Skip to main content
. 2021 Feb 23;8:648877. doi: 10.3389/fcvm.2021.648877

Table 1.

Artificial intelligence for image analysis and quantification.

Authors Summary Data Performance
Acquisition Datasets Patients Metric value Compared against
Left ventricular function assessment and quantification
Asch et al. Automated EF using ML to assess LV function and volumes 2D 1 > 50.000 r = 0.95 EA
Cannesson et al. Automated EF using AI to assess LV function and volumes 2D 1 218 r = 0.96 EA
Hubert et al. Automated diastolic function assessment 2D 1 50 AUC 0.91 OVS
Knackstedt et al. Automated EF and strain using ML to assess LV function 2D 4 255 ICC 0.83 EA
Lancaster et al. Automated diastolic function assessment 2D 1 866 Kappa 0.62 OVS
Medvedofsky et al. Automated EF using ML to assess LV function and volumes 3D 6 180 r 0.94 EA
Rahmouni et al. Automated EF using AI to assess LV function and volumes 2D 1 92 r = 0.64 EA
Sabovik et al. Automated diastolic function assessment 2D 1 1,407 AUC 0.88 OVS
Tsang et al. Automated EF using ML to assess LV function and volumes 3D 1 159 r 0.87–0.96 EA
Disease classification
Calleja et al. Automated quantification using ML to assess aortic stenosis and regurgitation 3D 1 40 ICC 0.99 OIM
Casaclang et al. Automated ventricular response to AS using ML 2D 1 246 p < 0.001 EA
Diller et al. Automated segmentation using DL to detect congenital heart disease 2D 2 239 AUC 0.98 EA
Ghesu et al. Automated detection valve morphology using DL 3D X 869 CE 45.2% CT
Jeganathan et al. Evaluate valve morphology using AI in mitral valve analysis 3D 1 4 P = 0.0083 EA
Jin et al. Automated localizing prolapse using ML to evaluate mitral insufficiency 3D 1 90 AC 0.89 EA
Madani et al. Automated diagnosis ventricular hypertrophy using DL 2D 1 79.937 AUC 91.2 EA
Moghaddasi et al. Automated quantification mitral regurgitation using ML 2D 1 102 AUC 0.99 EA
Narula et al. Automated discrimination HCM or athlete heart using ML 2D 1 139 S&S p = 0.04 EA
Pereira et al. Automated detection aortic coarctation using DL 2D 1 163 ER 12.9 EA
Sanchez et al. Automated clustering using ML for group classification 2D 4 156 κ, 72.6% EA
Sengupta et al. Automated discrimination pericarditis or RCM using ML 2D 2 94 AUC 0.89 OIM
Zhang et al. Automated discrimination HCM, amyloidosis, or PAH using DL 2D 1 14.035 AUC >0.84 EA

AC, accuracy; AUC, area under curve; DC, dice coefficient; EA, expert assessment; EF, ejection fraction; EV, echo vendor; HCM, hypertrophic cardiomyopathy; IG, information gain; LV, left ventricular; ICC, intraclass correlation coefficient; OIM, other image modality; OVS, other validated scores; RCM, restrictive cardiomyopathy; SE, segmentation error; X, not available.