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Abstract
Skin wound healing is an intractable problem that represents an urgent clinical need. 
To solve this problem, a large number of studies have focused on the use of exosomes 
(EXOs) derived from adipose-derived stem cells (ADSCs). This review describes the 
mechanisms whereby ADSCs-EXOs regulate wound healing and their clinical appli-
cation. In the wound, ADSCs-EXOs modulate immune responses and inflammation. 
They also promote angiogenesis, accelerate proliferation and re-epithelization of skin 
cells, and regulate collagen remodelling which inhibits scar hyperplasia. Compared 
with ADSCs therapeutics, ADSCs-EXOs have highly stability and are easily stored. 
Additionally, they are not rejected by the immune system and have a homing effect 
and their dosage can be easily controlled. ADSCs-EXOs can improve fat grafting and 
promote wound healing in patients with diabetes mellitus. They can also act as a 
carrier and combined scaffold for treatment, leading to scarless cutaneous repair. 
Overall, ADSCs-EXOs have the potential to be used in the clinic to promote wound 
healing.
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1  | INTRODUC TION

Wound healing is a complex biological process that takes place in 
skin tissue after injury by trauma, burn or diabetic ulcers.1 Chronic 
skin wounds are difficult to heal, for example, in diabetic or long-term 
bedridden patients.2 Therefore, wound healing is one of the most in-
tractable problems for clinicians and a heavy burden for patients, both 
physically and financially. Conventional wound care methods, with the 
risk of atrophic scars and pigmentary abnormalities, include skin graft-
ing, skin flap transplantation, laser therapy and biological stents.3,4 
Also, biological scaffolds are costly and slow, and they are not suitable 
to treat large scale trauma.5,6

Other treatments include local application of specific growth fac-
tors7 and gene therapy.8 However, local growth factors are easily de-
graded in body fluids, whereas dosage cannot be easily controlled at 
the wound site.9 Hence, there is a crucial and urgent need for alterna-
tive efficient and safe methods to promote wound healing.

Recently, stem cell therapy has flourished because of its pluripo-
tency, self-renewal and the ability to promote secretion of regenerative 
cytokines.10 Pluripotent stem cells are considered safe and overcome 
moral concerns associated with embryonic stem cells. However, stem 
cell therapy may present both problems of storage and transportation 
and risks of induced tumorigenesis and deformity.11 Stem cells have 
been proposed to promote wound healing in a paracrine way by (1) reg-
ulating macrophages,12 T cells, B cells and others13-15 to reduce inflam-
mation, (2) secreting VEGF to promote angiogenesis,16 (3) promoting 
proliferation and differentiation of fibroblasts and keratinocyte-form-
ing cells, (4) producing anti-fibrosis cytokines and (5) transforming into 
microvascular endothelial cells and keratinocytes.13,17

Exosomes are one of the components of paracrine and the main 
contributor to stem cells efficacy.18 They are small, single membra-
nous, secretory organelles rich in proteins, lipids, nucleic acids and car-
bohydrate conjugates. They are also thought to have a wide variety of 
activities, such as remodelling the extracellular matrix and delivering 
signals and molecules to other cells. Their usage avoids many of the 
shortcomings of stem cells, since they are stable and easily stored. In 
addition, they are not rejected by the immune system, have a homing 
effect, and dosage can be easily controlled.19,20

Exosomes derived from adipose-derived stem cells (ADSCs-EXOs) 
have become a hot topic in the field of skin wound repairing and treat-
ment. Adipose-derived stem cells (ADSCs) are derived from adipose 
tissue, where they are nearly 500 times more abundant than in an equiva-
lent amount of bone.21,22 The abundance and the simple methods of sam-
pling of ADSCs make it safer against trauma and other adverse reactions.

2  | BIOLOGIC AL CHAR AC TERISTIC S OF 
E XOS

2.1 | Biogenesis and release

Exos, as a subtype of extracellular vesicles (EVs), are derived from 
endosome and plasma membranes through endocytosis, fusion 

and budding processes.23 There modes of EXOs and other EVs 
biogenesis and release are as follows (Figure  1). In the first, the 
primary endosomes produced by phagosomes and plasma mem-
brane are further acidified to form secondary endosomes. These 
subsequently bud inward to form multivesicular bodies (MVBs). 
Some MVBs entering lysosomes are degraded, whereas the rest 
release EVs when they fuse to the plasma membrane. This last step 
has been shown using genetically encoded, pH-sensitive CD63–
pHluorin fusion proteins.24 In the second, EVs directly bud from 
the plasma membrane, as shown by atomic force microscopy ex-
periments which demonstrated that the budding of EVs at the 
plasma membrane of stem cells occurs at rates equal to their pro-
duction.25 Moreover, findings of earlier electron microscope and 
electron microscopy experiments also prove this mode.26-29 There 
may exist other modes of EXOs biogenesis. Recent researches 
illustrate that EXOs can be released in delayed by deep invagi-
nations of certain cell types at the plasma membrane, which are in-
distinguishable from MVBs by conventional transmission electron 
microscopy.30-32 These intracellular plasma membrane–connected 
compartments (IPMCs) form a continuum with the extracellular 
milieu via necks, where vesicles can be stored and released in a 
pulsatile form.30

Exosomes biogenesis and release is regulated by several factors.

1.	 Rab proteins determine organelle membrane identity and mediate 
organelle dynamics33 but also regulate EXOs biogenesis that 
take place via endosomes and the plasma membrane. Rab27 
proteins can mediate MVB maturation and traffic to the plasma 
membrane34,35 and regulate plasma membrane PIP2 dynamics 
to organize microdomains involved in budding,28 together with 
Rab35.36 Rab11 proteins may affect EXOs release via a calci-
um-induced homotypic MVBs fusion/maturation process.37

2.	 EXOs release can be promoted by the binding of the vacuolar pro-
tein sorting factor 4 (Vps4) and the endosomal sorting complex, 
required for transport (ESCRT), to ubiquitination protein. The 
ESCRT machinery contributes to membrane deformation, seal-
ing and repairing in a wide array of processes that include MVB 
biogenesis.38 Therefore, EXOs biogenesis is likely to be ESCRT-
dependent,39 although this mechanism depends on other factors 
such as VPS4 ATPase.38,40

3.	 EXOs biogenesis is also regulated by the Ral family of small 
GTPases. Their inhibition produced accumulation of MVBs near 
the plasma membrane and a marked reduction in secreted EXOs 
and EXOs marker proteins.41 The small GTPase Arf6 and the 
phospholipase PLD2 of the Ral family are also implicated in pro-
moting EXO biogenesis.42 PLD2 seems to be dependent on a pair 
of exosomal scaffolds, syntenin and Alix.

4.	 Autophagy-related (Atg) proteins coordinate initiation, nuclea-
tion, and elongation during autophagosome biogenesis. A de-
crease in EXOs secretion was observed in cancer cells lacking 
ATG5,43 whereas secretion of EXOs and EXOs related proteins 
increased in CRISPR/Cas9-mediated neuronal cells knockout of 
Atg5.44
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5.	 UV radiation, oxygen-free radical stimulation, changes in calcium 
levels or cholesterol content may all contribute to variations in 
EXOs secretion.45,46

2.2 | Structure and composition

Exosomes, released by various types of cells to the extracellular 
space, are small (30-150 nm) lipidic vesicles (LVs).35,47-51 Since they 
are approximately 5- to 10-fold smaller than the wavelength of vis-
ible light, they can be detected by conventional fluorescence mi-
croscopy when fluorescently labelled instead of conventional light 
microscopy.28 Cryo-electron microscopy shows that EXOs display 
a spheroid morphology, although a small proportion has multiple 
membranes or presents elongated, tubule-like morphologies. The 
latter may be generated by biological processes, by physical force-
induced fragmentation and mechanical resealing.52 EXOs have a 
density of ~1.1-1.2 g/mL.53 Homogeneity is affected by protein, lipid 

ratio, expression of a specific single exosomal cargo protein28,29 or 
exosomal metabolic pathways (eg, as a consequence of hydroxyapa-
tite crystallization by osteogenic EXOs54).

Several tetraspanin proteins are highly enriched in EXOs, for 
example CD81, CD82, CD37 and CD63, with CD63 and CD81 are 
the least and the most enriched in B lymphocytes, respectively.55 
In general studies, the successful isolation of EXOs from ADSCs is 
based on the detection of EXO markers (CD9, CD63 and CD81). 
Since that initial report, CD81 and CD63 have come to be among 
the most commonly used exosomal marker proteins, together with 
CD9,56 also detected in large vesicles.57 EXOs also have other 
transmembrane signal proteins acting as signal molecules,58 and 
carry cytokines, fibronectin, tenascin C and other extracellular 
matrix proteins (ECM). These suggest they participate in multi-
ple signal platforms for autocrine and paracrine signaling.59-61 
The inner cortex of exosomes is rich in scaffolding proteins 
Syntenin and Alix. In addition, a large number of tetrameric as-
sociated chaperones, including major histocompatibility complex 

F I G U R E  1  EXOs bud from endosome and plasma membranes. Exosome biogenesis may use three mechanisms: (1) vesicle budding 
into discrete endosomes that mature into multivesicular bodies, releasing EXOs upon plasma membrane fusion; (2) direct budding from 
plasma membrane and (3) delayed release by budding at intracellular plasma membrane–connected compartments (IPMCs) followed 
by deconstriction of IPMC neck(s). We note that this is not a comprehensive list and it is just to illustrate some of the mechanisms. 
Abbreviations: ECM, extracellular matrix; ERM, ezrin-radixin-moesin; ESCRTs, endosomal sorting complexes required for transport; MHC, 
major histocompatibility complex; IGSF8, immunoglobulin superfamily member 8; ICAM-1, intercellular adhesion molecule-1; SDC1, 
syndecans 1; HSPs, heat shock proteins
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(MHC),53,55 immunoglobulin superfamily member 8 (IGSF8),62 in-
tercellular adhesion molecule-1 (ICAM-1),63 syndecans 1 (SDC1) 64 
and integrins,65 are also present in the endothelium of EXOs. The 
presence of heat shock proteins (HSPs) in EXOs was first reported 
by Mathew et al.66

Exosomes membrane riches (or riched) in cholesterol and sphin-
gomyelin, with a small amount of lecithin and phosphatidylethanol-
amine.67 Also, the outermost surface of the EXOS consists of a glycan 
canopy, interrogated by lectin panning and other approaches.68,69

Exosomes also contain nucleic acids include single-stranded, ge-
nomic double-stranded, mitochondrial or reverse-transcribed comple-
mentary DNAs.70-72 RNAs include microRNA, ribosomal RNA and long 
non-coding RNA, which can be transferred in functional form to other 
cells and tissues.73-76

Adipose tissue is not only a reservoir of fat, but also an indispens-
able endocrine and immune organ. EXOs have been found in adipose 
tissue,77 adipocytes78,79 and adipose-derived mesenchymal stem cells 
(AMSCs).80 EXOs derived from ADSCs were larger than common 
EXOs,81 but expression of EXOs markers such as CD63 and HSP-70 
was positive, indicating that the size range of EXOs could be changed 
with different cell types. Adipocyte-derived EVs distributed into large 
extracellular vesicles (lEV) and small extracellular vesicles (sEVs), re-
spectively,48 with different protein composition. LEVs presented a high 
content of phosphatidylserine, whereas sEVs were rich in cholesterol, 
which also confirmed that lipid composition depends on cell source.48,82

2.3 | Isolation and identification technology

Common methods used to characterize EXOs include traditional fluo-
rescence microscopy,28 super-resolution microscopy,83 dynamic light 
scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive 
pulse sensing (TRPS) and single-particle interferometric reflectance 
(SPIR). The latter can detect the presence and abundance of specific 
lipids, proteins, carbonic acids and carbohydrates.84

Exosomes are enriched by differential centrifugation, size-exclu-
sion chromatography, field flow fractionation, microfluidic filtration 
or contact-free sorting immunoaffinity enrichment. Common meth-
ods for detecting EXOs-labelled proteins include conventional pro-
tein analysis (Western blotting and ELISA, mass spectrometry), flow 
cytometry and newer protein analysis techniques, such as micro par-
ticle flow cytometry, micro-nuclear magnetic resonance, nanoplas-
monic EXO (nPLEX) sensor, integrated magnetic-electrochemical 
EXO (iMEX) sensor and ExoScreen.85 Of these, differential centrif-
ugation not only obtains more EXOs, but also avoid the influence of 
polyethylene glycol when using transmission electron microscopy.86

3  | PHYSIOLOGIC AL PROCESS AND 
MECHANISM OF WOUND HE ALING

Wound healing is a complex dynamic physiological process, which 
can be generally divided into four stages: haemostasis, inflammation, 

proliferation and remodelling.87 Initial injury causes endothelial dam-
age and basement membrane exposure, along with subsequent 
spillover of blood components. The immediate response to injury is 
vasoconstriction caused by the release of thromboxane and prosta-
glandins. Meanwhile, platelets adhere to exposed collagen and release 
the contents of their granules, whereas tissue factor activates both 
platelets and coagulation cascades.88 Blood clots formed by collagen, 
platelets, thrombin and fibronectin not only control haemorrhages but 
protect the wound and provide matrix and soluble factors to promote 
adhesion. They also concentrate growth factors that serve as wound 
healing scaffolds.89,90 Blood clots also appear to be inducers of cell 
lineage differentiation during wound healing.91-93

During the inflammatory phase, vasodilation and capillary perme-
ability results in oedema. Bone marrow-derived immune cells prepare 
for wound healing by clearing pathogens, apoptotic cells, cell debris 
and damage mechanisms at the wound site.87 Cytokines and other 
factors attract granulocytes to wounds.94,95 Subsequently, neutro-
phils digest debris and injured tissues by secreting proteases. And 
clear microbial pathogens through oxygen-dependent mechanisms. 
Local monocytes also migrate into the wound and become macro-
phages, which can phagocytose apoptotic cells and cell debris and 
secrete a large number of growth factors.96 Lymphocytes are also 
involved in inflammation. Interestingly, CD4+ T cells are associated 
with healing, whereas CD8-T cells negatively affect this process.97 
Inflammation eventually promotes transformation of M1 macro-
phages to M2 macrophages.98

In the proliferative phase, re-epithelization occurs. This relies on 
migration of epithelial cells from the wound margins and any remain-
ing adnexal structures in the dermis. Epithelial migration and prolif-
eration continue until the wound is completely covered and an intact 
epithelial barrier is reestablished.99 M2 macrophages promote tissue 
regeneration and a mass production of extracellular matrix by reg-
ulating the proliferation and migration of keratinocytes, fibroblasts 
and endothelial cells.91 Fibroblasts begin to secrete high levels of im-
mature collagen type III into the matrix.100

In the last remodelling period, fibroblasts continue to secret col-
lagen101,102 and over time collagen type III decreases and is replaced 
by collagen type I. Collagen fibres gradually become organized and 
the tensile strength of the wound increases.103 Collagen breakdown 
and structural adjustment of the neonatal extracellular matrix re-
sults in reduced wound thickness, degradation of newly formed cap-
illaries and narrowing of the wound edge through contraction of the 
subvascular connective tissue.87,93,104

4  | ADSCs-E XOs MEDIATE WOUND 
HE ALING

4.1 | Regulations of immune response and 
inflammation

Inflammation is the body's self-defence mechanism in response 
to harmful stimuli. Wound healing can be delayed by chronic and 
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excessive inflammation, therefore a well-regulated inflammation 
guarantees wound healing.105 Activated T regulatory cells can 
promote wound healing by reducing both production of interferon 
alpha (IFN-α) and aggregation capacity of M1 macrophages.106 
ADSCs-EXOs play an immunosuppressive role by reducing IFN-α 
secretion, thus inhibiting activation of T cells.107 Furthermore, 
ADSCs-EXOs contain immunoregulatory proteins such as TNF-a, 
macrophage colony-stimulating factor (MCSF) and RBP-4.108 The 
role of ADSCs-EXOs in promoting monocyte differentiation into 
M1 macrophages was confirmed by Kranendonk et al108 It was 
also found that miR-155 in ADSCs-EXOs can induce adipocyte-
derived macrophages from obese mice to differentiate into M1, 
causing chronic inflammation with an imbalance in the M1-to-M2 
macrophage ratio in adipose tissue.109 ADSCs-EXOs can also up-
regulate the expression of macrophage inflammatory protein-1α 
and monocyte chemoattractant protein-1, promoting early 
inflammation.110

4.2 | Promoting angiogenesis in wounds

Angiogenesis provides blood supply for wound healing, facilitating 
the  transport of  nutrients  and  metabolic waste  products.89 ADSCs-
EXOs promote the proliferation and migration of vascular endothelial 
cells, thereby enhancing angiogenesis.111 Human adipose stem cells 
(hADSCs)–derived EXOs are rich in miRNA-125a and miRNA-31, 
which can be transferred to vascular endothelial cells to stimulate pro-
liferation and promote angiogenesis. Transfer of miR-125a to endothe-
lial cells has been demonstrated in vitro and in animal experiments.112 
MSCs-EXOs could inhibit expression of angiogenesis inhibitor (DLL4), 
thus promoting migration and sprouting vascular endothelial tip cells. 
Transfer of miRNA-31 to endothelial cells has also been shown,113 
where hADSCs-EXOs inhibited expression of the anti-angiogenesis 
gene HIF1 in vascular endothelial cells, promoting migration and en-
hancing angiogenesis in human umbilical vein endothelial cells. ADSCs-
EXOs may also promote the survival of skin flaps and increase capillary 
density, playing a role in repairing ischaemia-reperfusion injury.114

4.3 | Speeding up proliferation and re-
epithelialization of skin cells

During the proliferative phase, fibroblasts proliferate to produce 
ECM, whereas epithelial cells proliferate and migrate towards the 
wound centre to promote wound healing. Thus, proliferation and 
re-epithelization of skin cells are important for skin regeneration.89 
ADSCs-EXOs are internalized by fibroblasts and stimulate pro-
liferation, migration and collagen synthesis in a dose-dependent 
manner.115 ADSCs-EXOs accelerate cutaneous wound healing by 
optimizing fibroblast properties, as shown in in vivo experiments.113 
Finally, hADSCs-EXOs up-regulated 199 miRNAs and down-regu-
lated 93 miRNAs to promote dermal fibroblast proliferation and dif-
ferentiation that sped up skin regeneration.116

4.4 | Regulating collagen remodelling to inhibit scar 
hyperplasia

Scar hyperplasia is a morphological and histopathological change of 
skin and soft tissue after wound healing. Severe trauma and extensive 
burn usually lead to scar proliferation, affecting aesthetic appearance 
and impairing organ function.89 ADSCs-EXOs can regulate colla-
gen remodelling to inhibit scar hyperplasia. In an early stage, EXOs 
promote collagen remodelling through synthesis of type Ⅰ and Ⅲ, 
whereas they reduce scarring in the late stage by inhibiting collagen 
formation.115 In addition, ADSCs-EXOs can stimulate the reconstruc-
tion of extracellular matrix by regulating fibroblast differentiation and 
gene expression, thereby promoting wound healing and preventing 
scar proliferation. Wang et al117 found that ADSCs-EXOs prevented 
the differentiation of fibroblasts into myofibroblasts but increased 
the ratio of transforming growth factor-β3 (TGF-β3) to TGF-β1 in 
vivo. ADSCs-EXOs also increased the matrix metalloproteinases-3 
(MMP3) expression in skin dermal fibroblasts, resulting in a high ratio 
of MMP3 to tissue inhibitor of matrix metalloproteinases-1 (TIMP1). 
This is beneficial for the remodelling of extracellular matrix (ECM), 
reducing scaring. Instead, in diabetic mice, ADSCs-EXOs promoted 
collagen deposition, which increased in the late stage of wound heal-
ing.118 However, this leads to scar hyperplasia, which is not con-
ducive to healing.18 These controversial results may be due to the 
complex function of collagen and EXOs during different stages of 
wound healing. More studies on the effect of ADSCs-EXOs on col-
lagen deposition and their association with scar proliferation need to 
be performed (Figure 2).

5  | CLINIC AL APPLIC ATION OF 
ADSCs-E XOs FOR WOUND REPAIR AND 
TRE ATMENT

5.1 | Improving fat grafting

Fat grafting is used in cosmetic surgery, for example in the treat-
ment of hemifacial atrophy, depressed scars and breast recon-
struction.119,120 Adequate blood supply in the early stage after 
transplantation is required for successful grafting121 which high-
lights the importance of promoting angiogenesis. ADSCs-EXOs can 
promote proliferation and migration of vascular endothelial cells, 
thus promoting angiogenesis.122 They can also raise fat graft volume 
retention in adipose-derived mesenchymal stem cells. Indeed, EVs 
from ADSCs could improve fat graft volume retention by stimulat-
ing angiogenesis and regulating inflammatory response123 and EXOs 
were found comparable to source ADSCs in fat graft retention, up-
regulating early inflammation and angiogenesis 110; thus, it is clear 
that ADSCs-EXOs may play an important role in the improvement of 
fat grafting in the clinic. Lastly, EXOs from hypoxia-treated human 
adipose-derived mesenchymal stem cells possessed a higher capac-
ity to enhance angiogenesis in fat grafting.124 The latter may help 
develop new strategies to improve the survival of fat grafts.
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5.2 | Promoting wound healing of diabetic patients

According to the World Health Organization (WHO), the number 
of diabetes patients will reach 592 million by 2035,125 and one 
of the most challenging complications of diabetes mellitus (DM) 
is delayed wound healing.126 Lack of ideal treatments among all 
available ones appeals many scientists to develop new thera-
pies.127 Wang et al118 demonstrated that ADSCs-EXOs could pro-
mote wound healing in diabetic mice by promoting angiogenesis, 
proliferation and migration of fibroblasts and collagen synthesis. 
The capacity of ADSCs-EXOs to promote wound healing in dia-
betic foot patients was also reported.128 The latter study showed 
that ADSCs-EXOs can simultaneously express antioxidant recep-
tors (Nrf2), laying an experimental foundation for clinical applica-
tion of EXOs to treat chronic diabetic wounds. In diabetic mice, 
ADSCs-EXOs also promoted increased collagen deposition in the 
late stage of wound healing,118 but excessive collagen deposi-
tion may be unfavourable as it leads to scar hyperplasia.18 This 

controversy remains unsolved and therefore more research is re-
quired on the effect of ADSCs-EXOs on collagen deposition and 
their association with scar proliferation.

5.3 | EXOs as a carrier and combined scaffold 
for treatment

The natural biocompatibility and cell-targeting features equip EXOs 
for carring (delivering) drugs.18 To stabilize their concentration fol-
lowing local application, hydrogel or fibrin can be used as scaffolds 
to delay EXOs release and enhancing their wound healing ability.18 
Shilan et al129 used EXOs loaded in alginate gel as a bioactive scaf-
fold in an in vivo study. This showed that this active wound dress-
ing technique could significantly promote wound healing, collagen 
synthesis and local angiogenesis, providing a new strategy for the 
composite structure of alginate hydrogel to speed up the healing 
process.

F I G U R E  2  Mechanisms by which ADSCs-EXOs may promote wound healing. (A) adipose-derived stem cells (ADSCs)-EXOs contain 
immunoregulatory proteins and reduce the secretion of IFN-α, subsequently inhibiting activation of T cells, resulting in reduced 
inflammation. Additionally, miR-155 in ADSCs-EXOs can induce monocyte differentiation into M1 macrophages, causing chronic 
inflammation; (B) ADSCs-EXOs can transfer miRNA-125a and miRNA-31 to vascular endothelial cells, stimulating proliferation and migration 
to promote angiogenesis; (C) In the early stages, ADSCs-EXOs may promote proliferation, migration and collagen synthesis in fibroblasts, 
stimulating N-cadherin, cyclin-1, PCNA and collagen I, III expression and increasing ECM production; (D) in late stages, ADSCs-EXOs prevent 
the differentiation of fibroblasts into myofibroblasts, and reduce scarring by inhibition of the formation of collagen and activation the ERK/
MAPK pathway to increase MMP3 expression. Abbreviations: ECM, extracellular matrix; MCSF, macrophage colony-stimulating factor
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5.4 | Promoting scarless cutaneous repair

Scar formation after skin wounds have healed is an intractable medical 
problem, affecting both aesthetic appearance and organ function.89 
In murine incisional wounds, intravenous injection of ADSCs-Exos de-
creased the size of scars, increased the ratio of collagen III to collagen 
I and regulated fibroblast differentiation and gene expression117; thus, 
ADSCs-EXOs may be a new treatment for scarless cutaneous repair.

6  | DISCUSSION

Adipose-derived stem cells-EXOs have a great potential in the clinic 
for wound repair and regeneration (Figure 3). They can participate in 
the regulation of the immune response and wound inflammation and 
promote angiogenesis by transferring miRNA-125a and miRNA-31 
to vascular endothelial cells. Also, ADSCs-EXOs can stimulate the 
proliferation of fibroblasts and keratinocytes and regulate collagen 
remodelling. This inhibits scar hyperplasia by activating the ERK/
MAPK pathway that regulates the secretion of related cytokines. 
These properties make them an optimal tool to improve fat grafting 
application, promote wound healing of diabetic patients and scarless 
cutaneous repair and also to act as a carrier for combined scaffolds 
used for treatment. Recently, more attention is given to self-derived 

and free-cell auxiliary agents, especially ADSC-Exos. Oral wound 
repair may use free-cell therapies to promote oral mucosa defects 
healing130 and reduce inflammatory process in wound after tooth 
extraction.131 Moreover, these therapies are also used in the heal-
ings of acute and chronic ulcers,132 postoperative hand wounds,133 
chronic lower-extremity wounds.134 We have every reason to be-
lieve there is more potential in the use of ADSC-Exos in free-cell 
therapies to be discovered.

However, although their efficacy has been proved, the mecha-
nism is not yet clear. There remains a burning question in this field 
about the pro- or anti-cancer status of ADSCS-EXOs. Thus, safety 
and efficacy of ADSCs-EXOs cannot be guaranteed. The problems 
of lacking of easy process of extraction and purification of EXOs and 
standard methods for identifying EXOs from specific cell sources 
also need to be solved. To better isolate and identify ADSCS-EXOs 
and understand their mechanism of action, further research is 
needed in the expect of more efficient ADSCs-EXOs products and 
boarder applications in clinical practice.

7  | CONCLUSION

In summary, ADSCs-EXOs are a highly promising therapeutic 
for wound  repair  and  regeneration. In the wound, ADSCs-EXOs 

F I G U R E  3  Potential clinical applications of adipose-derived stem cells (ADSCs)-EXOs: improvement of fat grafting (A), wound healing 
therapy for diabetic patients (B), scarless repair (C) and carrier and combined scaffold for treatment (D)
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modulate immune responses and inflammation, promote angio-
genesis, accelerate proliferation and re-epithelization of skin cells 
and regulate collagen remodelling which inhibits scar hyperplasia. 
ADSCs-EXOs can improve fat grafting, promote wound healing 
of diabetic patients and act as a carrier and combined scaffold for 
treatment, leading to scarless cutaneous repair. ADSCs-EXOs have 
a board applications in clinical practice and are likely to achieve the 
best fictionally skin wound healing.
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