK1δ/ε. Compounds 3c and 3d exhibited good binding interactions with CK1δ/ε and 

could therefore serve for optimizing their ability to specifically inhibit CK1δ/ε (Karthikeyan 

et al., 2017).

Finally, natural products with inhibitory activity against CK1δ/ε, like 

chloromethylhalicyclamine B, isolated from the marine sponge Acanthostrongylophora 
ingens, allow for the development of highly active CK1δ/ε-specific inhibitors, structurally 

different to the inhibitors known so far (Esposito et al., 2016).

Since SMIs often exhibit low bioavailability, off-target effects, and severe side effects, there 

are only some reports demonstrating biological activity of CK1δ-specific inhibitors in 

animal models (Table 6). Therefore, interest in identification and validation of synthetic 

peptides able to inhibit CK1δ kinase activity or to block the interaction of CK1δ with 

cellular proteins has increased remarkably.

In this context a peptide library based on the amino acid sequences of human CK1δ TV1 

and 2 was recently used to determine the dominant contacts of the interaction surface 

between α-tubulin and CK1δ. Peptide P39 (also named peptide δ−361 = peptide sequence 

starting at CK1δ amino acid 361) showed the strongest interaction with GST-α-tubulin. 

Furthermore, binding of δ−361 to α-tubulin also resulted in selective inhibition of CK1δ-

mediated phosphorylation of GST-α-tubulin, whereas phosphorylation of α-casein was not 

affected. In cells, δ−361 is able to disturb the CK1δ/α-tubulin interaction, finally leading to 

microtubule destabilization and cell death (Kruger et al., 2016).

Previously, interaction of CK1 isoforms with the DEAD-box RNA helicase DDX3X has 

been reported to result in stimulation of CK1 kinase activity and Wnt signaling (Cruciat et 

al., 2013). Moreover, Wnt-associated mutations of DDX3X can be associated with 

medulloblastoma. Using a CK1δ/ε-derived peptide library to fine-map the interaction 

domains for DDX3X on CK1δ and ε, several CK1δ- or ε-derived peptides were identified 

being able to interact with DDX3X, among them peptides δ−1, δ−41, ε−1, and ε−41. 

Furthermore, in vitro kinase reactions revealed the ability of peptides δ−1, δ−41, and ε−41 

(but not ε−1) to block the activation of CK1δ/ε by DDX3X, probably due to inhibition of 

the activating interaction of DDX3X with CK1δ/ε. Furthermore, peptides δ−1, δ−41, and ε
−41 were able to inhibit stimulation of CK1 kinase activity in cell culture. Considering that 

mutations in DDX3X identified in medulloblastoma patients increase the activity of CK1 in 

living cells, leading to aberrant stimulation of CK1-mediated pathways, such as Wnt/β-

catenin and Hh signaling, the identified interaction-blocking peptides could provide a 

powerful tool for new therapeutic therapy concepts for the treatment of Wnt/β-catenin- or 

Hh-driven cancers (Dolde et al., 2018).

Recently, a peptide microarray was also used for mapping the interaction regions within 

intrinsically disordered regions of human Axin 1, a scaffolding protein playing central roles 

in Wnt signaling. The interaction domains necessary for Axin 1 to interact with CK1δ/ε 
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were identified and it could be shown that Axin 1 and Dvl compete for CK1δ/ε-mediated 

site-specific phosphorylation thereby pointing to an important role of Axin 1 in modulating 

phosphorylation of Dvl by CK1δ/ε and activation of the canonical Wnt pathway (Harnos et 

al., 2018).

While selective inhibition of CK1δ is desired in the case of cancer or neurodegenerative 

disease, in the context of regenerative processes also activation of CK1 kinase activity could 

be of therapeutic benefit. For instance, kinase activity of CK1δ and ε has been shown to be 

essential in a model for neuronal regeneration (Bischof et al., 2011). However, no small 

molecule-based activators of CK1δ have been available so far, and while promising results 

have initially been published reporting the activation of CK1α by the small molecule 

pyrvinium (Thorne et al., 2010) a later performed study disproved the described effects. 

Instead of directly activating CK1α pyrvinium mediates its effects via a complex mechanism 

involving down-regulation of PKB/Akt and activation of GSK3 (Venerando et al., 2013).

10. Concluding remarks

Numerous studies mainly performed within the last two decades provide strong evidence 

demonstrating that CK1 isoform δ is a key player in several cellular signal transduction 

pathways. Consequently, if control mechanisms regulating expression and activity of CK1δ 
are rendered ineffective, dysregulation of CK1δ can contribute to the pathogenesis of certain 

diseases. Due to this reason numerous CK1-specific small molecule inhibitors have been 

developed in recent years. Although the development of CK1 isoform-specific inhibitors 

remains a major challenge to the scientific community, some compounds already showed 

promising results in cell culture- and animal-based studies analyzing efficacy e.g. for the 

treatment of cancer or neurodegenerative diseases.
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Abbreviations:

A alanine

aa amino acids

ABAD Aβ-binding alcohol dehydrogenase

AD Alzheimer’s disease

AIB1 amplified in breast cancer 1

AKAP A-kinase anchor protein

ALS amyotrophic lateral sclerosis

APC adenomatous polyposis coli

APC/C Cdh1 anaphase-promoting complex/cyclosome in complex with 

activator protein CDH1

ARF GAP1 ADP-ribosylation factor GTPase-activating protein

Arg or R arginine

ARNT aryl hydrocarbon receptor nuclear translocator

Asn or N asparagine

Asp or D aspartic acid

ATM ataxia telangiectasia mutated

Atoh1 proneural basic helix-loop-helix (bHLH) transcription 

factor

ATP adenosine triphosphate

Aβ beta-amyloid

BACE1 β-secretase

BBB blood-brain-barrier

bHLH basic helix-loop-helix

BLAST basic local alignment search tool

BLOC-1 biogenesis of lysosome-related organelles complex-1

BMAL1 Brain and Muscle ARNT-Like 1

BYSL bystin-like protein

CAT catalytical

Xu et al. Page 31

Gene. Author manuscript; available in PMC 2021 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CCdh1 cyclosomecadherin1

CDC cell division cycle

CDK cyclin-dependent kinase

CG-NAP Golgi N-kinase anchoring protein

Chk1 checkpoint kinase 1

Chk2/Cds1 checkpoint kinase 2/replication checkpoint kinase Cds1

Ci cubitus interruptus

Ci-155 full-length cubitus interruptus

CiA cubitus interruptus positive transcription factor

CiR cubitus interruptus repressive transcription factor

CK1BP casein kinase 1 binding protein

CK1α/γ1–3/δ/ε casein kinase 1 alpha/gamma 1–3/delta/epsilon

CKL2 CDC-like kinase 2

CLL chronic lymphocytic leukemia

C-lobe C-terminal lobe

CLS centrosome localization signal

CPI-17 protein kinase C-potentiated myosin phosphatase inhibitor 

of 17 kDa

CPP conditioned place preference

CREB cyclic AMP response element-binding protein

CRY cryptochrome

CSNK1D casein kinase 1 delt

C-terminus carboxy-terminus

Cx43 connexin-43

Cys or C cysteine

DARPP-32 dopamine and cAMP-regulated neuronal phosphoprotein 

32

dCK deoxycytidine kinase

DD dimerization domain

DDX3X DEAD-box RNA helicase 3 X-linked
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Dhh desert hedgehog

Dma1 E3 ubiquitin-protein ligase Dma1

Dnmt1 DNA methyltransferase 1

DPC dystrophin-associated protein complex

Dpr1a dapper1a

DS Down syndrome

DUF1669 domain of unknown function 1669

Dvl dishevelled

EB1 microtubule plus-end-binding protein 1

eIF6/Tif6p49 eukaryotic initiation factor 6

Emi2 endogenous meiotic inhibitor 2

ENP1 essential nuclear protein 1

ePK eukaryotic protein kinase

ERα estrogen receptor α

FAM83 family with sequence similarity 83

FASPS familial advanced sleep phase syndrome

FoxG1 forkhead box G1

FTLD frontotemporal lobar degeneration

Fzd frizzled

Gli glioma-associated oncogene

Gln glutamine

Glu glutamic acid

Gly or G glycine

GSK3β glycogen synthase kinase 3β

GST glutathione S-transferase

GVBs granulovacuolar degeneration bodys

Hh hedgehog

HIF-1α hypoxiainducible factor 1α

hnRNP A1 heterogeneous nuclear ribo-nucleoprotein A1
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HPI hydrophobic pocket I

HRII hydrophobic region II

Hsp90/70 heat shock protein 90/70

HTP high-throughput

Huwe1 E3 ubiquitin-protein ligase Huwe1

IC50 half maximal inhibitory concentration

ICP0 human herpes virus (HHV) E3 ubiquitin ligase

IFNAR1 interferon alpha/beta receptor 1

Ihh Indian hedgehog

IKK inhibitor of κB (IκB) kinase

Ile or I isoleucine

ISC intestinal stem cell

IWP inhibitor of Wnt production

kcat catalyst rate constant

KD kinase domain

KHD kinesin homology domain

Km Michaelis constant

LATS1/2 large tumor suppressor kinase 1/2

LEF-1 lymphocyte enhancer factor-1

Leu or L leucine

LRP lipoprotein receptor-related protein

LTP low-throughput

Lys or K lysine

M molar

m6A N6-methylation

Mam1 Monopolin complex subunit Mam1

MAP microtubule-associated protein

MAPK mitogen activated protein kinase

MAPT microtubule-associated protein tau
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MBP myelin basic protein

MBP myelin basic protein

MDM2 murine double minute 2 homolog

MEF mouse embryonic fibroblast

Met or M methionine

MESA mature-parasite-infected erythrocyte surface antigen

mGluR group I metabotropic glutamate receptor

MST1/2 mammal sterile-20 like kinase 1/2

mTNFα transmembrane tumor necrosis factor α

MTOC microtubule-organizing center

MTSS1 metastasis suppressor 1

NEDD4 neural precursor cell expressed developmentally down-

regulated protein 4

NFAT1 nuclear factor of activated T-cells 1

NFTs neurofibrillary tangles

N-lobe N-terminal lobe

NLS nuclear localization signal

nm23-H1 nucleoside diphosphate kinase A

Nop56 nucleolar protein 56

NPs neuritic plaques

N-terminus amino-terminus

p53 tumor protein 53

P-bodies processing bodies

PCP planar cell polarity

PD Parkinson’s disease

PDB protein data bank

PDC parkinsonism dementia complex of Guam

PET positron emission tomography

PER period circadian protein homolog
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PGC-1α proliferator-activated receptor γ co-activator 1α

Phe or F phenylalanine

PiD Pick’s disease

PKA protein kinase A

PKB/Akt protein kinase B

PKCa protein kinase C alpha

PKD2 protein kinase D2

Plk1 polo-like kinase 1

Porcn porcupine

PP1 protein phosphatase 1

PPND pallido-ponto-nigral degeneration

ppUL44 human cytomegalovirus phosphoprotein

Pro or P proline

PS-2 presenilin-2

pSer phospho-serine

PSP progressive supranuclear palsy

Ptch patched

pThr phospho-threonine

RanBPM Ran-binding protein in the microtubule-organizing center 

(MTOC)

RBC red blood cell

Rec11 meiotic recombination protein Rec11

Rec8 meiotic recombination protein Rec8

REGγ 11S regulatory particles, 28-kDa proteasome activator γ

RhoA Ras homolog family member A

RPL4/8/13 ribosomal protein L4/8/13

SCF skp cullin F-box containing complex

SCS sulfatide and cholesterol-3-sulfate

Ser or S serine
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Shh sonic Hedgehog (Shh)

Sid4 septation initiation protein sid4

Sid4 septation initiation protein Sid4

SMAD SMA/mothers against decapentaplegic

SMI small molecule inhibitor

Smo smoothened

SNAP25 synaptosomal nerve-associated protein 25

SPBs spindle pole bodies

SPRY2 sprouty2

Sre1N yeast sterol regulatory element-binding protein homolog

SRR-1 sensitivity to red light reduced 1

STAG3 stromal antigen 3

SV2A synaptic vesicle protein 2A

SV40 T-Ag simian virus 40 large T-antigen

SV40 simian virus 40

Swi6 chromatin-associated protein swi6

TAZ tafazzin

TDP-43 TAR DNA-binding protein of 43 kDa

TEAD TEA domain

TGN trans Golgi network

Thr or T threonine

TOP2A topoisomerase IIα

TOPOII-α topoisomerase II α

TPA 12-O-tetradecanoylphorbol-13-acetate

TV transcription variant

Tyr or Y tyrosine

UHRF1 ubiquitin-like containing PHD and RING finger domains 1 

protein

UVB ultraviolet B radiation
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Val valine

Vangl2 planar cell polarity protein Van Gogh-like 2

Vmax maximum enzyme reaction velocity

Wee1 Wee1 G2 checkpoint kinase

Wnt Wingless/Int-1

X any amino acid

Y any amino acid except serine or threonine

YAP yes-associated protein

β-TrCP beta-transducin repeat containing protein
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Fig. 1. 
Comparison of the amino acid sequences of three different CK1δ sequences in human, rat, 

and mouse. The alignment presented in (A) is followed by a display of the conserved 

regions, the quality, the consensus sequence as well as the occupancy of the alignment. The 

conservation as well as the quality is displayed with a color code ranging from yellow 

(highly conserved, good quality) to brown (poorly conserved, poor quality) (B). Alignments 

presented in panels A and B are shown starting from amino acid 372. The sequences are also 

displayed in a phylogenetic tree, indicating the relationship between the various CK1δ 
variants. The alignments as well as the phylogenic tree were generated using the alignment 

information from the Clustal Omega algorithm (Madeira et al., 2019) (C). TV, transcription 

variant.

Xu et al. Page 59

Gene. Author manuscript; available in PMC 2021 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Exon structure of the three transcription variants of CK1δ in humans. The stop codon 

position of each variant is marked with the asterisk. The information of TV1, TV2, and TV3 

can be found using the data bank NCBI (GI: 13097702, 16041786, and 1393428169). Bp, 

base pairs; TV transcription variant.
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Fig. 3. 
Predicted RNA folding structure of the polyadenylation motif and the flanking regions of 

TV1 and TV2 on exon 10 (A) as well as TV3 on exon 11 (B). The minimum free energy 

values for TV1/TV2 and TV3 are −28.70 kcal/mol and −16.03 kcal/mol, respectively. This 

might indicate that TV1 and TV2 are less polyadenylated compared to TV3 based on the 

observation that stable secondary structures decrease the polyadenylation of the specific site 

(Klasens et al., 1998).
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Fig. 4. 
Three-dimensional structure of human CK1δ. Representation of the three-dimensional 

structure of human CK1δ. The structure of the N-lobe mainly consists of β-sheet strands 

while the larger C-terminal lobe is mainly composed by α-helices and loop structures. 

Structural elements are labeled according to Xu et al. (1995). Domains and residues of 

functional importance are labeled accordingly. Within loop L-89 the DFG motif is located 

with its aspartate residue being crucial for kinase activity and enzymatic function. 

Identification of a tungstate binding domain, indicated by W1, led to the identification of a 

recognition motif for the binding of phosphorylated substrates. The position of the catalytic 

loop (L-67) is marked with the asterisk (Xu et al., 1995; Longenecker et al., 1996). The 

figure was created by using CK1δ crystallization data deposited in the protein data bank 

(PDB) with ID 6GZM (Minzel et al., 2018).
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Fig. 5. 
Detailed representation of secondary structure, functional domains, and functional amino 

acid residues in the kinase domain of human CK1δ. Localization of structural elements 

building the CK1δ kinase domain is shown for α-helices, β-sheets, turns, and loop-

structures. Nomenclature of elements is indicated as first published by Xu et al. (1995). 

Structures not described in the initial publication are shown in grey. Domains of functional 

importance are marked with red boxes while amino acid residues involved in ATP binding or 

substrate recognition are marked with yellow or green background, respectively. Because 

human CK1δ TV1, 2, and 3 are fully conserved in the N-terminal domain and the kinase 

domain, the depicted protein sequence is representative for all three variants. Unfortunately, 

data regarding three-dimensional structure of the C-terminal domain is not available. CLS, 

centrosome localization signal; KHD, kinesin homology domain; NLS, nuclear localization 

signal; TV, transcription variant.
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Fig. 6. 
Posttranslational modification of human CK1δ. Identified posttranslational modifications of 

CK1δ TV1 are indicated at their reported positions. Because most modifications have been 

reported for the C-terminal domain, this domain is depictured in a stretched presentation 

compared to the kinase domain. In the case of phosphorylation the distinction is made 

between reports of low-throughput studies and high-throughput studies. The figure was 

created based on information provided for CK1δ by PhosphoSitePlus® (Hornbeck et al., 

2015). HTP, high-throughput studies, LTP, low-throughput studies, TV, transcription variant.
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Fig. 7. 
The three transcription variants of CK1δ show significant differences in their kinetic 

parameters and their (auto-)phosphorylation status. Catalytical (CAT) enzyme activity 

[nmol/min/mg] was used as readout after having performed in vitro kinase reactions using 

radioactively labeled ATP to identify the amount of phosphorylated α-casein (A) and β-

catenin (GST-β-catenin1–181) (B) of the three identified CK1δ TVs. Statistically significant 

differences between the whole curves of the TVs were tested by a Kruskal-Wallis test using 

an uncorrected Fisher’s LSD test as follow-up. * indicates p ≤ 0.05, ** indicates p ≤ 0.01, 

and *** indicates p < 0.001. (C) Analysis of the phosphorylation status of the different 

CK1δ transcription variants after autophosphorylation by two dimensional phosphopeptide 

analysis. The phosphopeptide analysis of TV3 clearly shows differences in major and minor 

phosphopeptides compared to the phosphopeptide maps of TV1 and TV2. Phosphopeptides 

A-E are present in all three CK1δ transcription variants, whereas phosphopeptides L, K, J, 

and M were only observed for TV1. Phosphopeptides O and N are only present in TV3. 

Figure panels in (C) showing phosphopeptide maps of CK1δ TV1 and TV2 are a derivative 

of “Fig. 2” published in Bischof et al. (2012), used under CC BY 4.0 (http://

creativecommons.org/licenses/by/4.0/). CAT, catalytical; TV, transcription variant.
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Fig. 8. 
Expression trend frequency of different cancer types. Frequencies of patients following each 

expression trend for CK1δ are presented for all relevant cancer types. For each patient, log2 

fold-change (log2FC) values greater than zero were considered to follow an over-expression 

trend, less than zero to follow an under-expression trend. Patients with log2FC = 0 were 

excluded from the dataset. Note that all patients are included in this graphic, irrespective of 

statistical significance of the trend. Data is based on the BioXpress online tool (Wan et al., 

2015; Dingerdissen et al., 2018).
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Table 2

Km [μg] and Vmax [nmol/min/mg] of CK1δ TV1, TV2, and TV3 using α-casein as well as β-catenin as 

substrates. Values were calculated using a non-linear Michaelis-Menten fit. Km, Michaelis constant; TV, 

transcription variant; Vmax, maximum enzyme reaction velocity.

CK1δ variant α-Casein β-Catenin

Km [μg] Vmax [nmol/min/mg] Km [μg] Vmax [nmol/min/mg]

TV1 15.54 236.02 0.8121 3.63

TV2 17.21 548.88 0.2527 2.37

TV3 24.86 576.60 0.3885 7.33
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Table 3

CK1δ-specific substrates. Substrates reported for CK1δ-targeted phosphorylation (in vitro and in vivo) are 

listed and grouped according to their associated functions. Only substrates reported for human CK1δ or 

appropriate orthologous proteins (e.g. in yeast species) are included.

Substrates References

Cancer-associated proteins:

 – Adenomatous polyposis coli (APC) (Gao et al., 2002)

 – Axin (Gao et al., 2002)

 – β-Catenin (Amit et al., 2002)

 – Full-length cubitus interruptus (Ci-155) (Price and Kalderon, 2002)

 – Dishevelled (Dvl) (Gao et al., 2002)

 – Nucleoside diphosphate kinase A (nm23-H1) (Garzia et al., 2008)

 – Dapper1a (Dpr1a) (Teran et al., 2009)

 – Fat (Sopko et al., 2009)

 – Deoxycytidine kinase (dCK) (Smal et al., 2010)

 – Yes-associated protein (YAP) (Zhao et al., 2010)

 – Metastasis suppressor 1 (MTSS1) (Zhong et al., 2013)

 – Neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) (Liu et al., 2014)

 – Sprouty2 (SPRY2) (Yim et al., 2014)

Control of mitotic or meiotic processes:

 – Meiotic recombination protein Rec8 (Rec8) (Ishiguro et al., 2010)

 – Endogenous meiotic inhibitor 2 (Emi2) (Isoda et al., 2011)

 – Wee1 (Penas et al., 2014)

Cytoskeleton-associated and scaffolding proteins:

 – Annexin II/lipocortin II (Gao et al., 2000)

 – Desmoglein 2 (Gao et al., 2000)

 – Keratin 17 (Gao et al., 2000)

 – Microtubule-associated protein 1A (MAP1A) (Wolff et al., 2005)

 – Microtubule-associated protein 4 (MAP4) (Behrend et al., 2000b)

 – Stathmin (Behrend et al., 2000b)

 – Tau (Behrend et al., 2000b)

 – α/β-Tubulin (Behrend et al., 2000b)

 – γ-Tubulin (Behrend et al., 2000b)

 – Connexin-43 (Cx43) (Cooper and Lampe, 2002)

 – Ras homolog family members A and B (Kawakami et al., 2008)

 – End-binding 1 (EB1) (Zyss et al., 2011)

 – Sid4 (Johnson et al., 2013)

 – Ran-binding protein in the microtubule-organizing center (RanBPM) (Wolff et al., 2015)

DNA-/RNA-associated proteins:

 – Chromatin-associated protein swi6 (Swi6) (Ho et al., 1997)

 – Heterogeneous nuclear ribo-nucleoprotein A1 (hnRNP A1) (Gao et al., 2000)

 – Putative RNA helicase (Gao et al., 2000)
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Substrates References

 – Nuclear factor of activated T cells 1, 2, and 4 (NFAT1, 2, 4) (Okamura et al., 2004)

 – Forkhead box G1 (FoxG1) (Regad et al., 2007)

 – Topoisomerase Iiα (TOP2A) (Grozav et al., 2009)

 – DNA methyltransferase 1 (Dnmt1) (Sugiyama et al., 2010)

 – Ubiquitin-like containing PHD and RING finger domains 1 protein (UHRF1) (Chen et al., 2013)

 – Yeast sterol regulatory element-binding protein homolog (Sre1N) (Brookheart et al., 2014)

Golgi- and vesicle-associated proteins:

 – ADP-ribosylation factor GTPase-activating protein (ARF GAP1) (Yu and Roth, 2002)

 – Snapin (Wolff et al., 2006)

 – Protein kinase D2 (PKD2) (von Blume et al., 2007)

 – Synaptic vesicle protein 2A (SV2A) (Zhang et al., 2015a)

Mediators of cellular stress:

 – Tumor protein 53 (p53) (Knippschild et al., 1997)

 – Murine double minute 2 homolog (Mdm2) (Winter et al., 2004)

 – Hypoxia-inducible factor 1α (HIF-1α) (Kalousi et al., 2010)

Proteins associated to neurodegenerative processes:

 – Presenilin-2 (PS-2) (Walter et al., 1998)

 – Cyclin-dependent kinase 5 (CDK5) (Sharma et al., 1999)

 – α-Synuclein (Okochi et al., 2000)

 – β-Secretase (BACE1) (Walter, Fluhrer et al. 2001)

 – Parkin (Yamamoto et al., 2005)

 – Cyclic AMP response element-binding protein (CREB) (Shanware et al., 2007)

 – Myelin basic protein (MBP) (Kawakami et al., 2008)

 – TAR DNA-binding protein of 43 kDa (TDP-43) (Nonaka et al., 2016)

Receptors and receptor-associated proteins:

 – Transmembrane tumor necrosis factor α (mTNFα) (Watts et al., 1999)

 – Amplified in breast cancer 1 (AIB1) (Giamas et al., 2009)

 – Estrogen receptor α (Erα) (Giamas et al., 2009)

 – Adiponectin (Xu et al., 2015)

Regulation of circadian rhythm:

 – Period circadian protein homolog 1–2 (Camacho et al., 2001)

 – Cryptochromes 1 (CRY1) and 2 (CRY2) (Walton et al., 2009)

 – Proliferator-activated receptor γ co-activator 1α (PGC-1α) (Li et al., 2011b)

Ribosome-related proteins:

 – Nucleolar protein 56 (Nop56) (Gao et al., 2000)

 – Ribosomal proteins L4 (RPL4), L8 (RPL8), L13 (RPL13) (Gao et al., 2000)

 – Eukaryotic initiation factor 6 (eIF6)/Tif6p49 (Biswas et al., 2011)

 – Essential nuclear protein 1 (ENP1)/bystin-like protein (BYSL) (Zemp et al., 2014)

 – LTV1 (Zemp et al., 2014)

Viral proteins:

 – Human cytomegalovirus phosphoprotein (ppUL44) (Alvisi et al., 2011)

 – Human herpes virus (HHV) E3 ubiquitin ligase (ICP0) (Chaurushiya et al., 2012)
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Substrates References

 – Simian virus 40 large T-antigen (SV40 T-Ag) (Hirner et al., 2012)
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