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Ventilation plays an important role in prevention and control of COVID-19 in enclosed indoor environ-
ment and specially in high-occupant-density indoor environments (e.g., underground space buildings,
conference room, etc.). Thus, higher ventilation rates are recommended to minimize the infection trans-
mission probability, but this may result in higher energy consumption and cost. This paper proposes a
smart low-cost ventilation control strategy based on occupant-density-detection algorithm with consid-
eration of both infection prevention and energy efficiency. The ventilation rate can be automatically
adjusted between the demand-controlled mode and anti-infection mode with a self-developed low-
cost hardware prototype. YOLO (You Only Look Once) algorithm was applied for occupancy detection
based on video frames from surveillance cameras. Case studies show that, compared with a traditional
ventilation mode (with 15% fixed fresh air ratio), the proposed ventilation control strategy can achieve
11.7% energy saving while lowering the infection probability to 2%. The developed ventilation control
strategy provides a feasible and promising solution to prevent transmission of infection diseases (e.g.,
COVID-19) in public and private buildings, and also help to achieve a healthy yet sustainable indoor
environment.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 is a respiratory disease caused by a coronavirus
(SARS-COV-2), which has a high-level of infection and morbidity
[1,2]. Till 14 February 2021, COVID-19 has caused 108 million con-
firmed infected cases including 2.38 million deaths [3]. As the
reopening of social economy, there is a high probability to involve
large number of transportation activities, and creating large mobil-
ity of people. Thus, there is a strong need to develop control strate-
gies to prevent the transmission of COVID-19 and alike diseases in
public and private buildings (PPBs) (e.g., airport terminal, train sta-
tion, bus station, super market and shopping centers, universities,
entertainment events, etc.). For this purpose, some control mea-
sures have been widely used [1,4], such as the source control (to
separate suspected infected patients), virus spread control (to
restrict going out), virus tracing, etc.
In PPBs, ventilation can play essential and important role in
reducing the infection transmission. It introduces outdoor air to
dilute the indoor air contaminants generated by the occupants
and their activities. ASHRAE Standard 62.1 [5] and Chinese Stan-
dard [6] specify the minimum amount of outdoor air that is to be
provided by the HVAC systems. This airflow rate is calculated
based on maximum occupancy conditions. The PPBs have highly
transient occupancy condition, hence could provide fertile ground
for transmission and infection during high-occupancy periods, and
over ventilation during low-occupancy periods (which is a waste of
energy).

The transmission of SARS-CoV-2 mainly include contact trans-
mission, exhaled droplet transmission and aerosol transmission
[2,7,8]. The exhaled droplets of infectors may fall down and con-
taminate the surface, which could be infective for few hours to
few days [9,10]. Besides, the virus could re-enter the air upon the
surface disturbances [11]. To reduce the infection risk of contact
transmission, frequent hand washing with sanitize and surface dis-
infection are important; for contact and exhaled droplet transmis-
sion, wearing masks and keeping social distance are normally
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recommended [1,12]. However, there are common occasions of
dense crowd (e.g., queueing for boarding, for purchasing in super-
market, or for security checking) and off-mask activities (e.g.,
drinking or dining) in PPBs (see Fig. 1), which could pose a poten-
tial risk of infection especially when people exposed to a dense and
crowded environment. The ventilation system is thus an efficient
and important approach to reduce the transmission of infection
in PPBs: the system introduces the outdoor air to dilute the indoor
air contaminant that is mainly responsible for the aerosol trans-
mission [1].

When the situation of dense crowd occurs, ventilation rate
should be increased to reduce the infection risk. However, the stan-
dard minimum outdoor airflow rate of public buildings is insuffi-
cient to control the infection risk at low level (e.g., 2%) [15]. It is
thus essential and widely recommended to improve the ventilation
rate for the sake of reducing infection probability (IP) of COVID-19
in such high-density indoor environment [2]. For instance, it is
reported that to control the IP in office under 2%, the ventilation
rate should be improved from 30 m3/(h·p) (a designed rate) to
225 m3/(h·p) for a full occupant density with a 2-h exposure time
[15]. However, high ventilation rates would result in higher energy
consumption and may cause some thermal discomfort [15]. Espe-
cially for PPBs, which may have variable temporal distribution
and uneven spatial distribution of occupants [16]. Under this cir-
cumstance, the ventilation rate can be reduced to a lower level in
order to save energy [17]. Therefore, the challenge is how to bal-
ance the ventilation energy consumption and the prevention of
infection risk in such indoor environment during pandemic [7].
One technique to reduce this transmission is demand-controlled
ventilation (DCV) systems [18]. This approach gives the ability to
control the supply of outdoor airflow rate based on the building
occupant density.

It is however, challenging and expensive to re-design and retro-
fit the existing ventilation system [19–21]. Hence, a more practical
solution is probably to make some minor adjustments or improve-
ment to the existing ventilation system using the concept of DCV.
This can be achieved by making the existing ventilation system
capable of dynamically monitoring occupant density and adjusting
the ventilation rate. Hereby, the efficient detection of occupant
density is of great importance [22]. Currently, the occupant detec-
tion is based on environmental monitoring [23], information and
communication technology (e.g. Wi-Fi) [24,25] and visual informa-
tion using cameras [26–28]. Among the three occupant detection
methods, the camera-based method is recommended since it can-
not only provide the number and location of occupants, but also
monitor the crowd gathering and individual behaviors (like hand
Fig. 1. (a) An airport in disarray over screening (from BB
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shaking and hugging) as well as the occupant tracking [29]. More-
over, surveillance cameras are normally used in PPBs for the secu-
rity and safety purposes. The information collected by these
cameras can be easily provided to the ventilation system (almost
at no extra cost on the hardware of sensing).

In combating the COVID-19, many deep-learning-powered
camera-based methods have been developed and used for social
distance detection and face mask detection [30–32]. This manu-
script proposes a methodology based on reducing the transmission
of infection diseases in high density public buildings by applying
the occupant-related information collected from existing cameras
to control the ventilation rate. With this idea, many interesting
and important issues are worthwhile to be investigated for an inte-
grated camera-based ventilation control solution including the
deep-learning method for occupant detection, infection risk evalu-
ation as well as building energy efficiency etc.
2. Methodology

2.1. Research overview

Fig. 2 shows the schematic of the proposed ventilation control
system. First, based on the video captured by the camera, the occu-
pants are detected by YOLO (You Only Look Once) algorithm (de-
tailed in Section 2.2.1), and it provides the bounding box for the
detected occupant. Then, the location of the detected occupant is
determined according to coordinates of the bounding box (detailed
in Section 2.2.2). With this information, the sub-zonal occupant
density is obtained (i.e. the sub-zonal occupant number divided
by the area of the zone), which can be used to determine the ven-
tilation mode (DCV mode or anti-infection mode) by comparing it
with a pre-set threshold (‘‘h”), corresponding to the recommended
safe social distance, i.e., 2 m [33,34].

If the sub-zonal occupant density is lower than or equal to h, the
demand-controlled mode is activated and the ventilation rate is
determined according to the Standard (e.g., [6]); If the sub-zonal
occupant density is higher than h, the signal is sent to the corre-
sponding management personnel. Meanwhile, the anti-infection
mode of ventilation is activated and the ventilation rate is adjusted
based on the occupant density (based on the calculation using
Wells-Riley model) to lower down the IP below a targeted value.
Wells-Riley model is selected considering that it is has been widely
used for the infection risk evaluation [35,36]. Finally, the IP and
ventilation energy consumption are evaluated (corresponding to
the ventilation rate).
C news [13]); (b) Queueing in a metro station [14]



Fig. 2. Research diagram of the proposed ventilation control.
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2.2. Method description

2.2.1. YOLO (You only Look Once) algorithm for occupant detection
Redmon et al. [37] proposed the YOLO algorithm which pio-

neered the solution in deep-learning based object detection and
it has been applied in many areas, such as transportation [38],
robotics [39], and safety management [40]. YOLO version 4 is
selected in this study since it performed faster and more accurate
than most modern object detection algorithms [41].

Fig. 3 shows the schematic of the system. Firstly, the input video
frame is adjusted to a unified length and width, and then, the
frame is fed into the convolutional network (a class of deep neural
networks that commonly applied in visual information processing)
to predict bounding boxes and the associated confidence scores.
Next, the optimal bounding box of each detected object is identi-
fied through the non-maximum suppression [37]. With the infor-
mation of bounding boxes, the detected occupant and its position
can be obtained (detailed in the next section).
Fig. 3. Detection process
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2.2.2. Location identification of detected occupant
The video obtained from online monitoring of camera is com-

posed of a number of sequential frames (pictures) (see Fig. 4 (a)).
The YOLO algorithm generates a bounding box for the detected
occupant. To determine the occupant location in sub-zone level,
boundary curves are defined (see in Fig. 4) based on the sub-
zones corresponding to the ventilation diffusers (sub-zones can
be divided by the serving area of ventilation diffusers [6,42]). The
occupant location is determined by using the bottom center of
bounding box which represents the standing location of the occu-
pant. The origin of coordinates is set at the left upper corner in the
video frame (see Fig. 4 (b)). Based on the coordinate equations of
boundary curves and the coordinates of the bottom center of
bounding box, the occupant location (sub-zone belonging) can be
identified. To obtain the coordinate equations of the boundary
curves, a MATLAB code (see Appendix C) was developed to get
the coordinates of the sample points on the boundary. Since the
boundary curves (See Fig. 4) are close to a quadratic shape, a quad-
of YOLO algorithm.



Fig. 4. (a) boundary curves and bounding box; (b) illustration of location identification.
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ratic equation is assumed and the coordinate equations of the
boundaries are obtained by curve fitting.

2.2.3. Ventilation strategies
DCV mode
Based on the detected sub-zonal occupant density, the amount

of outdoor air can be determined and adjusted based on the design
Standard. For instance, the Chinese Standard classifies the occu-
pant density (PF) into three levels for the waiting room of public
transportation buildings (refer to Table 1) [6]. With the variation
of occupant density levels, the corresponding minimal ventilation
rates can be recommended (see Table 1), i.e., 15, 16 to 19 m3/(h·p).

Anti-infection ventilation mode
The anti-infection mode of ventilation targets for controlling an

IP below a certain target (e.g., IP � 2%). Based on the Wells-Riley
model (see Equation (1), Section 2.4), the required ventilation rate
can be calculated. The infection risk can be calculated using a mod-
ified Wells-Riley model which includes the effects of social dis-
tance and ventilation effectiveness [15],

IP ¼ 1� expð�Pd
Bqpt
EzQ=N

Þ ð1Þ

Pd ¼ ð�18:19 ln dð Þ þ 43:276Þ=100 ð2Þ
where IP is the infection probability, Pd is the social distance

index, B is initial infection rate, q is the quantum generation rate
produced by one infector (quantum/s), p is the pulmonary ventila-
tion rate of susceptible individual (m3/s), t is the exposure time (s),
Ez is the air distribution effectiveness (see [5]), Q is the room ven-
tilation rate (m3/s), N is the number of occupants, and d is the
transmission distance (m).

2.2.4. Ventilation system energy consumption
The ventilation system energy consumption includes both the

energy consumption of the air-conditioning system and the fan.
The energy consumption of conditioning the outdoor air (by the
air-handling unit) can be estimated by equation (3), where the
Table 1
Flow rate of fresh air (m3/(h·p)) based on Standard [6]

Building type Occupant density PF (p/m2)#

PF � 0:4 0:4 < PF � 1:0 PF > 1:0

waiting room of public transportation
buildings

19 16 15

# : p/m2 stands for people per square meter.
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Qfresh is calculated based on the enthalpy difference (between the
indoor air and outdoor air) and the airflow rate.
Pfresh ¼ Qfresh=COP ð3Þ
where Pfresh is the energy consumption of conditioning the out-

door air (W), Qfresh is the ventilation load (W), COP is the coefficient
of performance. The power of fans is estimated by the affinity law
(equation (4)),
Pfan ¼ bF3 ð4Þ
where Pfan is the power consumption of fan (kW), F is the air-

flow rate (m3/s), and b is the coefficient (b is set to 0.8 based on
the catalog of a fan).
2.3. Case study

2.3.1. Procedure
To demonstrate the proposed method, a schematic indoor space

of a PPB is presented in Fig. 5. Ventilation is designed with four
supply air diffusers mounted at the room ceiling and two outlets
along the side walls, which is a typical design considering its easy
installation and well-functioning airflow pattern. For the easy
design and understanding, each diffuser is used to ventilate a cor-
responding sub-zone (four equal-area sub-zones). As it has been
reported, airflow pattern plays an essential role in air pollutant
(i.e., virus in the current study) removal effectiveness. Many exist-
ing literatures have investigated the impact of airflow pattern on
ventilation efficiency relying either on CFD (Computational Fluid
Dynamics) modelling [43,44] or experimental testing [45]. How-
ever, this is not a focus in this study. For simplicity, each sub-
zone is assumed to be independent.

The ventilation control procedures are described as follows:
Step 1: Video acquisition of occupancy in each sub-zone

(camera),
Step 2: Occupant detection using the bounding box of each

frame using YOLO algorithm (microcontroller unit) (a microcon-
troller is a compact microcomputer designed for specific tasks in
embedded systems, e.g., receiving sensor data, outputting signals),

Step 3: Occupant density calculation based on the bounding
boxes of occupants and the boundary curves,

Step 4: Ventilation mode determination and rates calculation,
Step 5: Control signal transmission to the diffuser dampers

(main and branch).



Fig. 5. Schematic diagram of the ventilation control in public transportation buildings.
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2.3.2. Field studies
A lobby of a university building is selected to test the proposed

camera-based occupant detection (shown in Fig. 6). The lobby area
is 76.22 m2 (with the length of 10.3 m and width of 7.4 m) with
north and south corridors connected to the other rooms of the
building. This lobby is the main entrance and exit for students
and staffs. Thus, the occupancy scenarios are transient.

The lobby area is divided into four sub-zones corresponding to
four ventilation air supply diffusers (numbered in Fig. 6(a)). The
area of each sub-zone is 19 m2 (76.22 m2/4). To ensure a safe social
Fig. 6. (a) Lobby of the university building; (b)

5

distance of 2 m, each person is allowed to occupy a 1-m radius cir-
cle. In this application, by simply putting circles inside the area
(each circle of 1-m radius), the maximum number of occupant den-
sity is 20 (see Fig. 6(b)). Therefore, each sub-zone can accommo-
date maximum 5 occupants to maintain a 2-m social distance.
An occupant density of 0.26p/m2 (5=19) is set as the threshold
(i.e., ‘‘h”) for each sub-zone.

A 2-megapixel surveillance camera with a 2.8 mm focal length
was used to record the video. The video frame rate is 25 frames per
second. Case 1 (13:50:00–13:58:00) is an 8-mins video which con-
Illustration of occupants’ accommodation.
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tains dynamic occupant conditions and is used to validate the
accuracy of occupant density detection. Case 2 (12:30:10–
13:30:00) is a 1-hour video with various occupant scenarios and
is used to demonstrate the IP and energy consumption of different
ventilation strategies. A desktop computer is used to process the
video, and the configuration is as follows: 6-core processor (AMD
Ryzen 5 3600), 16 GB RAM (Random Access Memory), and NVIDIA
GeForce GTX 1660 SUPER (graphics processing unit). The imple-
mentation of YOLO (v4) is based on [46], and the weights used
can be found in [47].

2.3.3. Infection probability model
Wells-Riley model (equation (1)) is used for the infection risk

evaluation and, the values of parameters are selected based on
the following settings: Pd is set as 0.307 which is calculated by
equation (2) with a distance (d) of 2 m; B is set as 2.2% based on
the similar cases (Appendix B); q is the quantum generation rate
and is selected as 0.238 quantum/s [15]; p is set as 8.2 L/min (or
1.37 � 10-4 m3/h) based on the level of activities [48]; t is the time
of exposure, which is estimated by common experience. For the
airport terminal, the exposure time could be roughly 1 h or longer.
For the train station, the typical exposure time is between 5mins to
1 h [48–50]. Here, the exposure time is set as 30mins.

2.4. Ventilation control strategies

In this study, the proposed ventilation mode, namely smart ven-
tilation, is evaluated by the comparison with two other traditional
ventilation control methods, i.e., fixed ventilation mode and DCV
mode.

Strategy 1: fixed ventilation mode - fresh air ratio
This strategy fixes the fresh air supply ratio (defined as the out-

door airflow rate divided by the total air-conditioning supply air
flow rate) at a certain value, e.g., 15%-30% [51]. Given a supply air-
flow rate, the fresh air flow rate is determined regardless of the
occupancy condition.

Strategy 2: DCV mode - occupants’ requirements
This strategy supplies the fresh air based on the demand which

is quantified by occupant density. The ventilation rate for each
occupant follows the recommended value in the design Standards
(e.g., Table 1).

Strategy 3: smart ventilation mode - (proposed strategy)
In this strategy, the demand-controlled ventilation mode or

anti-infection mode is used based on the threshold value (h) of
occupant density (Fig. 2). For the anti-infection mode, the ventila-
tion rate will be determined by the targeted IP value using Wells-
Riley model (see equation (1)).
3. Results

3.1. Validation of occupant density detection

A recorded video (Case 1) was used to validate the occupant
density detection accuracy. The data sampling period was selected
as 10 s to capture the occupancy dynamics. The regression func-
tions of the horizontal and vertical boundary curves are shown in
Fig. 7 (a) and (b). The quadratic functions were obtained through
curve fitting and the R2 (coefficient of determination) values of
two boundary curves are 0.9734 and 0.9981, respectively.

48 continuous video frames were considered for validation.
Specifically, this corresponded to 192 (48 frames � 4 sub-zones)
data samples taken as the detected occupant densities for four dif-
ferent sub-zones, in which 26 detections are erroneous (86.5% data
samples correct). The ground truth (true value, reflecting the real
case) and the detected occupant density are shown in Fig. 8. Taking
6

the sub-zone 1 as an example, the occupant density started from
0.21p/m2, fluctuated and dropped to 0.05p/m2, then raised up to
0.21p/m2 again, and finally decreased to 0.05p/m2. It can be clearly
seen that the occupant densities experienced dynamic variations
and were uneven in different sub-zones. By calculations, the aver-
age detection error of occupant density is 7.5% (or 92.5% of the
accuracy), which is acceptable for engineering application. The
detection error was calculated as: TV�DVj j

TV � 100% (TVis the true
value and DV is the detected value).
3.2. Analysis of infection probability (IP)

This section compares the ventilation rates and IP of three ven-
tilation strategies, i.e., fixed ventilation, DCV and the proposed
smart ventilation. Case 2 (see Section 2.3.2) was used for the eval-
uations of IP.

For the fixed ventilation (constant fresh air ratio of 15%), the
ventilation rate is 101 m3/h for each sub-zone (see Appendix A
for the calculation details). For the DCV scenario, the sub-zonal
ventilation rate ranges from 19 to 144 m3/h, which varied linearly
with the detected occupant density by three levels of ventilation
rates (see Table 1). The smart ventilation targeted for a IP of 2%
[15], and the ventilation rate is same with the DCV strategy when
the sub-zone occupant density below the threshold (i.e., 0.26p/
m2); when the occupant density surpassed the threshold, the ven-
tilation rate was set as ‘‘70·N” m3/h (calculated based on equation
(1)).

Fig. 9 shows that the IP of fixed ventilation rate was increased
with the increasing occupant density. For the occupant density lar-
ger than 0.16p/m2, the IP is out of the infection control target (i.e.,
2%) and can reach up to 12.5% due to a constant but insufficient
outdoor airflow rate. The IP of DCV is ranged from 2.9% to 8.5%,
exceeding the targeted value of 2%. The main reason is that the pri-
mary goal of DCV is energy saving rather than infection prevention.
On average, the DCV (an average IP of 6%) is slightly better than the
fixed ventilation (an average IP of 6.5%) in terms of infection con-
trol. For the proposed smart ventilation, as the occupant density
surpasses the safe threshold of 0.26p/m2, the ventilation rate is
increased immediately to prevent the transmission of infection,
and to maintain the safe/targeted value of a 2% for IP. It is observed
that the fixed or DCV ventilation strategies cannot reach the tar-
geted lower value of IP in the majority of the situations, which
agrees with a previous study [15]. Thus, improving the ventilation
rate is generally recommended to reduce the risk of infection
transmission in the public place.
3.3. Energy consumption of ventilation

Improving the ventilation rate is a simple and effective proce-
dure in infection prevention, however the associated energy con-
sumption cannot be neglected. Table 2 shows the energy
consumption of three ventilation strategies for Case 2 (see Sec-
tion 2.3.2). The COP of the air-conditioning system is set to be
4.2 [52]. The energy consumption of fixed ventilation is set as
the benchmark. The strategy of DCV offers 66.6% of energy saving,
but it cannot satisfy the goal of IP = 2% as mentioned before. The
proposed smart ventilation strategy guarantees the IP goal of 2%
in high occupancy conditions (namely the occupant density higher
than 0.26p/m2) and provides 11.7% of energy saving at the same
time, which demonstrates a good potential to ensure both the
energy efficiency and infection prevention.



Fig. 7. The regression functions of boundary curves.
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4. Demonstration of the hardware platform for occupant-based
ventilation

4.1. The hardware platform and function realization

To realize the proposed smart ventilation system, a hardware
prototype was constructed (shown in Fig. 10 (a)) based on a com-
pact microcontroller (i.e., Raspberry Pi). Raspberry Pi can process
different kinds of data and integrate cameras, sensors and other
devices in one platform. The control process is as follow: acquiring
video frame from the camera, data processing in Raspberry Pi,
obtaining the occupant density and controlling the fan speed.

It should be noted that the implementation of the YOLO algo-
rithm requires powerful computing unit. To estimate the occupant
density in real-time with YOLO (i.e., 20 + frames per second), a
NVIDIA Jetson NX (a powerful computing unit for video processing)
or more powerful is required. Due to the limited hardware, this
study uses the Raspberry Pi for demonstrating the idea of the pro-
posed occupant-based ventilation control. Since the Raspberry Pi
cannot implement YOLO in real-time, a more computationally
friendly background substruction algorithm (i.e., Gaussian mixture
model) was used in the demonstration. The Gaussian mixture
model is a kind of background substruction algorithm and can
extract the moving object as the foreground, with which the occu-
pant density is estimated using the detected foreground pixels (de-
tails can be referred to [28]).

A test was conducted in a small conference room which covers
an area of about 22 m2 (3.4 m width and 6.5 m depth). The fan air-
flow rate was measured by an anemograph (the item 4 and 5 in
Fig. 10). Fig. 11 shows that the fan speed can be effectively adjusted
corresponding to different detected occupant density (i.e., occu-
pant number). Although a 5-seconds delay was observed in the
experiment due to the video processing time, this short delay is
acceptable for practical application. The results demonstrate the
feasibility of this hardware prototype in occupant-based ventila-
tion control.
7

4.2. Alerting system (e.g., email)

Based on the above-mentioned Raspberry Pi platform, an alert
system can be integrated. A Python code (Fig. 12) was developed
to send an email to alert the building manager or corresponding
persons when the occupancy threshold is violated in any sub-
zones of the public space. This function enables the automatic
monitoring based on the real-time occupant detection, which
could liberate some manpower from monitoring and thus improve
the entire building management efficiency in PPBs. The released
manpower can be put into more critical and emergent tasks.

5. Discussions for the benefits of proposed ventilation control
strategy

5.1. Identifications of sub-zone infection risks

An advantage of the proposed camera-based occupant detection
method is that the sub-zone occupant density can be detected and
the associated risk could be calculated. Without the sub-zone occu-
pant information, only an overall occupant density can be
observed, i.e., 8/76.22 = 0.105p/m2 for the case shown in Fig. 13.
With the proposed occupant detection, the occupant density of
the sub-zone can be computed, i.e., 8/19 = 0.421p/m2 which is
higher than the threshold value of 0.26p/m2. Actions, like increas-
ing the ventilation rate and broadcasting alerts, can be taken
immediately to reduce the occupant density so as the infection
transmission risk.

5.2. Ventilation for infection prevention-a proactive measure from
engineering perspective

Wearing masks and keeping social distance are certainly two
effective measures to lower down the infection risk of COVID-19
[12]. However, these two measures are controlled subjectively,
which is not ‘‘robust”. Any individual carrying with the coronavirus



Fig. 8. Sub-zone occupant density: (a) ground truth and (b) detected values.
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that does not stick to the mandatory rules would cause a potential
infection risk. Besides, occupants may remove face masks (drinking
or eating) and stay close (talking) occasionally in public space.
Thus, relying solely on personal subjective behaviors is not robust
to prevent occupant from being infected. In such scenario, the ven-
tilation rate can be adjusted based on occupant density and behav-
ior information to reduce the risk of infection. This is an effective
and efficient approach.

5.3. Solution for improving ventilation efficiency from the perspectives
of saving energy and mitigating infection risk

How to balance the ventilation energy consumption and reduce
the infection probability risk in PPBs is a critical issue in the cur-
rent society. The proposed smart ventilation strategy was com-
pared with two other traditional ventilation modes, namely fixed
ventilation (using a fixed fresh air ratio), demand-controlled venti-
lation (DCV based on occupant density). Given a targeted IP value
of 2%, the fixed ventilation mode normally consumes more energy,
8

e.g., higher ventilation rates supplied during lower occupant den-
sity. From infection control point of view, this fixed mode provides
inadequate ventilation for the case of dense occupancy (which
results in an IP of 12.5%). The DCV is an improved ventilation mode
which adjusted ventilation rates based on occupant density, which
leads to a 66.6% of energy saving (compared with the fix ventila-
tion mode). The IP in such a scenario can be reached up to 8.5%
(4% lower than the fixed ventilation mode). The proposed smart
ventilation strategy considers both energy conservation (required
ventilation rates from occupant density detection) as well as infec-
tion risk control. This strategy can lower the IP value to 2%, while
reaching 11.7% of energy saving compared with the fixed ventila-
tion mode. The advantage of the proposed strategy is that the
DCV mode and the anti-infection mode can be switched based on
the occupancy situation and infection risk calculation (Wells-
Riley model). The proposed ventilation strategy provides a smart
solution for tackling the above dilemma considering both energy
efficiency and infection risk.



0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

0

100

200

300

400

500

600

700

0.05 0.11 0.16 0.21 0.26 0.32 0.37 0.42 0.47

IP

Ve
nt

. r
at

e 
(m

3 /
h)

Sub-zone occupant density (p/m2)

Vent. rate of fixed ventilation Vent. rate of DCV Vent. rate of smart ventilation

IP of fixed ventilation IP of DCV IP of smart ventilation

Fig. 9. Ventilation rate and IP of three ventilation strategies (‘‘Vent.” represents ventilation).

Table 2
Energy consumption of ventilation.

Ventilation strategy Energy consumption (Wh) Energy saving ratio (%)

Fixed ventilation 2911.7 /
DCV 973.7 66.6%
Smart ventilation 2570.5 11.7%
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5.4. Practical implications

To realize and apply the proposed smart ventilation in this
study, a microcontroller-based hardware prototype has been
developed and tested. Besides, an email alert system is integrated
to inform the occupants in real time in order to reduce the risk of
infection transmission. The developed hardware prototype can be
readily applied in PPBs and many other building spaces with a rel-
atively low cost (the microcontroller costs around US $60). Besides,
the automatic and real-time detection of occupant density can
release the manpower for more critical tasks, bring extended value.
Currently, mutations in SARS-CoV-2 have been observed, which
may reduce the effect of vaccine and can cause another wave of
epidemic [53]. In the next few years, the epidemic prevention
and control probably may become the regular routine in public
spaces. Constructing a healthy yet sustainable society is a urgent
need now [54]. The developed hardware prototype of the smart
ventilation is especially meaningful under the long-term risk of
COVID-19 (or alike diseases), which can be a feasible and promis-
ing solution to build healthy yet sustainable indoor environments
for public buildings.
5.5. Limitations

In our work, we focused on the high-dense building environ-
ment which may have potentially high risk of infection transmis-
sion. The ideal way to determine the ventilation rate is based on
the concentration of virus and the location of the infected person
9

(s). Unfortunately, the virus or infected person is difficult to be
either detected or monitored. Therefore, the occupant-density-
detection based ventilation system is proposed and a modified
Wells-Riley model was used to evaluate the infection risk, based
on which the ventilation rate was estimated. The main limitation
of the camera-based occupant detection is that the occlusion of
the video frame due to dense occupants, could miss the detection.
A possible solution is to place the camera on the ceiling to mini-
mize the occlusion.

In the Wells-Riley model, the parameter B (initial infection rate)
is estimated based on the reported infection cases, while the q
(quantum generation rate) is referred to a similar study [15]. How-
ever, the values of parameters in the Wells-Riley model are case-
dependent (e.g., an infected person may have a higher quantum
generation rate than the assumed one). Given that the ventilated
rate calculated from the Wells-Riley model is a minimal value,
the ventilation rate can be further increased in practice to secure
a lower IP and compensate the uncertainties of the assumed
parameter values.

The calculated ventilation rates for infection prevention (maxi-
mum 630 m3/h) are all below the design rate of supply air (709 m3/
h). Thus, it is achievable in the presented case study. However, in
some cases of high-dense occupancy, the calculated ventilation
rate may not be achieved by the existing ventilation system. Some
assistance measures can be used to loosen the existing ventilation
system requirement. For instance, the alert system (presented in
Section 4) could be used to control the occupant density by redi-
recting the crowd moment. Some social distance tapes can also
be put into practice to enhance the social distancing. With a rela-
tively lower occupant density, the required minimal ventilation
rate can be reduced.

Further control measures such as the installation of the filtra-
tion module and the UV (ultraviolet) lighting module can reduce
the risk of spreading virus. For the sake of practical applications,
this study simplifies the situations and assumed independency of
ventilation among sub-zones. In reality, sub-zones would interact



Fig. 10. (a) the control schematic; (b) hardware prototype

Fig. 11. Occupant number and fan speed ratio.
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with each other. Future studies can be planned to investigate the
cross infections and interactions of multiple diffusers on the tar-
geted zone.
10
6. Conclusions

This paper proposes a smart ventilation control that can
actively self-adjust the ventilation rate when experiencing differ-



Fig. 12. Email alert based on Raspberry Pi: (a) Python code (b) email example.

Fig. 13. A case of crowd gathering in a sub-zone.
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ent occupant densities, with objectives of both mitigating infection
risk of long-distance aerosol transmission and saving ventilation
energy. The main conclusions are summarized below.

(1) The YOLO-based occupant detection algorithms achieved a
92.5% of the detection accuracy, which is acceptable for
practical application.

(2) The proposed smart ventilation strategy can lower the infec-
tion probability and save energy consumption when com-
pared with the traditional fixed ventilation mode. For the
current study, with 15% outdoor air ratio as a test case, the
infection probability can be up to 12.5%; the proposed ven-
tilation mode can lower infection probability to 2% and save
11.7% of energy consumption.

(3) A low-cost microcontroller-based hardware prototype is
developed to realize both functions of occupant density
detection and ventilation control.

It should be noted that ventilation is one of the important pre-
vention measures. Wearing masks, keeping social distancing and
well-maintained hygiene are important ways that personnel can
contribute, which will continually be recommended or reinforced
in the future. However, with the chances of off-mask activities,
close contact and insanitation, the ventilation control becomes
11
essential as a proactive prevention measure in public spaces.
Besides, given the rapid evaporation process (0.17 s and 0.4 s) of
small droplets to droplet nuclei [55], a real-time occupant-
density-detection based ventilation control would be extremely
important.
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Table A1
The calculation of heating load in the case study.

Envelop items area
(m2)

heat conduction coefficient
(W/m�K)

Dtbetween indoor and
outdoor (�C)

CF
forDt

basic heat loss
(W)

CF for heat
loss

corrected heat
loss (W)

heating load
(W)

north internal
wall

22.2 1.72 20.5 0.6 469.7 1 469.7 469.7

south internal
wall

22.2 1.72 20.5 0.6 469.7 1 469.7 469.7

east glass
façade

30.9 2.5 20.5 1 1583.6 0.95 1504.4 1504.4

west internal
wall

30.9 1.72 20.5 0.6 653.7 1 653.7 653.7

ceiling 76.22 0.77 20.5 0.6 721.9 1 721.9 721.9
ground 76.22 0.77 20.5 1 1203.1 1 1203.1 1203.1

5022.5

(Dt is temperature difference; CF stands for correction factor. The heat conduction coefficients and CF values can refer to [6].)

Table B1
Data of reported infection cases.

Cases Number of initial infector(s) Number of final infections Number of people Initial infection rate

Bus in Hunan, China 1 8 48 2.1%
Airflight 3 7 86 3.5%
Bus in Ningbo, China 1 25 68 1.5%
Airplane in Iran 5 37 311 1.61%
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Appendix A. . Calculation of ventilation load for the case study

The case study was conducted in the Winter. Thus, the heating
load was calculated. The design settings are presented as follows:
supply air temperature is 24 �C, room air temperature is 18 �C,
specific heat of air is 1.005 kJ/(kg��C), density of air is 1.17 kg/m3,
and ambient outdoor air temperature is �2.5 �C for air-
conditioning at the design condition of Suzhou, China. From
Table A1, the heating load is 5022.5 W.
Appendix B. . Parameters of the reported infection cases

Based on the cases reported in Table B1, the average initial
infection rate (i.e., 2.2%) is used in the calculation of IP.
Appendix C. . MATLAB code - obtain the pixel coordinates (x, y)

im_read_current_cell = imread(’C:\Users\Desktop\1.jpg’); (input
file location in brackets)

imshow(im_read_current_cell);
[x_screen,y_screen] = ginput;
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