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ABSTRACT
The Ran pathway has a well-described function in nucleocytoplasmic transport, where active Ran
dissociates importin/karyopherin-bound cargo containing a nuclear localization signal (NLS) in the
nucleus. As cells enter mitosis, the nuclear envelope breaks down and a gradient of active Ran
forms where levels are highest near chromatin. This gradient plays a crucial role in regulating
mitotic spindle assembly, where active Ran binds to and releases importins from NLS-containing
spindle assembly factors. An emerging theme is that the Ran gradient also regulates the acto-
myosin cortex for processes including polar body extrusion during meiosis, and cytokinesis. For
these events, active Ran could play an inhibitory role, where importin-binding may help promote
or stabilize a conformation or interaction that favours the recruitment and function of cortical
regulators. For either spindle assembly or cortical polarity, the gradient of active Ran determines
the extent of importin-binding, the effects of which could vary for different proteins.
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In addition to its well-described function in nucleocyto-
plasmic transport, the Ran gradient regulates mitotic
spindle assembly and cortical actomyosin-dependent
events. These cortical processes include cellularization,
polar body extrusion and cytokinesis. The mechanisms
by which the gradient facilitates spindle assembly are
well-described. However, importin-α and/or -β also can
localize to the cortex and regulate the function of cortical
proteins [Kiyomitsu & Cheeseman 2013, 1,2]. In this
review we describe how during division, the Ran gradient
plays complementary roles to spatially and temporally
regulate spindle assembly and cortical regulation.

Nucleocytoplasmic transport is the best-known
function for the small GTPase Ran and importins [3].
The role of karyopherins in nucleocytoplasmic trans-
port has been reviewed extensively [e.g. 4–10]. If
a message needs to be relayed to the nucleus, or if
proteins or RNA need to be nuclear-localized, the
nuclear envelope poses a logistical challenge [4,10,11].
The nuclear pore, a large multicomplex structure that
spans the double membrane of the nucleus, serves as
a selective gateway to allow for communication
between the cytoplasm and the nucleus. Karyopherins,
which includes the family of importins, are able to
traverse the nuclear pore to bring proteins into or out
of the nucleus [6]. Broadly speaking, the process of
nucleocytoplasmic shuttling involves the interplay
between importins, Ran and exportins [10]. Importins
bind to proteins through their nuclear localization

signal (NLS) and transport them into the nucleus.
Active Ran triggers their dissociation causing NLS-
proteins to remain in the nucleus while importins
return to the cytoplasm [4–10]. In addition, some pro-
teins bind to exportins and Ran-GTP for transport out
of the nucleus.

This review highlights recent data describing the roles
of Ran and importins beyond their transport functions.
Many proteins that regulate mitotic spindle assembly and
cytokinesis have NLS sequences that may regulate their
activity via importin-binding (Table 1). Collectively, stu-
dies support a model where the Ran/importin gradient is
an elegantly balanced system with dual control of pro-
cesses close to and away from chromatin – a biological
example of the principle of yin and yang. We aim to
highlight emerging evidence supporting that the func-
tions of Ran-GTP at the two ends of the gradient are
interrelated and complementary functions of one system.
Although much remains to be explored, we postulate that
the Ran gradient acts as a sliding scale. Our current
knowledge supports Ran-GTP as a spatial and temporal
cue that influences a variety of processes along the length
of its gradient across the cell.

Ran-mediated regulation of the mitotic spindle

The regulation of mitotic spindle assembly is one of the
prevalent non-transport functions of importins. The
Heald group showed that a gradient of active Ran
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forms in the vicinity of chromatin, which controls the
release of importin-bound spindle assembly factors
[SAFs; 12–14]. In interphase cells, RCC1, the RanGEF
(guanine nucleotide exchange factor), is enriched in the
nucleus, and RanGAP (GTPase-activating protein), is
in the cytoplasm [10,15]. Their differential localization
creates a gradient of active Ran that is high in the
nucleus and low in the cytoplasm. This gradient persists
after nuclear envelope breakdown, as RCC1 remains
associated with chromatin [13, 16, Figure 1(a)].
Importin-α binds to the classical NLS of SAFs and
serves as an adaptor for importin-β via its autoinhibi-
tory IBB (importin-β binding) domain [10,11,15,17–
19]. Importin-β-binding causes a conformational
change that displaces the IBB and relieves autoinhibi-
tion to permit cargo-binding [18–20]. The working
model is that binding of the α/β heterodimer impedes
SAF function by hindering binding to proteins required
for their function in bipolar spindle assembly. When
Ran-GTP binds to the importin-SAF complex in the
vicinity of chromatin, the SAF is released to carry out
its function [7,10,21]. As a result, cells have a gradient

of SAF-bound importins that is inverse, although not
necessarily proportional to the active Ran gradient
(Figure 1(a,b)).

The Ran-GTP gradient was demonstrated in several
model systems by the Heald lab [12,13,16]. They gen-
erated a fluorescence resonance energy transfer (FRET)
probe termed Rango (Ran-regulated importin-β cargo)
that indirectly shows Ran-GTP levels. Strikingly, they
showed that a gradient of active Ran persists after
nuclear envelope breakdown in mitotic Xenopus laevis
egg extracts and in HeLa cells [13,16]. In both systems,
the Ran-GTP gradient is steep with high concentra-
tions near chromatin, and lower concentrations over
the length of the spindle, followed by a sharp decrease
at spindle poles [13,16]. Importantly, the steepness of
the gradient is not the same in every cell, and at least
partly depends on ploidy, with chromosomal gain driv-
ing a steeper gradient [22]. It will be interesting to
determine how the regulation of RCC1 or RanGAP
gene expression compares between different cell
types, which could indicate different threshold require-
ments for the Ran-regulation of spindle assembly. For
example, this pathway could be more dominant in
aneuploid cancer cells to help them avoid mitotic
catastrophe.

Several reviews have highlighted how the Ran gra-
dient regulates the function of SAFs [e.g. 23,14].
Spindle assembly requires the coordinated function of
MAPs (microtubule associated proteins) required for
microtubule nucleation, stability, bundling and/or
motors to generate force [23,24]. As cells enter mitosis,
centrosomes mature, nucleate microtubules and sepa-
rate. The length and kinetics of microtubules must be
controlled to ensure the formation of stable microtu-
bule attachments at kinetochores, which is necessary
for proper chromosome alignment and subsequent
separation as cells exit mitosis [25,26]. Factors such as
TPX2, NuMA and HURP, which regulate microtubule
nucleation, bundling and stability, are all negatively
regulated by importin-binding [14,23]. TPX2 is directly
inhibited by importin-α of the heterodimer [27–29],
while NuMA is sterically hindered by importin-β of
the heterodimer [30–32], and HURP is directly inhib-
ited by importin-β-binding [33, Figure 2]. Thus, differ-
ent SAFs are regulated differently by importin-α,
importin-β, or the heterodimer. Since each could have
unique contact sites when bound to cargo, their effect
on intra- or intermolecular interactions could be dif-
ferent [7,15,30,34]. This fits with the concept that not
all SAFs have the same spatial or temporal functional
requirements [35].

Different SAFs function in different locations of the
cell for mitotic spindle assembly. The mitotic spindle

Table 1. Ran-GTP regulation of proteins through importins.

Protein Protein Function
Interacting
Importin Reference

RCC1 RanGEF Importin α3
Importin β1

[101,102]

HURP Importin β1 [33]
Kid Importin α1

Importin β1
[103,104]

NuMA Spindle Assembly Factor Importin α1
Importin β1

[30–32]

TPX2 Importin α1
Importin β1

[27–29]

XCTK2 Importin α1
Importin β1

[105]

Cdc7 Serine/threonine kinase Importin α2
Importin β1

[39,106]

PTHrP Various functions Importin α1
Importin β1

[40,107]

Snail Transcription factor Importin α1
Importin α3
Importin α5
Importin β1

[41]

TRF1 Regulator of telomere length Importin α1
Importin β1

[42]

Ect2 RhoGEF Importin α*
Importin β1

[83,92]

Anillin Scaffold for the contractile ring Importin α
Importin β1
Importin β2

[1,58,80]

Cyk-4/
MgcRacGAP

Forms central spindle Importin α1
Importin β1

[88]

MKLP1 Forms central spindle Unknown [87,90,91]
GAL4 Transcription factor Importin α1

Importin β1
[43,108]

N-WASP Activator of Arp2/3 Importin α1
Importin α5

[51]

GCK-III Subgroup of Ste20-like serine/
threonine kinases

Unknown [84]

*Ect2 contains a classic NLS, and though direct importin-α interaction was
not demonstrated, heterodimer interaction was inferred through importin-
β binding.
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occupies a large proportion of the cell, with the spindle
poles positioned away from chromatin where Ran-GTP
levels are highest [13]. Some SAFs are required close to
chromatin for chromosome alignment, such as HURP
and the chromokinesin Kid, while others function at
the poles and/or over a larger distance, such as XCTK2,
TPX2 and NuMA for minus end stability and/or micro-
tubule nucleation [12,35,36]. The spatial and temporal
control of SAFs could be achieved through their differ-
ent binding affinities for importin-α, -β, or the

heterodimer, or steepness of the Ran-GTP gradient.
Our understanding of the spatial requirements for the
Ran/importin gradients could benefit from computa-
tional models of spindle assembly [37,38]. Further,
visualizing these gradients in different cell types and
cell cycle stages would help verify and improve these
models, and predict where they function.

The formation of importin-SAF complexes also
could vary depending on intra-/intermolecular inhibi-
tion or post-translational modifications. A recent study
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Figure 1. The Ran gradient regulates different stages of mitosis. (a) Following nuclear envelope breakdown, active Ran (Ran-GTP)
levels remain as a gradient that decreases from chromatin towards the cortex (orange gradient – dark orange is low) [13,16]. RCC1,
the RanGEF that generates active Ran, remains associated with chromatin, while RanGAP generates inactive Ran (Ran-GDP) and is
cytosolic [12]. There is an inverse gradient of importins bound to NLS-containing proteins, which is highest near the cortex (blue
gradient – dark blue is high) [4]. (b) Cartoon schematics show a cell in metaphase (left) and anaphase (right) with the relative
locations of active Ran (orange gradient) and importin-bound proteins (blue gradient) [13,16]. The legend indicates the components
of the cell with chromatin (red), centrosome (black), central spindle microtubules (green), astral microtubules (purple), kinetochore
microtubules (grey) and contractile proteins (pink). During metaphase, the spindle is controlled by the high levels of Ran-GTP around
chromatin, while in anaphase, importin-binding facilitates the cortical localization of proteins such as anillin to control polarity [1,12].
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showed that a fraction of importin-α is palmitoylated
and associated with the plasma membrane [2]. Hyper-
palmitoylation caused a decrease in spindle and nuclear
size, suggesting that sequestering importin-α at the
membrane reduces the cytosolic pool regulating SAF
function and nuclear import [2]. However, hyper-
palmitoylation did not prevent a bipolar spindle from
forming, suggesting that many SAFs remained func-
tional likely because they are regulated directly by

importin-β. This also raises the question as to whether
importin-β binds to palmitoylated -α. This study high-
lights the unique localization and/or functions of
importin-α, and it would be interesting to understand
the different threshold requirements for the function of
importin-α or -β as monomers vs. the heterodimer.

An increasing number of studies is requiring us to
re-evaluate the conventional view on how the Ran/
importin system regulates NLS-containing proteins.
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Figure 2. Ran regulates proteins required for spindle assembly and cortical polarity. During metaphase, the Ran gradient regulates
spindle assembly in the vicinity of chromatin. Among other proteins, importin-binding inhibits the function of TPX2, NuMA and
HURP (all in light yellow), although the mechanism by which this occurs differs for each protein [14,23]. The microtubule-bundling
activity of HURP is directly inhibited by importin-β (blue) binding [33], whereas the α/β heterodimer inhibits TPX2 and NuMA. In the
heterodimer, importin-β sterically hinders the microtubule binding site of NuMA [30–32]. Importin-α (pink) directly inhibits TPX2, but
requires importin-β for TPX2-binding [27–29]. The release of SAFs from importins by Ran-GTP (purple) permits them to carry out
their function in spindle assembly [12]. The spatial location of cargo release from importins would depend on various factors
including binding affinity to importins (-α, -β or the heterodimer) and post-translational modifications. Thus, where the importin and
Ran gradients are functionally relevant, as well as the gradient steepness and length-scale of these gradients could be unique to
each NLS-containing cargo. During anaphase, importin-binding regulates cortical proteins [1]. In particular, anillin is a conserved
protein that crosslinks components of the contractile ring for cytokinesis. The C-terminus of anillin contains a RhoA-GTP Binding
Domain (RBD; red), a C2 domain (yellow), and a Pleckstrin homology domain (PH; green) [95]. RhoA-GTP (dark blue) binds to the
RBD, causing a conformational change that relieves autoinhibition of the NLS in the neighbouring C2 domain. This domain also
contains binding sites for phospholipids, microtubules and Ect2, the GEF required for RhoA activation. Importin-β-binding facilitates
cortical recruitment, by stabilizing a conformation that may favour these other interactions [1]. We propose that other NLS-
containing contractile proteins could similarly be regulated by importin-binding.
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For example, several studies showed that the importin-
β-mediated nuclear localization of proteins such as
Cdc7 [39], PTHrP [40], Snail [41] and TRF1 [42] is
inhibited by importin-α. Another study showed that
importin-α acts as a coactivator of the transcriptional
activator GAL4 when it is bound to DNA [43]. Thus,
importins can play negative or positive roles in differ-
ent contexts, and the binding of importin-α and/or -β
does not have to impede the function of a target pro-
tein, but rather could facilitate conformational changes
that are favourable for binding to other partners and/or
function. As discussed in the following sections, the
location of a particular protein along the Ran gradient
could also correlate with whether importins positively
vs. negatively regulate protein function.

Ran-mediated regulation of the cortex

Ran in meiosis

The Ran-GTP gradient also regulates polar body formation
in mouse oocytes. During meiosis, polar bodies extrude
complements of DNA to reduce ploidy [reviewed in 44,
45]. The small, acentrosomal meiotic spindle forms near
the cortex and positions the chromosomes for segregation
into the polar body (Figure 3(a)). Prior to extrusion of the
polar body, the cortex is polarized by the formation of an
F-actin cap [44,45]. Dumont et al. [46] used the previously
mentioned FRET probe Rango to show that a Ran-GTP
gradient forms around meiotic DNA in the mouse oocyte.
In a separate study, Deng et al. [47] showed that Ran-GTP
is required to establish cortical polarity and induce the
formation of the cortical F-actin cap. By injecting beads
coated with bacterial or yeast plasmid DNA into MII
oocytes, they found that the cap could still form in response
to any type of DNA. Interestingly, the elicited response was
both DNA-dosage and -distance dependent. Both the
amount of input DNA and the distance of DNA to the
cortex correlated with the magnitude of response; one
DNA bead induced a smaller cortical cap than three
beads, and three DNA beads could elicit a response within
10 µm of the cortex, less so at 20 µm, and not at 30 µm.
Thus, the authors hypothesized that the Ran-GTP gradient
helps cells sense chromatin position by serving as
a molecular ruler.

Additional studies revealed that there could be crosstalk
between Ran and Cdc42, although they did not explore the
mechanism by which this occurs [48]. Active Cdc42
recruits N-WASP to regulate Arp2/3 for the nucleation of
actin filaments that form the cortical cap [49]. N-WASP
has an NLS and it would be interesting to determine if it
can be directly regulated by importin-binding [50,51].
Burdyniuk et al. [52] proposed a unique role for Ran-

GTP in regulating F-actin for chromosome alignment in
starfish oocytes. They found that an Arp2/3-nucleated
F-actin network forms around chromosomes duringmeio-
sis in a Ran-GTP-dependent manner to collect chromo-
somes scattered over a large distance [52]. Since these
F-actin patches prevent microtubule-kinetochore attach-
ments, they must disassemble before attachments can be
made, which would help prevent aneuploidy.

In addition to regulating chromosome alignment,
having a cue associated with meiotic chromatin that
regulates the cortex would ensure that actin and myosin
assembly for polar body formation occurs only when
chromatin is at an ideal distance to the cortex to pre-
vent aneuploidy. Deng et al. [47] also reported that
injection of constitutively active RanQ69L inhibited cap
formation rather than inducing larger or multiple caps,
which is similar to observations from studies on the
role of Ran in cytokinesis [1]. Further studies using
ooctyes that vary in size, and from different species,
will expand our knowledge of the molecular mechan-
isms of the Ran pathway in meiosis.

Importins in cellularization

Another cortical process that was shown to be regulated by
importins is cellularization in Drosophila (Figure 3(b)).
After 9 mitotic divisions, the nuclei of the syncytial embryo
migrate to the periphery and subsequently become sepa-
rated by membranes via a process of cellularization, which
begins during the 14th division [e.g. 53, 54, 55]. This
process gives rise to a layer of polarized epithelial cells
connected via adherens junctions, and occurs due to the
trafficking of vesicles for directed membrane growth [56].
The end-stages of cellularization have some similarity to
cytokinesis. Anillin, a scaffold protein that binds to actin,
myosin and septins and has well-described roles in cyto-
kinesis, is also required for cellularization, although its role
in this process is not well-understood [57]. Silverman-
Gavrila et al. [58] showed that importins could regulate
anillin’s localization during cellularization. They found that
over-expression of importin-α decreases anillin’s cortical
localization, and showed that importin-α/β could outcom-
pete the septin Peanut for anillin-binding [58]. However,
since the nuclei are enclosed during cellularization and
Ran-GTP would be sequestered, it is not clear how
importin-binding regulates anillin localization. Based on
our studies of anillin in cytokinesis (see below), one
hypothesis is that cytosolic importins promote anillin’s
recruitment to the cortex by modulating its conformation
for septin and/or lipid-binding, but its enrichment to pre-
cise locations is governed by binding to active RhoA.

Other studies showed that importins can regulate
proteins independently of Ran for mitotic Golgi

SMALL GTPASES 181



disassembly [59]. Importin-α and other karyopherins
may thus have interactions and functions that occur
outside of the Ran pathway. This raises the possibility
that in the context of cellularization – a closed system
in which little to no Ran would be found in the cyto-
plasm – importins could be functioning at the cortex in
a Ran-independent manner to form separate cells.

Ran in cytokinesis

Cytokinesis occurs at the end of mitosis to separate
a cell into two daughters (Figure 3(c)). This highly
conserved process must occur with high precision to

avoid aneuploidy or changes in cell fate [60–62].
Multiple pathways regulate cytokinesis, and can be
microtubule-dependent or -independent [60,62].
While these pathways likely function redundantly in
symmetrically dividing cells, the preference for one
over another may depend on cell fate, architecture, or
ploidy. Cytokinesis occurs due to the ingression of
a RhoA-dependent contractile ring. The central spindle,
which arises between segregating chromatids in ana-
phase, stimulates the accumulation of active RhoA in
the equatorial cortex via the regulation of cortical com-
plexes that activate Ect2, a RhoA guanine nucleotide
exchange factor [GEF; e.g. reviewed by 60–62]. Ect2
forms an anaphase-dependent complex with Cyk-4/
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Figure 3. The Ran gradient regulates cortical proteins. (a) Cartoon schematics show an oocyte undergoing polar body extrusion. The legend
describes the cell components for the cells in (a–c); contractile proteins (pink), astral microtubules (purple), central spindle microtubules
(green), kinetochore microtubules (grey), centrosome (black) and chromatin (red). The Ran gradient is enriched around chromatin, which is
positioned close to the cortex and functions as a molecular ruler to direct actin cap formation [47]. (b) During cellularization, Ran-GTP is
sequestered in closed nuclei, and importin-binding could increase the localization of proteins at the cortex. The enrichment of proteins at the
ingressing membrane would be directed by other factors. (c) In mitotic somatic cells Ran-GTP is generated at chromatin by RCC1 (RanGEF),
which is hydrolysed by RanGAP in the cytosol to form a gradient. An inverse gradient of importin-bound proteins forms so that they are high
near the cortex. In prometaphase and metaphase, Ran-GTP regulates spindle formation by releasing active spindle assembly factors from
importin-binding [12]. In anaphase, importin-binding facilitates anillin’s localization to the equatorial cortex for cytokinesis, and we propose
that other cortical proteins could similarly be regulated by importin-binding [1]. Ran-GTP is sequestered in the nucleus in telophase as the
nuclear envelope reforms (Clarke & Zhang, 2008, 4).
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MgcRacGAP and MKLP1 at the cortex, which potenti-
ates its activity [61,63–65]. Astral microtubules, which
emanate from the centrosomes towards the polar cor-
tex, globally inhibit cortical contractility, leading to the
equatorial accumulation of contractile proteins as the
spindle elongates [61,62,66]. In addition, MP-GAP
globally inhibits RhoA and functions together with
astral microtubules to ensure that cortical contractility
is dampened outside the equatorial plane [67].
p190RhoGAP also controls contractility in the division
plane by modulating RhoA activity [68–71]. It is not
clear how astral microtubules regulate cytokinesis,
although data supports that these microtubules could
sequester anillin, which has a microtubule-binding
domain [72,73]. As shown in C. elegans embryos,
another mechanism could involve the TPXL-1 (TPX2)-
mediated polar clearance of contractile proteins by
Aurora A kinase [74]. Microtubule-independent path-
ways also regulate cytokinesis, by signalling through the
centrosomes, kinetochores and chromosomes
[1,47,58,67,75–79]. In particular, sensing chromatin
position could help prevent aneuploidy, especially in
asymmetrically dividing cells, and will be discussed
below.

In mammalian cells, several studies demonstrated
a correlation between chromatin position and cortical
contractility during anaphase [1,77,79]. The Ran gradi-
ent persists into anaphase (Figures 1(a,b) and 3(c)), and
Kiyomitsu & Cheeseman [77] showed that elongation
of the cortex occurs in response to spindle positioning.
In particular, the site of ingression shifts to recover the
equatorial plane when the spindle is displaced towards
one of the poles. They proposed that cortical proteins
are negatively regulated by Ran-GTP associated with
chromatin. In support of this model, they found that
cortical proteins polarize in response to chromatin
position in BHK (baby hamster kidney epithelial) cells
with depolymerized microtubules forced to exit mitosis,
which fail to occur upon loss of RCC1 [77]. Overall,
this data showed that Ran-GTP inhibits contractility at
the cortex, although the mechanism by which it does
this was not known [77].

A more recent study by our group offers insight into
the molecular mechanism of how Ran-GTP regulates
the cortex for cytokinesis [1]. We found that importin-
β binds to a conserved C-terminal NLS in anillin, and
point mutations that disrupt importin-binding
decrease anillin’s cortical affinity and function for cyto-
kinesis (Figure 2). The NLS, which is in the C2 domain,
is autoinhibited by the neighbouring RhoA-GTP bind-
ing domain (RBD). This led us to propose a model
where active RhoA initially induces conformational
changes in anillin, that then could be stabilized by

importin-binding (Figures 2 and 3(c)). Our model
also considers that importins optimally regulate anillin
function at an ideal concentration. Similar to the find-
ings from Silverman-Gavrila et al. [58] for cellulariza-
tion, over-expressing importin-β also decreases
anillin’s cortical affinity during cytokinesis [1]. We
propose that anillin’s affinity for importins is lower
than that of its other binding partners such as phos-
pholipids, RhoA regulators and septins to permit
a ‘hand-off’ from importins to these other components
at the equatorial membrane.

Several cytokinesis regulators have at least one NLS
that mediates nuclear localization during interphase,
and it would be exciting to explore their regulation by
the Ran pathway during mitotic exit [i.e. 80–83]. For
example, mammalian GCK-III proteins have an NLS
[84], and recent studies showed that GCK-1
(C. elegans) may counteract active RhoA by restricting
the amount of anillin and myosin in the contractile ring
to brake contractility [85,86]. Other key cytokinesis
regulators with an NLS include Ect2, Cyk-4, and
MKLP1 [83,87,88]. Having an NLS could permit the
regulation of cytokinesis proteins in various ways by
importin-binding. For example, Ect2 and MKLP1 have
phosphorylation sites for cell cycle kinases in/near their
NLS’s, and phosphorylation could affect
importin-binding, causing them to accumulate in the
cytosol during prophase and/or prevent their sequestra-
tion after nuclear reformation [89–92]. However,
another role to consider for importin-binding could
be to control their cortical localization and function.
Interestingly, human anillin has more than one NLS;
the N-terminal NLS mediates nucleocytoplasmic trans-
port through importin-β2-binding, while the highly-
conserved C-terminal bipartite classic NLS binds to
importin-β for anillin’s cortical recruitment and func-
tion in cytokinesis [1,80]. This raises an interesting
question as to whether the highly conserved,
C-terminal NLS initially arose in metazoans to mediate
nuclear localization, but then was co-opted into
a second function of controlling cortical localization
and function, or vice-versa.

In a biological context, there are many advantages to
having the Ran pathway regulate cytokinesis proteins.
The enrichment of importins available to bind to NLS-
containing proteins near the cortex can facilitate the
recruitment of cortical regulators prior to central spin-
dle-dependent mechanisms. In cells where chromatin is
asymmetrically positioned, this can create an asym-
metric distribution of contractile proteins for asym-
metric furrow ingression. In cells where ploidy is
high, this could delay contractile protein recruitment
until chromosomes have already begun segregating

SMALL GTPASES 183



towards their poles, which could tightly couple ingres-
sion with chromosome segregation to prevent
aneuploidy.

Most of our knowledge of cytokinesis is from studies
done using cultured cells, either fromDrosophila (S2 cells)
or mammalian cells (HeLa cells), or in the one-celled
C. elegans or sea urchin embryo [e.g. 93–95, 64]. It is
assumed that the preference for different mechanisms
regulating cytokinesis depends on the organism, but this
could also be due to differences in cell fate, geometry,
ploidy or the number of neighbouring cells. For example,
the central spindle is quite small in the early embryo
relative to cell size in C. elegans, echinoderms and
Xenopus, and the astral spindle pathwaymore dominantly
regulates cytokinesis in these cells [76,96,97]. A recent
study by Davies et al. [98] showed that P2 and EMS cells
rely differently on F-actin-dependentmechanisms, as well
as intrinsic vs. extrinsic cues. This highlights the need to
exploremechanisms regulating cytokinesis of cells in their
native tissue and in developmental contexts. Since few
studies have explored the role of the Ran pathway in
cytokinesis, we are studying its role in regulating cytokin-
esis of AB and P1 cells in earlyC. elegans embryos. The AB
cell, which is larger and divides first, is fated to be many
tissues of the body, while the P1 cell is fated to become the
germline [99]. It will be interesting to determine if the Ran
pathway differently regulates cortical contractility for
cytokinesis in these cells.

Concluding remarks

To summarize, the Ran/importin gradient is a beautiful
example of the principle of yin and yang where the cortex
and spindle are regulated in opposing, but complemen-
tary ways by the same system. Cortical regulation and
spindle assembly occur at opposite ends of the gradient,
which acts as a sliding scale that ties these functions
together. However, the gradient likely is not linear and
the impact on proteins will vary depending on their
binding affinities for importin-α, -β or the heterodimer,
post-translational modifications, and accessibility or
levels at particular cellular locations. Also, since few cor-
tical targets have been identified, the extent to which the
gradient regulates cortical polarity is not clear. The find-
ing that RanBP1 (Ran-binding protein 1) controls cortical
neuron polarity via regulating LKB1/Par4 [100] suggests
that other Ran pathway components also influence pro-
tein function. Thus, there may be many layers of com-
plexity in how the Ran pathway regulates polarization in
different cell types.
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