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Abstract

Chronic low back pain (CLBP) is a leading cause of disability and is associated with 

neurodegenerative changes in brain structure. These changes lead to impairments in cognitive 

function and are consistent with those seen in aging, suggesting an accelerated aging pattern. In 

this study we assessed this using machine-learning estimated brain age (BA) as a holistic metric of 

morphometric changes associated with aging. Structural imaging data from 31 non-depressed 

CLBP patients and 32 healthy controls from the Pain and Interoception Imaging Network were 

included. Using our previously developed algorithm, we estimated BA per individual based on 

grey matter density. We then conducted multivariable linear modeling for effects of group, 

chronological age, and their interaction on BA. We also performed two voxel-wise analyses 

comparing grey matter density between CLBP and control individuals and the association between 

gray matter density and BA. There was an interaction between CLBP and greater chronological 

age on BA such that the discrepancy in BA between healthy and CLBP individuals was greater for 

older individuals. In CLBP individuals, BA was not associated with sex, current level of pain, 

duration of CLBP, or mild to moderate depressive symptoms. CLBP individuals had lower 

cerebellar grey matter density compared to healthy individuals. Brain age was associated with 
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lower gray matter density in numerous brain regions. CLBP was associated with greater BA, 

which was more profound in later life. BA as a holistic metric was sensitive to differences in gray 

matter density in numerous regions which eluded direct comparison between groups.
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1. Introduction

Low back pain (LBP) is the leading cause of disability worldwide (James et al., 2017). Most 

adults are likely to suffer from LBP during some point in their lives, and the number of years 

lost to disability from this condition has increased by 54% since 1990 (Hartvigsen et al., 

2018). LBP is highly prevalent and challenging to manage clinically. In most cases, the 

specific source of pain cannot be identified, resulting in classification as non-specific LBP 

(Buchbinder et al., 2018). In addition, LBP is often accompanied by and exacerbates 

medical comorbidities, requiring additional care for poorer treatment response (Foster et al., 

2018). LBP is highly persistent, with approximately two-thirds of patients still reporting 

pain after twelve months (Meucci et al., 2015).

There is a mounting body of literature suggesting that chronic LBP (CLBP) may have 

detrimental effects on brain structure. These alterations in brain structure may result in 

symptoms that extend beyond nociception, leading to impairment in attention, mental 

flexibility, language skills, and emotional decision making (Buckalew et al., 2010; Ivo et al., 

2013; Malfliet et al., 2017; Wand et al., 2011).

Specifically, CLBP has been associated with changes in gray matter density (GMD) in 

multiple regions, namely the prefrontal cortex, thalamus, brainstem, corpus callosum, and 

total gray matter volume, although the direction of these changes has been conflicting in 

various studies (Apkarian et al., 2004; Buckalew et al., 2010; Ivo et al., 2013; Kregel et al., 

2015; Schmidt-Wilcke et al., 2006). Past studies have shown that these differences in gray 

matter are normalized following treatment (Seminowicz et al., 2011; Seminowicz et al., 

2013).

Brain age is a machine-learning driven approach of assessing global gray matter density of 

an individual compared against age-matched healthy peers as a holistic metric of brain 

health and structural integrity. Given the complex patterns of brain morphometric changes 

associated with the aging process between different individuals, brain age serves as a holistic 

aggregate metric of numerous regional structural changes (Eavani et al., 2018). As such, 

brain age may be sensitive to patterns and impacts of various pathologic insults beyond 

traditional voxel-based morphometric analyses and is especially suitable for analysis of age-

related pathologies given its innate capacity to define structural changes in terms of 

accelerated aging. We have demonstrated this in our previously developed and validated 

brain age model in the context of Alzheimer’s disease, and a recent application of BA to 

general chronic pain has also shown significant discrepancies between healthy individuals 
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and individuals with chronic pain (Ly et al., 2019; Cruz-Almeida et al., 2019). However, 

whether these differences hold true specifically in individuals with CLBP is yet unexplored.

Therefore, in this study we applied our BA prediction model to a cohort of CLBP patients 

without depression. Since it has been suggested that chronic pain may result in “accelerated 

aging” of the brain, we hypothesized that CLBP patients would present with higher BA for 

any given chronologic age compared to healthy controls. In addition, we investigated the 

association between BA and factors of CLBP duration and pain severity at the time of 

imaging for the CLBP group. Finally, we conducted a more traditional voxel-wise analysis 

to identify regions where GMD was associated with group (adjusting for sex, age, and age 

squared) as well as a voxel-wise analysis to identify specific brain regions correlated with 

BA (adjusting for sex, age, and age squared).

2. Results:

The model predicted age accurately in CLBP and healthy individuals with r = 0.45, R2 = 

0.20, and MAE = 5.1. Compared to the healthy control group, the CLBP group was not 

significantly different in participant age or sex, but had significantly greater current pain, 

pain duration, and depressive symptoms (Table 1).

Overall, the multivariable linear model predicted BA and explained 32% of the variance in 

BA (r(62) = 0.57, R2 = 0.32, RMSE = 3.46). Group moderated the association between 

chronological age and BA (corrected model – F(5,62) = 6.93, p < 0.001, Table 2). There was 

a significant interaction effect between CLBP status and chronological age on predicted BA 

(p = 0.031, Table 2, Figure 1). Sex was not associated with BA and did not moderate the 

association between chronological age and BA. Within the CLBP group, none of the 

following factors were directly associated with BA: sex, current pain, pain duration, and 

depressive symptoms (Table 3).

Adjusting for sex, age, and age squared, we found that HC showed greater GMD in the 

cerebellum compared to CLBP, but lower GMD in the left cuneus and superior occipital 

gyrus (table 4, figure 2). Adjusting for sex, age, and age squared, we found that greater BA 

residual (which has sex, age, and age squared regressed out – i.e., is independent of these 

factors) was associated with lower GMD in a number of regions throughout the brain 

including the cingulate, amygdala, visual cortex, cerebellum, frontal cortex, temporal gyrus, 

hippocampus/parahippocampus, insula, motor/sensory cortex, and putamen (table 5, figure 

3).

3. Discussion and conclusions:

In this study we sought to apply a machine learning-based BA prediction model to a CLBP 

cohort without depression with age and sex matched healthy controls. Given the various 

documented deleterious effects of CLBP on brain structure, we hypothesized that the CLBP 

group would have older predicted BA for a given chronological age compared to the HC 

group. Our results supported this hypothesis, as CLBP participants showed an additional 

0.15 years (approximately 1.8 months) in predicted BA per chronological year of life 
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compared to their healthy counterparts. In other terms, CLBP participants appeared to age an 

additional 1.8 months per year of life compared to their healthy counterparts.

The greater slope of the CLBP group’s BA to chronological age trendline against the HC 

line (and therefore a greater discrepancy between the two at greater ages) supports previous 

models regarding CLBP as being associated with accelerated aging. Many of the changes in 

brain structure seen in CLBP, such as lower GMD in the prefrontal cortex, thalamus, and 

brainstem, are also seen in the natural aging process (Apkarian et al., 2004; Ivo et al., 2013; 

Kregel et al., 2015). As greater BA was significantly associated with lower GMD in 

numerous regions, we may assume that the discrepancies between the healthy and CLBP 

groups may be partially ascribed to lower GMD in said regions. Notably, these included the 

prefrontal cortex, parietal cortex, brainstem, and limbic regions involved in pain 

interoception including the hippocampus, amygdala, and insula.

In addition, due to the greater slope of the CLBP trendline, the discrepancy in brain age 

between the two groups would theoretically be larger at greater chronological ages, although 

this was not a longitudinal study. This possibly suggests that older adults with CLBP are at 

risk for the greatest brain morphometric changes given their longitudinal pain burden. As 

emphasized by previous studies, there are numerous significant differences in brain structure 

and function in older adults with CLBP compared to their healthy counterparts (Buckalew et 

al., 2010). Especially relevant from Buckalew et al. (2010) is that changes in brain structure 

associated with late-onset depression were seen even in non-depressed CLBP participants, 

suggesting that an absence of depression does not preclude the structural changes and 

increased vulnerability to psychiatric comorbidities. Previous literature has also shown that 

degenerative brain changes in older CLBP patients are distinct from younger CLBP patients, 

and that older adults are unable to effectively respond to pain due to age-related changes in 

areas of central pain regulation (Apkarian et al., 2004; Karp et al., 2008). However, because 

the confidence intervals for trendlines at younger ages overlapped, these differences may not 

be as robust in younger individuals.

We found that sex, depressive symptoms, duration of pain, and current pain were not 

significantly associated with brain age, suggesting an alternative driving factor not 

encompassed by these variables. One aspect to consider is that total duration of pain and 

current pain level may be imperfect quantifiers of a patient’s trajectory with CLBP. Not only 

is it possible for pain intensity to change over time, the duration in which a patient 

experiences higher levels of pain may also be a contributory factor for the activation and 

possible enhanced response of various pain-related brain regions (Flor et al., 2001; Wand et 

al., 2011). Previous literature has also suggested that both normal and pathologic structural 

brain changes themselves may contribute toward a patient’s experience of CLBP due to 

impairment of descending inhibition, implicating a bidirectional relationship between 

structural brain changes and chronic pain (Karp et al., 2008). All these factors suggest that 

the trajectory of CLBP and its relationship to brain changes are more complex than may be 

characterized by measurements of only duration and pain at one instance (Flor et al., 2001).

Additionally, while BDI scores were taken as a measure of depressive symptoms in 

participants, most scores for CLBP participants were below the clinical threshold for major 
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depressive disorder (BDI = 16). Although there is an extensive relationship between CLBP 

and depression, with overlap in their underlying neurobiology and impact on brain structure, 

our results suggest that there are also significant effects of CLBP on brain structure in the 

absence of Major Depressive Disorder (Gerhart et al., 2018; Hung et al., 2015; Karp et al., 

2012). However, two participants excluded as outliers had BDI scores of 17 and 19, with 

brain ages 15 and 21 years older than their chronological ages, respectively. A general 

positive trend between BDI scores in the major depressive disorder levels and greater brain 

aging in CLBP patients is suggested by the few participants which meet the clinical BDI 

threshold in the present study; however, further investigation of CLBP patients with major 

depressive disorder would be needed to draw a more definitive conclusion regarding brain 

age.

Healthy control participants also showed significantly greater GMD in the cerebellum 

compared to CLBP participants. This result reinforces previous findings demonstrating 

significantly reduced gray matter volume of the cerebellum in participants with lumbar disk 

herniation, a common etiology of CLBP (Luchtmann et al., 2014). With regards to general 

nociception, previous work has suggested that the cerebellum has a modulatory role in 

nociceptive processing including voluntary motor inhibition during pain and anticipation of 

pain (Fields, 2000; Ploghaus et al., 1999). In addition to these findings, lower integrity of the 

cerebellum was also associated with impaired proprioception in individuals with CLBP, also 

implicating poor postural control as a possible underlying mechanism of non-specific low 

back pain (Pijnenburg et al., 2014).

While the CLBP participants also demonstrated greater GMD in the superior occipital gyrus 

and left cuneus, the significant regions were much smaller and less significant compared to 

the cerebellar findings. Although the occipital gyrus and precuneus have been shown to have 

increased activation in visualization of pain in individuals with LBP, our findings may also 

be more sample-specific given our cohort size.

When assessing the contribution of lower GMD to greater brain age (independent of age and 

sex), many more regions were significantly associated with brain age in addition to the 

cerebellum (figure 3). Given the widespread nature of GMD contributions to brain age, our 

results of greater brain age in CLBP individuals support previous findings emphasizing 

heterogenic global patterns of structural reorganization in chronic pain (Baliki et al., 2011).

The complex, multi-regional associations between decreased GMD and greater BA also 

highlight the strength of machine learning-based brain age over previous voxel-based 

morphometric analyses which directly compare between groups using pre-determined 

region-of-interest analysis, which may not be sensitive to these heterogenic patterns of 

structural brain changes. As in our study, where a voxel-based comparison of GMD between 

healthy and CLBP groups only showed significant differences in the cerebellum, actual 

structural differences associated with greater brain aging were much more complex and 

nuanced to detect. This further reinforces previously proposed arguments for the merits of 

machine learning-based brain age given the difficulties of integrating these heterogenic 

patterns of structural change present in the aging process into a unified metric (Eavani et al., 

2018). In further support of this, a recent study of chronic pain and the discrepancy between 
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predicted brain age and actual age has also shown significantly greater brain age in chronic 

pain participants compared to healthy participants, suggesting these findings are not limited 

to CLBP (Cruz-Almeida et al., 2019).

The main limitations of this study include the lack of complementary parameters including 

interventions for pain such as opioid medications and non-pharmacologic therapies, 

psychological function, and somatosensory function, as well as limited sample sizes for 

CLBP and HC participants and the cross-sectional nature of the data. The main limitations 

of this study are the limited sample sizes for CLBP and HC participants, as well as its cross-

sectional nature. Given that this is one of the first studies to show this association in a 

relatively small sample, it is important to replicate this study and extend these findings by 

understanding what factors may contribute to this association. Conclusions regarding trends 

in brain age would be strengthened by a longitudinal analysis with multiple instances of 

participant imaging to construct trajectories with the development and treatment of CLBP. 

Additional measures of both pain intensity and duration at multiple time points would also 

allow for more sophisticated measures of a cumulative pain burden. A limitation of the brain 

age model used is its holistic mode of analysis of overall GMD. In addition, the training set 

of the brain age model was not specifically screened for CLBP status in its participants. 

Therefore, the predicted brain age is not generated against a healthy control population, but 

rather a general, mixed population. A potential direction of future investigation may be to 

delineate the contributions of specific brain regions to accelerated aging.

In this study we have demonstrated that brain age prediction using a machine-learning based 

model shows accelerated brain aging in individuals with CLBP. In addition, we have 

demonstrated that brain aging is significantly correlated with lower gray matter densities of 

numerous brain regions in further support of brain age as an aggregate metric that is 

sensitive to the complex heterogenic patterns of structural differences in aging.

4. Experimental Procedure:

4.1 Study Participants:

This study included data from 63 participants, with 31 having CLBP and 32 healthy controls 

(HCs), from the Pain and Interoception Imaging Network. Further study details including 

inclusion and exclusion criteria may be found at the repository website (https://

www.painrepository.org/repositories/).

4.2 Data Collected:

CLBP duration was self-assessed in years. The visual analog pain scale was used to assess 

pain on the day of the MRI scan. Depressive symptoms were self-scored using the Beck 

Depression Inventory (Beck et al., 1996).

4.3 MRI Data Collection:

All scanning was conducted at the Northwestern University Feinberg School of Medicine on 

a 3T Siemens Trio TIM research-dedicated scanner (Erlangen, Germany) with an 8-channel 

head coil. An axial whole brain (1mm3 isotropic) T1-weighted sequence (magnetization 
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prepared rapid gradient echo, MPRAGE) was collected (TR = 2300 ms, TE = 3.43 ms, TI = 

900 ms, FA = 9°) with a field of view 256 × 256 with 160 slices.

4.4 MR processing:

All processing was conducted in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/

spm12/). Structural MRI scans skull signal had been manually removed for de-identification. 

After bias correction, we conducted segmentation into three tissues: gray matter, white 

matter, and cerebrospinal fluid. We then used the nonlinear DARTEL (fast diffeomorphic 

registration) algorithm to register images to the Montreal Neurological Institute (MNI) space 

then generated a template for this cohort, and then smoothed with a Gaussian smoothing 

kernel with FWHM of 4 mm (typically 2–4 times that of the native resolution) (Ashburner, 

2007). This process generates a GMD map – a factor associated with both gray matter 

volume and cortical thickness. Since individual structural images need to be registered to the 

MNI space brain, for participants that have a thick cortical gray matter and large cortical 

volumes these are in a sense ‘squeezed’ to fit onto the standard brain – these participants 

have a high GMD (i.e., more gray matter in a smaller space). On the other hand, for 

participants that have thin cortical gray matter and small cortical volumes these are instead 

‘expanded’ resulting in lower GMD. This measure accounts for differences in head size as 

they are all registered to a single template. Participants with larger heads, volumes, and 

thickness compared to the template have to be shrunk in order to fit and therefore have 

greater gray matter density.

4.5 Brain Age Model and Estimation:

We have previously developed a BA estimation algorithm that estimated chronological age 

from GMD maps (Ly et al., 2019). Additional details regarding the model and databases 

used in the model training set may be found in the supplement of Ly et al. The model 

training set did not contain any of the HC or CLBP scans used in this study. In brief, the 

training set includes 757 images of healthy individuals from the ADNI, Information 

eXtraction from Images (IXI), and OASIS-3 cohorts. Inclusion criteria included age from 

20–85, normal cognitive function, negative beta-amyloid status, and no history of psychosis 

or neurologic disorders. Gray matter density maps were mean-centered and then a similarity 

kernel was computed by estimating the dot product between every pair of participants 

(resulting in an NxN matrix). This was input into a Gaussian Processes Regression. BA for 

each participant in the CLBP and HC groups was calculated using our algorithm. This 

involved no new training of the model.

4.6 Statistical Analysis:

All statistical analyses were conducted in JMP Pro 14.1.0 (SAS Institute Inc., 2018). 

Outliers were identified as values outside 1.5 interquartile range for age or having an 

absolute studentized residual of predicted BA greater than 3.5. As a result, three participants 

in the CLBP group and two in the healthy controls (HC) group were not included for 

statistical modeling. To test for the effect of CLBP on the association between chronological 

age and predicted BA, a multivariable linear regression was used. We also tested if sex 

moderated this association, as sex has been a distinguishing factor in the etiology, 

prevalence, and risk of disability from CLBP (DePalma et al., 2012; Dixon and Gatchel, 
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1999; Munce and Stewart, 2007). Additionally, due to possible interactions of sub-clinical 

depressive symptoms with CLBP, we tested if pain duration in years, current pain (VAS), or 

depressive symptoms (as characterized by the Beck Depression Inventory) moderated the 

association between chronological age and predicted BA specifically within the CLBP 

group.

Additionally, we conducted two voxel-wise analyses using SnPM13 (statistical non-

parametric mapping toolbox, http://warwick.ac.uk/snpm) (Nichols and Holmes, 2002). For 

all voxel-wise analyses, we used permutation testing (10,000 permutations) to compute non-

parametric p-values and adjusted for multiple comparisons by controlling the cluster-wise 

family-wise error (FWE) rate at p<0.05 (cluster-forming threshold at p<0.001). To identify 

differences in GMD between groups, we first conducted an independent t-test on the gray 

matter density maps between CLBP and HC adjusting for sex, age (centered), and age 

(centered) squared – this aligns with a more traditional approach for identifying differences 

between groups. To identify which region’s GMD would correlate with BA, we first 

conducted a regression between BA and sex, age (centered), and age (centered) squared (BA 

~ sex + age + age2) and extracted the residual of this regression as variance in BA not 

explained by sex or age – we call this the BA residual. We then conducted a voxel-wise 

analysis between GMD and BA residual adjusting for sex, age (centered), and age (centered) 

squared. This helps identify which regions in this sample are correlated with variance in BA 

that was not correlated to sex or age.
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Highlights:

• Chronic low back pain was associated with greater brain age over 

chronological age

• Discrepancies between groups for brain age were greatest at older ages

• Individuals with chronic low back pain had lower cerebellar gray matter 

density

• Higher brain age was linked with a widespread pattern of lower gray matter 

density

• Brain age may serve as an aggregate measure of holistic gray matter changes

Yu et al. Page 11

Brain Res. Author manuscript; available in PMC 2022 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
CLBP is associated with greater brain age over chronological age - Association between 

chronological age and predicted brain age in healthy controls (HC, blue) and those with 

CLBP (red) are shown. Trendlines and 95% confidence intervals (shaded areas) are plotted 

as well. The CLBP group showed a significantly steeper trend of brain age increases over 

chronological age representative of a discrepancy in aging exacerbated over the lifespan.
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Figure 2: 
Individuals with CLBP have lower gray matter density - Regions showing significant 

differences in gray matter density between HC and CLBP (corrected for multiple 

comparisons). Independent t-test values are plotted on the brain, where cooler colors indicate 

HC < CLBP while warmer colors indicate HC > CLBP. Brains are plotted using BrainNet 

Viewer. Note that the cerebellum is shown in radiological view (left-right flipped).
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Figure 3: 
Greater brain age is associated with lower gray matter density in numerous regions - 

Regions showing significant association between gray matter density and brain age residual 

(regressed out sex, age (centered), and age (centered) squared), corrected for multiple 

comparisons, are shown. Colors indicate the t-value for the regression between gray matter 

density and brain age residual while adjusting for sex, age (centered), and age (centered) 

squared. Cooler colors indicate that lower gray matter density is associated with greater 

brain age (no regions in the opposite direction). Brains are plotted using BrainNet Viewer.
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Table 1:

Demographic information and differences between experimental groups are shown. CLBP – Chronic low back 

pain; HC – healthy controls; VAS – Visual analog scale for pain; BDI – Beck Depression Inventory.

CLBP (n = 31) HC (n = 32) t or χ2 (df) p-value

Chronological Age (years) 50.7 (6.5) 50.8 (7.1) t(62)=0.04 0.967

Sex (% Female) 45.2 43.8 χ2(1)=0.01 0.910

Current Pain (VAS) 6.7 (1.8) 0 (0) t(62)=21.3 <0.001

Pain Duration (years) 16.3 (11.7) 0 (0) t(62)=7.9 <0.001

BDI 5.5 (5.2) 1.6 (2.7) t(62)=3.8 <0.001

Brain Res. Author manuscript; available in PMC 2022 March 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yu et al. Page 16

Table 2:

Statistical results for multivariable linear regression model testing the effect of group on the association 

between chronological age and predicted brain age. The dependent variable was brain age and the healthy 

control group was used as reference.

ß with 95% confidence interval t-statistic p-value

ß Lower Bound Upper Bound

Intercept 48.393 47.493 49.292 107.72 <0.001*

Chronological Age 0.283 0.152 0.414 4.32 <0.001*

Female sex −0.68 −1.559 0.199 −1.55 0.127

CLBP 0.789 −0.085 1.662 1.81 0.076

CLBP * Chronological Age 0.145 0.014 0.276 2.22 0.031*
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Table 3:

Statistical results for multivariable linear regression model testing the association between the difference 

between brain and chronological ages and factors of sex, current pain, pain duration, and depressive symptoms 

for the CLBP group. VAS – Visual analog scale for pain; BDI – Beck Depression Inventory.

ß 95% CI t-statistic p-value

ß Lower Bound Upper Bound

Intercept 0.537 −7.260 8.336 0.14 0.888

Sex [F] −0.300 −2.384 1.783 −0.30 0.769

Current Pain (VAS) −0.036 −1.334 1.262 −0.06 0.954

Pain Duration (years) −0.064 −0.265 0.137 −0.65 0.520

BDI −0.063 −0.526 0.401 −0.28 0.782
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Table 4:

Regions showing significant differences in gray matter density between HC and CLBP voxel-wise (corrected 

for multiple comparisons). Region descriptions are based on AAL3 atlas. The effect column describes the 

direction of difference. The cluster size and maximum t-value (representing the independent t-test) for the 

clusters as well as the location of the maximum are reported. Note that there are three significant clusters, 

however a cluster can have multiple labels, which are indented.

Description Effect Cluster Size (# Voxels) t-value max MNI coordinate (x, y, z)

Right Cerebellum VIII HC > CLBP 218 3.7 38, −44, −56

  Right Cerebellum VIIb HC > CLBP 78 4.1 32, −72, −50

Left Cerebellum VIII HC > CLBP 499 4 −32, −54, −58

  Left Cerebellum VIIb HC > CLBP 94 4.2 −34, −68, −50

Left Cuneus HC < CLBP 85 −4.8 −2, −90, 38

  Left Superior Occipital HC < CLBP 79 −5.6 −10, −86, 46
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Table 5:

Regions showing significant association between gray matter and brain age residual (regress out sex, age 

(center) and age (center) squared) voxel-wise (corrected for multiple comparisons) – this adjusted for sex, age 

(centered), and age (centered) squared. Region descriptions are based on AAL3 atlas. Negative values indicate 

that greater brain age is associated with lower gray matter density (no positive values). The cluster size and 

maximum t-value (representing the t-value for a regression) for the clusters as well as the location of the 

maximum are reported. Note that there are three significant clusters, however a cluster can have multiple 

labels, which are indented.

Description Cluster Size (# Voxels) t-value max MNI coordinate (x, y, z)

Left ACC presubiculum 369 −6.5 −8, 44, 0

Right ACC presubiculum 263 −5.5 8, 50, 12

Left ACC subiculum 92 −5.9 −2, 30, −10

Right ACC subiciulum 65 −4.7 6, 34, −8

Left ACC supracallosal 275 −6.1 −6, 36, 24

Right ACC supracallosal 88 −4.7 10, 36, 16

Left Amygdala 194 −5.1 −22, 2, −18

Right Amygdala 175 −5.1 28, −6, −16

Right Angular Gyrus 271 −6.6 50, −70, 30

Left Calcarine Gyrus 456 −5.6 −10, −74, 16

Right Calcarine Gyrus 325 −5.3 22, −98, 0

Left Cerebellum IV/V 366 −5.7 −26, −42, −22

Right Cerebellum IV/V 399 −5.2 28, −34, −24

Left Cerebellum VI 913 −5.5 −30, −44, −24

Right Cerebellum VI 872 −5.3 30, −74, −18

Left Cerebellum Crus I 72 −4.9 −42, −64, −22

Right Cerebellum Crus I 196 −4.8 48, −66, −20

Left Middle Cingulate 249 −5.3 −6, 20, 34

Right Middle Cingulate 327 −5.3 8, 26, 34

Left Posterior Cingulate 150 −5 −8, −54, 32

Left Cuneus 144 −6.5 −2, −70, 26

Right Cuneus 233 −4.9 14, −92, 14

Left Inferior Frontal (Operculum) 156 −5.5 −50, 8, 28

Right Inferior Frontal (Operculum) 246 −5.3 48, 8, 28

Left Inferior Frontal (Orbital) 217 −5.8 −30, 36, −12

Right Inferior Frontal (Orbital) 159 −5.4 50, 46, −10

Left Inferior Frontal (Triangular) 274 −5.4 −42, 36, 24

Right Inferior Frontal (Triangular) 108 −5.1 46, 22, 0

Left Medial Frontal (Orbital) 567 −6.7 −10, 50, −6

Right Medial Frontal (Orbital) 445 −6.7 2, 48, −12

Left Middle Frontal 930 −6.3 −42, 42, 26

Right Middle Frontal 317 −5.7 32, 56, −12

Left Superior Frontal 855 −6.8 −22, 60, 6
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Description Cluster Size (# Voxels) t-value max MNI coordinate (x, y, z)

Right Superior Frontal 380 −5.7 18, 44, 34

Left Medial Frontal (Superior) 561 −6.2 −8, 50, 18

Right Medial Frontal (Superior) 596 −6.7 8, 58, 6

Left Fusiform Gyrus 960 −7.5 −26, −36, −18

Right Fusiform Gyrus 1038 −5.5 30, −74, −16

Left Heschl Gyrus 93 −5.7 −38, −22, 4

Right Heschl Gyurs 124 −5.6 54, −4, 4

Left Hippocampus 345 −5.7 −26, −10, −18

Right Hippocampus 251 −5.3 22, −8, −20

Left Insula 932 −6.3 −36, −14, 16

Right Insula 975 −6.7 34, 16, 4

Left Lingual Gyrus 710 −6.7 −16, −56, −8

Right Lingual Gyrus 156 −5.3 2, −72, 2

Left Nucleus Accumbens 133 −5.7 −2, 6, −8

Left Inferior Occipital 129 −5.8 −48, −60, −18

Right Inferior Occipital 60 −4.9 48, −62, −14

Right Middle Occipital 418 −6.5 50, −70, 28

Right Superior Occipital 267 −5.5 30, −74, 40

Left Orbitofrontal Gyrus (anterior) 231 −6.1 −38, 40, −18

Right Orbitofrontal Gyrus (anterior) 237 −5.5 32, 48, −14

Left Orbitofrontal Gyrus (lateral) 133 −6.9 −38, 40, −16

Left Orbitofrontal Gyrus (medial) 279 −5.6 −20, 30, −24

Right Orbitofrontal Gyrus (medial) 259 −6.2 16, 22, −20

Left Orbitofrontal Gyrus (posterior) 330 −6.3 −22, 8, −22

Right Orbitofrontal Gyrus (posterior) 194 −5.6 26, 12, −20

Left Olfactory Gyrus 215 −6.3 −2, 6, −10

Right Olfactory Gyrus 166 −5.9 2, 22, −14

Left Parahippocampus 365 −6.4 −22, 8, −24

Right Parahiippocampus 528 −5.4 22, −8, −32

Left Postcentral Gyrus 578 −6.4 −46, −18, 40

Right Postcentral Gyrus 194 −5 56, −6, 38

Left Precentral Gyrus 389 −6.2 −52, −6, 28

Right Precentral Gyrus 508 −6 50, −10, 42

Left Precuneus 462 −6.4 −8, −54, 34

Right Precuneus 461 −5.8 8, −68, 32

Right Putamen 104 −5 30, 14, 4

Left Rectus Gyrus 626 −7.3 −2, 28, −18

Right Rectus Gyrus 544 −6.4 2, 34, −20

Left Rolandic Operculum 373 −6 −38, −16, 16

Right Rolandic Operculum 370 −6.7 52, 6, −2

Left Supramarginal Gyrus 92 −5.1 −44, −36, 24

Right Supramarginal Gyrus 187 −5.2 58, −26, 18
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Description Cluster Size (# Voxels) t-value max MNI coordinate (x, y, z)

Left Inferior Temporal Gyrus 977 −6.1 −48, −58, −18

Right Inferior Temporal Gyrus 1238 −6.4 54, 4, −34

Left Middle Temporal Gyrus 1092 −7.1 −50, 4, −32

Right Middle Temporal Gyrus 1462 −7.1 62, −30, −2

Left Middle Temporal Pole 344 −7.8 −46, 10, −28

Right Middle Temporal Pole 604 −6.6 42, 14, −32

Left Superior Temporal Pole 639 −6.1 −22, 6, −22

Right Superior Temporal Pole 489 −6.6 42, 12, −30

Left Superior Temporal Gyrus 810 −6.6 −44, −36, 20

Right Superior Temporal Gyrus 874 −6.1 62, −32, 2

Cerebellum Vermis VIII 101 −4.2 6, −66, −36

Left Middle Occipital 388 −6 −30, −94, 8

Left Superior Occipital 170 −5.1 −20, −92, 24

Left Paracentral Lobule 141 −5.2 −14, −26, 76
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