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The bed nucleus of the stria terminalis (BNST)—a key 
part of the extended amygdala—has been implicated in 
the regulation of diverse behavioral states, ranging from 
anxiety and reward processing to feeding behavior. Among 
the host of distinct types of neurons within the BNST, 
recent investigations employing cell type- and projection-
specific circuit dissection techniques (such as optogenetics, 
chemogenetics, deep-brain calcium imaging, and the genetic 
and viral methods for targeting specific types of cells) have 
highlighted the key roles of glutamatergic and GABAergic 
neurons and their axonal projections. As anticipated 
from their primary roles in excitatory and inhibitory 
neurotransmission, these studies established that the 
glutamatergic and GABAergic subpopulations of the BNST 
oppositely regulate diverse behavioral states. At the same 
time, these studies have also revealed unexpected functional 
specificity and heterogeneity within each subpopulation. 
In this Minireview, we introduce the body of studies that 
investigated the function of glutamatergic and GABAergic 
BNST neurons and their circuits. We also discuss unresolved 
questions and future directions for a more complete 
understanding of the cellular diversity and functional 
heterogeneity within the BNST.
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INTRODUCTION

The bed nucleus of the stria terminalis (BNST) is a basal fore-

brain structure situated posterior to the nucleus accumbens, 

anterior to the thalamus, medial to the dorsal striatum, and 

dorsal to the ventral pallidum and preoptic area (Alheid and 

Heimer, 1988). The BNST is a representative example of a 

highly heterogeneous and complex brain region, with 15-20 

subregions harboring numerous types of neurons defined by 

cellular morphology (Ju et al., 1989), neurochemical makeup 

(Bota et al., 2012; Ju and Swanson, 1989; Kash et al., 2015; 

Poulin et al., 2009), electrophysiological properties (Daniel 

and Rainnie, 2016; Gungor and Paré, 2016), as well as their 

patterns of connectivity (Dong and Swanson, 2004; Dong 

et al., 2001; Lebow and Chen, 2016). The anatomical com-

plexity of the BNST is well-matched with the many behavior-

al, autonomic, and endocrine functions it supports, which 

have been extensively discussed in the following excellent 

reviews: anxiety (Davis et al., 2010; Fox et al., 2015; Luyck et 

al., 2019; Robinson et al., 2019; Walker et al., 2009), stress 

(Daniel and Rainnie, 2016; Lebow and Chen, 2016; Radley 

and Johnson, 2018), aversive learning and memory (Goode 

and Maren, 2017; Gungor and Paré, 2016), addiction (Kash 

et al., 2015; Vranjkovic et al., 2017), social behavior (e.g., 

aggression, reproduction, and parenting) (Bayless and Shah, 

2016; Flanigan and Kash, 2020), appetite control (Atasoy 

and Sternson, 2016; Zimmerman et al., 2017), as well as 
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the control of heart rate and blood pressure (Crestani et al., 

2013) and hormonal release (Radley and Johnson, 2018). 

Understanding how such diversity of functions is implement-

ed by the heterogeneous constituents of the BNST remains to 

be a significant challenge.

	 A promising approach to tackle this problem—which 

turned out to be remarkably successful so far—is to investi-

gate the anatomy and function of a specific neuron type de-

fined by the expression of a marker gene (Huang and Zeng, 

2013; Luo et al., 2018; Zeng and Sanes, 2017). This became 

possible with the development of neuron type-specific activ-

ity manipulation and imaging techniques, such as optoge-

netics and chemogenetics (Deisseroth, 2011; Roth, 2016), 

two-photon calcium imaging, and fiber photometry (Chen 

et al., 2013; Cui et al., 2013; Gunaydin et al., 2014; Svoboda 

and Yasuda, 2006), in conjunction with the advancement in 

genetic and viral methods that grant researchers reproduc-

ible access to a genetically defined subpopulation of neurons 

(Betley and Sternson, 2011; Huang and Zeng, 2013; Luo et 

al., 2018; Nectow and Nestler, 2020; Yizhar et al., 2011). 

Indeed, the genetic marker-based neuron type-specific inves-

tigations over the past decade yielded a striking expansion in 

our understanding of the structure and function of the BNST 

at the cellular level.

	 Among the exciting progress, in this Minireview, we 

systematically review the studies that employed this cut-

ting-edge approach to specifically investigate glutamatergic 

and GABAergic neurons in the BNST and describe how each 

contributed to an updated view of the BNST function. We 

also discuss further remaining questions and ongoing at-

tempts to overcome the limitations of this approach.

SPECIFIC TARGETING OF GLUTAMATERGIC AND 
GABAERGIC BNST SUBPOPULATIONS

Glutamate and gamma-aminobutyric acid (GABA) are the 

principal excitatory and inhibitory neurotransmitters in the 

brain, respectively. The anterior and dorsal parts of the BNST 

are mostly comprised of GABAergic neurons, while the pos-

terior and ventral parts of the BNST contain significant num-

bers of both glutamatergic and GABAergic neurons (Poulin 

et al., 2009). To target glutamatergic or GABAergic BNST 

subpopulations, most studies used the Vglut2 or Vgat gene 

(that encodes vesicular glutamate transporter 2 or vesicular 

GABA transporter, respectively) as the genetic marker, re-

spectively (Bhatti et al., 2020; Jennings et al., 2013a; 2013b), 

while some used Gad2 (encoding 65 kDa isoform of glutam-

ic acid decarboxylase) to gain genetic access to GABAergic 

BNST neurons (Hao et al., 2019). Specifically, these studies 

used knock-in mouse lines expressing a bacterial recombinase 

Cre under the promoter of Vglut2, Vgat, or Gad2 in combi-

nation with viral tools that allow Cre-dependent expression 

of optogenetic or chemogenetic tools or fluorescent calcium 

indicators. Notably, all the studies have demonstrated that 

optogenetic stimulation of each neural population indeed 

evoked the anticipated excitatory or inhibitory responses in 

the postsynaptic neurons, confirming the tight correspon-

dence between molecular and electrophysiological pheno-

types.

OPPOSITE REGULATION OF THE DIVERSE 
BEHAVIORAL STATES

Consistent with the fact that glutamatergic and GABAer-

gic neurons can excite or inhibit the postsynaptic neurons, 

studies have reported the opposite roles of these neurons 

in the BNST in distinct behaviors (Fig. 1). For example, op-

togenetic stimulation of the axon terminals of Vglut2-ex-

pressing neurons of the ventral BNST (vBNST) in the ventral 

tegmental area (VTA, a well-established center for reward 

processing and motivated behavior; Schultz et al., 1997) 

in behaving animals induced place avoidance (i.e., mice 

avoided the chamber associated with the optogenetic stim-

ulation of this pathway) and anxiety-like behavior, whereas 

analogous terminal stimulation of vBNSTVgat neurons in the 

VTA supported place preference and reduced anxiety-like 

behavior (Jennings et al., 2013b). In congruence with their 

opposite causal functions, in vivo single-unit recordings from 
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Fig. 1. Behavioral functions of the projections of GABAergic and glutamatergic BNST neurons. Summary of the causal roles of the 

efferent projections from BNSTVgat and BNSTGad2 neurons (left) and BNSTVglut2 neurons (right). RTPP, real-time place preference; self-stim, 

self-stimulation; RTPA, real-time place aversion. Note that different circles and arrows do not indicate that separate subpopulations of 

neurons project to each target area. The anatomical relationship among the projections remains unclear, except that the BNST neurons 

projecting to the PAG and LH are distinct.
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VTA-projecting vBNSTVglut2 or vBNSTVgat neurons revealed that 

these BNST subpopulations are mostly excited or inhibited 

by aversive stimuli, respectively. Optogenetic stimulation of 

either vBNSTVglut2 or vBNSTVgat neurons evoked corresponding 

excitatory or inhibitory postsynaptic responses in both tyro-

sine hydroxylase (TH)-expressing or non-expressing neurons 

(putative dopaminergic and non-dopaminergic neurons) in 

the VTA in an ex vivo electrophysiology setting, yet more re-

sponsive neurons were found among TH-negative neurons, 

suggesting that the control of non-dopaminergic VTA neu-

rons may underlie the observed effects of the manipulation 

of vBNSTVglut2 and vBNSTVgat neurons.

	 Another study that showed the opposing roles of these 

populations focused on their projections to the parabrachial 

nucleus (PB), a small pontine structure that has been impli-

cated in a number of functions including feeding (Kim et al., 

2020; Palmiter, 2018). In this study, optogenetic stimulation 

of the axon terminals of BNSTVglut2 neurons in the PB sup-

pressed feeding in food-deprived mice, induced place avoid-

ance, supported negative reinforcement of an operant be-

havior to turn off the stimulation, and increased anxiety-like 

behavior (Bhatti et al., 2020). In contrast, stimulating the 

terminals of BNSTVgat neurons increased food intake in ad libi-

tum fed mice, induced place preference, supported positive 

reinforcement of an operant task to turn on the stimulation, 

had an anxiolytic effect, and suppressed freezing responses 

to a learned auditory threat signal. In line with their causal 

roles, fiber photometry recordings from the axon terminals of 

BNSTVglut2 neurons in the PB revealed that these terminals are 

activated upon footshock and inhibited during food intake, 

whereas the equivalent terminal recordings from BNSTVgat 

neurons showed that these are inhibited by footshock and 

activated during feeding behavior. Together, these studies 

suggest that glutamatergic and GABAergic BNST neurons 

might be oppositely regulated by motivationally salient stim-

uli, and can exert opposite influences on multiple behaviors 

(Bromberg-Martin et al., 2010; Janak and Tye, 2015).

ANATOMICAL AND FUNCTIONAL HETEROGENEITY

Notably, while the activation of both the BNSTVgat-PB and 

vBNSTVgat-VTA projections supported place preference and re-

duced anxiety-like behaviors, only the activation of the former 

increased feeding behavior (Bhatti et al., 2020; Jennings et 

al., 2013a). Furthermore, a separate study showed that opto-

genetic stimulation of the projection from the anterior dorsal 

part of the BNST (adBNST, mostly composed of GABAergic 

neurons) to the VTA supports place preference, but does 

not affect anxiety-like behavior (Kim et al., 2013). Thus, the 

effects of activating BNSTVgat neurons on emotional valence, 

feeding, and anxiety can be dissociated by more refined tar-

geting based on projection targets or subregional locations. 

As such, BNSTVglut2 and BNSTVgat neurons can be further subdi-

vided into more functionally discrete subpopulations by other 

genetic markers, subregional distribution, and connectivity.

	 In addition to the BNSTVgat-PB pathway, optogenetic stim-

ulation of the projection from BNSTVgat neurons to the lateral 

hypothalamus (LH) (Jennings et al., 2013a) and the projec-

tion from BNSTGad2 neurons to the periaqueductal gray (PAG) 

(Hao et al., 2019) have also been shown to induce feeding 

behavior. In the LH projection study (Jennings et al., 2013a), 

the authors further demonstrated that optogenetic stimu-

lation of the BNSTVgat-LH pathway induced place preference 

and intracranial self-stimulation (i.e., mice performed operant 

nosepoke responses to receive the brief optogenetic stimula-

tion of this projection). Conversely, optogenetic inhibition of 

this projection induced place aversion, in addition to decreas-

ing food consumption. Remarkably, self-stimulation of the 

BNSTVgat-LH projection could be augmented or attenuated by 

food-deprivation or satiety, indicating that the hedonic value 

associated with the stimulation is dependent on the overall 

appetite level of the animals. Besides, optogenetic stimula-

tion of the BNSTVgat-LH pathway induced a strong preference 

for high-fat food, suggesting that activation of this projection 

induces hedonic feeding as well as homeostatic feeding (Ros-

si and Stuber, 2018). The authors further demonstrated that 

the LH neurons that exhibit strong inhibitory postsynaptic 

currents (IPSCs) evoked upon optogenetic stimulation of the 

axon terminals of BNSTVgat neurons abundantly expressed 

Vglut2, establishing that the main target of the BNSTVgat-LH 

pathway is LHVglut2 neurons.

	 On the other hand, in the PAG projection study (Hao et al., 

2019), the authors found that optogenetic stimulation of the 

axon terminals of BNSTGad2 neurons in the ventrolateral PAG 

(vlPAG) increased food intake in ad libitum fed mice, and 

inhibiting the same projection decreased feeding behavior in 

food-deprived mice. Importantly, the authors used retrograde 

tracers with two different colors to show that the vlPAG-pro-

jecting BNST neurons are distinct from the LH-projecting neu-

rons. The overlap and separation among the many aforemen-

tioned projection-defined subpopulations of BNST neurons 

remain unclear. Determining the precise circuit organization 

has the potential to significantly advance our understanding 

of how glutamatergic and GABAergic BNST neurons regulate 

the feeding, and also reward-related and anxiety-like behav-

iors (Betley et al., 2013).

CONCLUSION AND FUTURE PERSPECTIVES

In this Minireview, we focused on the opposing roles of glu-

tamatergic and GABAergic neurons in the BNST and covered 

the literature that used genetic markers to interrogate these 

subpopulations. Overall, GABAergic neurons in the BNST 

seem to induce a positive-valence, appetitive motivational 

drive, whereas glutamatergic neurons in the BNST elicit a 

state of negative valence, aversion, and anxiety. This offers a 

useful dichotomous perspective to understand the role of the 

BNST at a simpler level.

	 At the same time, these studies have also clearly demon-

strated the functional heterogeneity within each population. 

This heterogeneity was revealed by single-unit recordings 

(Jennings et al., 2013b) and projection-specific activity re-

cordings and manipulations (Bhatti et al., 2020; Hao et al., 

2019; Jennings et al., 2013a). Recent studies targeting sub-

populations of GABAergic BNST neurons also reinforce this 

notion. For example, neurons in the oval nucleus of the BNST 

defined by the expression of the prkcd gene, which is a sub-

population of GABAergic neurons, are activated upon various 
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inflammatory signals (Wang et al., 2019). Notably, optoge-

netic stimulation of these neurons suppressed feeding, while 

the same manipulation did not have an effect on anxiety-like 

behavior, and failed to support conditioned place. These ef-

fects are in marked contrast to the orexigenic effects of the 

stimulation of the vBNSTVgat-VTA projection (Jennings et al., 

2013b) or BNSTVgat-PB projection (Bhatti et al., 2020), sug-

gestive of isolation of a more specific BNST subpopulation. 

Furthermore, another study targeting two subpopulations of 

GABAergic BNST neurons, characterized by the expression of 

the Crh and Cck genes, showed that each subpopulation is 

concentrated in the lateral and medial regions of the BNST, 

and activation of each drove aversion and approach to the 

stimulation-paired chamber, respectively (Giardino et al., 

2018). Of note, chemogenetic activation of BNSTVgat neu-

rons, which activates the Gq protein-mediated signaling, was 

shown to increase anxiety-like behavior, suggesting that the 

recruitment of certain intracellular signaling pathways may 

also have specific effects in behavior (Mazzone et al., 2018).

	 The data from cell-type-specific interrogations provide 

invaluable building blocks for the construction of a detailed, 

realistic framework that can fully describe the inner workings 

of the multifunctional BNST circuitry. Undoubtedly, the field 

is moving forwards in this direction; such efforts are being ac-

celerated by technical advances, including neuron type-spe-

cific activity manipulation and imaging techniques and ge-

netic and viral methods as mentioned above, as well as the 

anatomical tissue processing techniques (Park et al., 2019; 

Seo et al., 2016; Ueda et al., 2020) and single-cell RNA-se-

quencing techniques (Armand et al., 2021; Tasic, 2018). 

In particular, the droplet-based single-cell RNA-sequencing 

approach has been recently applied to the BNST and revealed 

dozens of novel cell types (Moffitt et al., 2018; Rodriguez-Ro-

maguera et al., 2020; Welch et al., 2019). Determining the 

precise functions of these subpopulations at the circuit and 

behavioral levels hold great promise for the comprehensive, 

mechanistic understanding of the diverse functions mediated 

by the BNST circuitry.
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