Skip to main content
. 2021 Feb 25;195(3):797–812. doi: 10.1007/s00442-021-04860-8

Table 3.

Regression analysis relating the different productivity components to physiographic, edaphic and climatic, and stand structural variables across the four forest types on Mt. Kilimanjaro

Elevation Mean annual temperature Mean annual precipitation Soil C:N ratio pH (KCl) Aboveground biomass Basal area
r2 P r2 P r2 P r2 P r2 P r2/ r2adj P r2 P
NPP total − 0.87  < 0.001 0.76  < 0.001 0.61  < 0.01 − 0.43  < 0.05 − 0.09 n.s 0.47  < 0.05 0.54  < 0.01
NPP aLF − 0.85  < 0.001 0.79  < 0.001 0.53  < 0.01 − 0.46  < 0.05 − 0.01  < 0.1 0.68  < 0.01* 0.47  < 0.05
NPP aW − 0.60  < 0.01 0.46  < 0.05 0.55  < 0.01 − 0.21 n.s − 0.21 n.s 0.32  < 0.01 0.60  < 0.01
NPP CR − 0.62  < 0.01 0.48  < 0.05 0.55  < 0.01 − 0.21 n.s − 0.20 n.s 0.64  < 0.01 0.63  < 0.01
NPP FR − 0.04 n.s 0.05 n.s 0.01 n.s − 0.09 n.s − 0.01 n.s -0.18 n.s -0.11 n.s

NPP in Mg ha−1 year−1, elevation in m a.s.l., mean annual temperature in °C, mean annual precipitation in mm, aboveground biomass in Mg ha−1 and basal area in m2 ha−1. Significant relations are marked in bold (P < 0.05); nonlinear relations are indicated by (*) and the r2adj is given. Negative relations are indicated by (−)

Given is the r2 (adjusted r2 in the case of nonlinear relations) and the P value of the relationships

aLF aboveground litter fall, aW aboveground wood, CR coarse roots, FR fine roots