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Abstract

Brain activity and connectivity are distributed over the 3-dimensional volume and evolves in time. 

It is of significance to image brain dynamics with high spatial and temporal resolution. 

Electroencephalography (EEG) and magnetoencephalography (MEG) are noninvasive 

measurements associated with complex neural activations and interactions that encode brain 

functions. Electrophysiological source imaging estimates the underlying brain electrical sources 

from EEG and MEG measurements. It offers increasingly improved spatial resolution and 

intrinsically high temporal resolution for imaging large-scale brain activity and connectivity in a 

wide range of timescales. Integration of electrophysiological source imaging and functional 

magnetic resonance imaging holds the potential to further enhance the spatiotemporal resolution 

and specificity that are unattainable with either technique alone. Here we review the 

methodological development in electrophysiological source imaging in the past three decades and 

envision its future advancement into a powerful functional neuroimaging technology for basic and 

clinical neuroscience applications.
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1. INTRODUCTION

The human brain is comprised of roughly hundred billions of neurons (1). Each of these 

building blocks of the brain typically forms 103-104 synapses on average, forming a huge 

interconnected network with quadrillions of connections, which enables our brains to 
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function as they do (2). Although, a great deal is known about neurons in a microscopic 

scale, little is known as to how these huge number of neurons (and synapses) work 

collectively to give rise to macroscopic brain signals and human behaviors.

Human brain functions are carried out by complex neural activations and interactions, which 

elevate electromagnetic signal changes (the primary effects) accompanied by hemodynamic 

and metabolic changes (the secondary effects). These changes are the basic sources for all 

noninvasive neuroimaging techniques. Depending on the signal sources, these imaging 

techniques can be divided into two categories. The first category is directly imaging neural 

electrical sources by detecting the induced electromagnetic signal changes using electric or 

magnetic sensors over the scalp. The common methods in this category are 

electroencephalography (EEG) and magnetoencephalography (MEG). The second category 

is indirect imaging approaches based on hemodynamic (cerebral blood flow, cerebral blood 

volume) and/or metabolic (glucose and oxygen utilization) changes associated with neural 

activity. The common methods in this category are functional magnetic resonance imaging 

(fMRI), positron emission tomography (PET), single photon emission computed 

tomography (SPECT), and near infrared spectroscopy.

Brain activation is accompanied by induced electrical activity due to excitation of neurons. 

The electrical activity of the brain can be analyzed in a variety of scales depending on the 

aim and focus, including the levels of ion channels, synapses, neurons, neuronal ensembles, 

lamina, columns, regions, and networks. Invasive electrophysiological recordings such as 

spike trains and local field potentials (LFP), as well as intracranial EEG, have contributed to 

our understanding of neuronal activities at microscopic or mesoscopic scales. Understanding 

of human brain dynamics at macroscopic scales, however, relies on noninvasive 

measurements such as EEG and MEG (3, 4). An important notion is that activation of single 

or multiple neurons does not lead to detectable EEG/MEG. Instead it requires the 

synchronous excitation of a large number of neurons to generate detectable EEG/MEG. 

Thus, EEG/MEG reports rich information about brain function (or dysfunction) encoded by 

dynamics of large-scale brain networks. This makes EEG and MEG studies highly relevant 

for clinical, cognitive, and behavioral brain research.

EEG/MEG has intrinsically high temporal resolution about underlying brain activity. The 

measured electrical or magnetic field changes reflect instantaneous neuronal currents, since 

electromagnetism in the brain can be treated in a quasi-static condition (5). Among existing 

neuroimaging modalities, EEG/MEG offers uniquely high temporal resolution. The 

challenge however is the limited spatial resolution of EEG/MEG. Significant efforts over the 

past three decades have greatly advanced electrophysiological source imaging based on 

EEG/MEG, resulting in high temporal and good spatial resolution that places EEG/MEG 

among the most widely used tools in neuroscience. This article reviews the principles of 

electrophysiological source imaging, the state of the art, and remaining challenges.

2. SOURCE IMAGING CONCEPTS

The electrophysiological source imaging (ESI) is the process of estimating neural electrical 

activity underlying non-invasive electromagnetic measurements such as EEG and MEG (4, 
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6). The principle of ESI is to counter the effect of volume conduction or field propagation 

for reconstructing brain sources from EEG/MEG. Solving this ill-posed problem encounters 

severe challenges if it is only treated mathematically. But significant progress has been made 

as anatomical and physiological constraints can be utilized in source estimation. In the 

following, we first describe the origins of EEG and MEG to lay the neurophysiological 

foundation for EEG/MEG based functional neuroimaging.

Given an imbalance between the ions inside and outside a neuron, a change occurs in the 

potential difference between the cell interior and exterior. When this change exceeds a 

threshold, the cell produces a sharp deflection of the transmembrane potential - the action 
potential (7). These action potentials propagate through neuronal axons and travel from one 

physical point to another, allowing neurons to communicate over a variety of spatial scales 

(3).

Electrical currents are produced by the movement of charges inside, outside, and along the 

neuronal cells. The electrical/magnetic fields due to these microscopic currents, when added 

constructively, can produce observable electrical or magnetic signals at the macroscopic 

level. The spatial distribution of such currents determines the overall effect at the scalp (3, 7, 

8).

The organization of cortical pyramidal cells makes them most detectable with EEG/MEG 

among all types of cells in the brain. These cells are spatially aligned in such a way that 

when excited in synchrony, they produce detectable effects on the scalp. EEG/MEG signals 

primarily arise from post-synaptic currents. Currents that drive action potentials are 

generally negligible in the scale of EEG/MEG (9).

The elongated shape of the pyramidal neuron separates the current inflow and outflow by a 

short distance. In the extracellular space, such currents are viewed as a pair of current sink 

and source (monopoles), respectively. For far-field measurements like EEG/MEG, such a 

pair of current monopoles can be represented as a current dipole. Currents in extended cell 

populations may also be modeled as quadrapoles (10–12). Compared to monopole or 

multipole models, dipole models are most widely used. A dipole can be viewed as a discrete 

representation of current density, and has a clearer physical and physiological interpretation.

Given neuroelectric currents, finding the resulting electromagnetic signals on the scalp is 

called solving the forward problem of EEG/MEG. The electric/magnetic fields are 

generated by the currents that propagate through brain tissue and produce an effect at scalp 

sensors. When the average current density in each volumetric or areal element is modeled as 

a dipole (or less frequently a monopole or multipole), the forward problem can be solved 

with the superposition principle as the head is considered to be a linear system that generates 

additive effects of neuronal currents.

In the quasi-static condition, the forward problem can be expressed as solving Poisson’s 

equation (5). The solution depends on the tissue conductivity or permeability and the 

boundary conditions of electromagnetic fields. When the head geometry is modeled as one 

or multiple spheres with homogeneous conductivity, analytical solutions exist for the 

forward problem (7). An important development in ESI is to perform “constrained” source 
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imaging by using anatomical information (13). Such anatomical constraint can be obtained 

from structural MRI, which offers soft-tissue contrast to segment the brain, skull, 

cerebrospinal fluid and scalp. For realistic-geometry head models, numeric solutions are 

attainable with either the boundary element method (BEM) by assuming isotropic 

conductivity (13, 14) or the finite element method (FEM) models by assuming anisotropic 

conductivity (15). In principle, FEM allows for more accurate head modeling than BEM; 

however, accurate information about tissue conductivity is not readily available. Since the 

introduction to brain source imaging in late 1980s (13, 14), the BEM has been most widely 

used for anatomically constrained ESI with EEG/MEG.

Unlike the deterministic forward problem, the inverse problem (i.e. estimating source 

distribution given scalp measurements) is known to be under-determined (16). The number 

of current sources is significantly greater than the number of measurements, despite high-

density EEG/MEG. Inferring source distribution from measurements is ill-posed without 

applying constraint or regularization based on a priori information about the desired source 

characteristics or physiological assumptions. Regularization also helps to stabilize the 

solution against noise (17).

An important issue in ESI is the adequate spatial sampling. While MEG uses ~150+ 

channels of recordings, clinical EEG often uses less channels (e.g. 19–32 electrodes). 

Studies indicate that higher spatial sampling helps improve the precision of ESI (18, 19). A 

recent guideline of the International Federation of Clinical Neurophysiology suggests at 

least 64 channels of EEG should be used for ESI (20).

Fig. 1 illustrates the relationship of neuronal excitation, volume conduction, and scalp EEG/

MEG, and the concept of the forward and inverse problem.

3. SOURCE IMAGING ALGORITHMS

The ESI, as an inverse problem, can be solved by minimizing the difference between the 

measured signals and those generated by source estimates through the head volume 

conductor model. Depending on the source models adopted, various techniques have been 

developed to accomplish this goal. This section includes discussions about some of these 

techniques to illustrate the general strategies for ESI, but it is not intended to be a fully 

inclusive survey.

3.1 Equivalent Current Dipole (ECD) Models

In one of the earliest approaches for brain source imaging, the whole-brain activity is 

modeled with a limited number of dipoles (13, 21). Many events or tasks, such as 

epileptiform activity, involve electrical activity at a focal region, which may be modeled by 

an ECD located at the center of this region. Estimating one or two ECDs is an over-

determined inverse problem that has a unique solution, since there are six parameters for 

each dipole while clinical EEG recordings normally use at least 19 electrodes.

There are multiple approaches for dipole source localization (76). One is to fit dipoles to 

scalp recordings separately for each moment; this approach is known as moving dipole 
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solution since both the dipole location and orientation are allowed to vary in time. Another 

approach is to fix the dipole location but allow the orientation to vary freely, or to fix both 

the dipole location and orientation but only allow the dipole magnitude to vary. All these 

approaches are effective in different situations, if 1) the number of unknown parameters is 

smaller than the number of sensors, 2) source activity can be properly modeled as a single or 

few dipoles, and 3) the number of dipoles is known a priori.

A major challenge for dipole source localization is the nonlinear relationship between 

EEG/MEG and dipole locations. When the location of dipole is fixed and known, finding its 

orientation and amplitude becomes a linear problem (13). For moving dipole solution, the 

estimated locations of ECDs provide useful physiological or clinical information.

However, localization of more than two moving dipoles is challenging. The assumption of 

focal sources is not always valid and knowing the number of dipoles a priori is also not 

feasible for many applications. The nonlinearity of the moving dipole solution escalates as 

the number of dipoles increases. These all limit the scope of application for ECD 

localization, yet it is still being used in clinical neuroscience applications especially in MEG 

source localization.

3.2 Distributed Source Models

It is more realistic to describe EEG/MEG sources as a current density distribution, which 

can be modeled by a large number of current dipoles distributed over the 3-dimensional 

brain volume or 2-dimensional cortical surface. The latter is more preferable since the 

sources of EEG/MEG are primarily currents through pyramidal cells aligned perpendicular 

to the cortical surface, as proposed in the cortical current density (CCD) model (22). Since 

the dipole locations are fixed, the inverse problem of estimating dipole moments from 

EEG/MEG is linear but under-determined. A priori information is required to regularize the 

solutions to this inverse problem. Depending on the physiological plausibility of the 

regularization introduced, the distributed source estimates bear different characteristics and 

affinity to neural activity in a mesoscopic scale.

Minimum Norm (MN) Family—The minimum norm approach was the earliest solution to 

the bio-electromagnetic inverse problem with distributed source models (23). In this 

approach, the Euclidean norm (or L2 norm) of distributed currents is used to regularize the 

least squares estimation of the inverse solution. This approach solves the under-determined 

inverse problem by choosing a unique source configuration with the minimum energy 

among all that equally fit the data. This approach has established characteristics in statistics 

and mathematics; however, its physiological plausibility is not fully understood despite its 

wide use in EEG/MEG source imaging.

MN solutions are biased for superficial sources, as superficial sources generate stronger 

fields with less energy due to their spatial vicinity to sensors. To mitigate this bias, one 

strategy is to weight current sources by the norm of the EEG/MEG signals that can be 

generated by each of them with a unitary magnitude. Introducing this weighting to MN 

regularization leads to the so-called weighted minimum norm (WMN) solution (24–27). A 

variation of WMN is the low resolution electromagnetic tomography (LORETA) in which 
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the norm of the second-order spatial derivative of the current source distribution is 

minimized to ensure spatial coherence and smoothness (28). Post-hoc non-linear 

normalization can be further applied to the inverse solution obtained by MN or its variations. 

Using this strategy, standardized LORETA (sLORETA) (29) has shown improved spatial 

accuracy.

The MN approach and its variations have progressively evolved to become one of the most 

successful ESIs for EEG/MEG or their combination (30). A main drawback of the MN 

approach is that the resulting solutions tend to be overly smooth and widespread beyond the 

extent of underlying sources.

Beamforming and Scanning Methods—Alternatively, beamforming, originally 

established for radar and sonar applications (31), is increasingly used for ESI (32). The 

central idea is to refocus scalp EEG/MEG to their originating locations, by spatially filtering 

EEG/MEG specifically for each source location such that the output of the filter has minimal 

variance for every source location. As such, this approach is sometimes referred to as 

linearly constrained minimum variance (LCMV) localization (32, 33). The source estimates 

can be obtained by applying the optimized filters to the measured EEG/MEG. Extensions or 

variations of this idea have led to various beamforming approaches (34–36). However, the 

accuracy of beamforming solutions is of concern when underlying sources are correlated 

(36). Beamforming is sensitive to inaccuracy of the forward model, e.g. due to 

approximation in tissue conductivity. Perhaps for this reason, beamforming is more widely 

used for MEG than EEG, since the forward problem is relatively simpler for MEG.

A related but distinct technique uses a scanning strategy. That is, all source locations are 

scanned one by one to quantify how well the scalp map forwardly computed from assuming 

a dipole at each location, can be classified as being in the signal sub-space as opposed to 

being in the noise sub-space, while the signal and noise sub-spaces are orthogonal to each 

other and estimated from EEG or MEG (37, 38). An implementation of this approach is 

MUltiple SIgnal Classification (MUSIC) (37, 38), where the nonlinear optimization process 

of finding the dipole location is avoided. However, MUSIC also suffers if sources to be 

localized are correlated especially if they are close to each other (39). Variations of MUSIC, 

such as the recursively applied and projected MUSIC (RAP-MUSIC) (39) and the first 
principle vector (FINE) localization method (40), mitigate this problem to a certain degree.

Bayesian Methods—Bayesian inference provides a general framework in which many 

source imaging algorithms can be derived and interpreted. Given the Bayes’ theorem, 

Bayesian algorithms maximize the posterior distribution of sources given measurements 

while assuming a prior probabilistic distribution of the sources. If the prior distributions are 

not known, non-informative priors may be used (such as assigning equal probability to all 

possible outcomes), or the prior distribution itself may be marginalized by a set of hyper-

parameters that can be estimated from data (41). The latter is known as empirical Bayes 
methods, which successively apply the Bayes rule to iteratively update and jointly estimate 

the prior and posterior distributions through expectation maximization (41, 42).
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Minimum-norm and its variations can be viewed as special cases of Bayesian inference 

algorithms with different prior distributions. For instance, the MN is the maximum a 
posteriori (MAP) estimation when the prior distribution is assumed to be a Gaussian 

distribution (41). More importantly, Bayesian inference allows to incorporate physiological 

knowledge in the multivariate prior distribution to constrain the locations and connectivity of 

the unknown sources (43). Bayesian algorithms are more efficient if the prior distribution 

can be described with fewer hyper-parameters, e.g. by assuming independent sources (or a 

diagonal covariance matrix). Selecting and parameterizing the prior distribution is not 

straightforward, bringing both challenges and opportunities. Bayesian methods have many 

variants (43–46), such as Sparse Bayesian learning (SBL) algorithms (47), coherent 

maximum entropy on the mean (cMEM) (48), and dynamic Maximum a Posteriori 

Expectation-Maximization (dMAP-EM) (49), and remain an area of active research.

Sparsity-constrained Source Reconstruction—Sparsity is often assumed to avoid 

over-fitting in inverse problems, and has increasing applications in signal and image 

processing (43, 50–54). In the context of ESI, the sparsity in the source space means that it 

has much fewer non-zeros than zeros at specific moments, periods, or frequency bands. The 

sparsity assumption is not necessarily limited to the spatial domain, but other domains to 

which the source distribution may be transformed. For instance, sources may be piece-wise 

continuous; while it is not sparse, the edges in the source distribution or its spatial gradient is 

sparse (55). In general, sources should be described with most compressed (i.e. the least 

redundant) representations in order to be estimated from limited data – a notion also 

underlying compressed sensing (56).

FOCal Underdetermined System Solution (FOCUSS) (50), is an early example of using 

sparsity for ESI. However, the resulting solutions tend to be overly focused. Selective 

minimum norm method (57), minimum current estimate (58) and sparse source imaging (51) 

are other examples of sparse methods where the sparsity is imposed on distributed current 

density. L1-norm regularization favors sparse source distribution (57–60); it assumes that the 

sources follow a Laplace prior distribution in Bayesian inference. In more recent studies, 

sparsity is imposed in other domains such as the gradient domain (55), wavelet coefficients 

domain (61), Laplacian domain (52) and even multiple domains combined together (54, 62, 

63). Recent development in sparse ESI algorithms suggests the capability of estimating both 

the source locations and extents (54), reflecting the spatio-temporal characteristics of 

underlying brain sources and dynamics.

Fig. 2 depicts the main classes and families of source imaging algorithms, and illustrates an 

example of ESI using various algorithms.

4. SOURCE IMAGING APPROACHES AND APPLICATIONS

Neural activity of interest to EEG and MEG includes ongoing activity in the absence of any 

task, or the responses evoked or induced by various events. Events such as inter-ictal spikes 
(IIS), seizures and motor imagination (MI) are endogenous events spontaneously emerging 

during cognitive or pathological processes. Evoked potentials (EP) and event related 
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potentials (ERP) are related to external stimuli or tasks. Despite their differences, similar 

ESI techniques may be used.

4.1 Imaging External Event-Related Brain Activity

External events trigger rapid brain responses. EEG/MEG is uniquely suited to resolve the 

full response dynamics due to its high temporal resolution. ESI further enhances the spatial 

resolution and specificity towards comprehensive spatiotemporal imaging of the brain in 

action. Applications of ESI have been shown in numerous basic and clinical neuroscience 

studies. To name a few, ESI has been used to map the spatiotemporal responses underlying 

sensory processing, object recognition (64), disrupted visual processing in autistic patients 

(65), attention and consciousness (66), visual rivalry (67–69), visuomotor coordination (11), 

and speech recognition (70). The balanced temporal and spatial resolution of EEG/MEG 

earns themselves indispensable positions among existing tools for studying the 

spatiotemporal dynamics of large brain networks in humans.

4.2 Imaging Endogenous Event-Related and Spontaneous Brain Activity

ESI is also applicable to endogenous brain activity in normal and abnormal conditions. For 

motor imagery, a paradigm for brain computer interface (BCI) (71, 72), ESI enhances the 

capability of decoding subjects’ intent, relative to directly using sensor space signals (73, 

74). Combining ESI and fMRI data has also shed light on the nature of event related de/

synchronization (75).

ESI has been widely used in epilepsy source localization, including inter-ictal discharges 

(76–81). It has been shown in a study with over 150 patients that source imaging using high 

density EEG recordings, has higher sensitivity and specificity compared to other imaging 

modalities such as MRI and PET (78). When accurate forward models and high density EEG 

caps are utilized, the location and dynamics of the epileptiform activities can be estimated to 

potentially inform clinical evaluation. Furthermore, ESI has been used successfully to 

localize seizures (82–84). Seizures are more difficult to localize due to patients’ head 

movement and consequently low signal-to-noise ratio. The oscillatory nature of seizure-

related activity requires spatiotemporal ESI (83). The theta oscillation and its role in 

consciousness have also been characterized with ESI (85). Fig. 3 presents an example of 

seizure source imaging in partial epilepsy patients, validated against intracranial recordings 

or surgical outcome.

Imaging on-going and spontaneous brain activity is another domain of applications for ESI. 

In the resting state, ESI has uncovered frequency-dependent functional networks and their 

dynamics (86–88). In disease states, ESI has revealed epileptic network characteristics in 

patients (89, 90), even in the absence of epileptic activity.

5. IMAGING FUNCTIONAL CONNECTIVITY

Two notions are essential to the brain’s functional organization: functional segregation and 
integration (91). While some brain regions or networks are specialized in performing 

particular tasks, others integrate information (91), leading to complex cognition, behavior, or 

pathology. ESI can help to understand and disentangle these processes (6).
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5.1 Functional vs. Effective Connectivity

Functional connectivity concerns whether neural activity in a pair of regions (denoted as A 

and B) is correlated or coherent (92, 93). As correlation or coherence does not imply 

causation, functional connectivity does not report the directionality of the interaction 

between A and B. This sets functional connectivity apart from directional connectivity or 

effective connectivity (94), which measures the causal relationship between A and B, e.g. 

Granger causality (95). Causality or directionality is often inferred from time series: if the 

past activity in A predicts the current or future activity in B, A causes or drives B through a 

connectivity pointing from A to B (96).

5.2 Electrophysiological Connectome (eConnectome)

ESI allows to map functional/effective connectivity in source space – a notion of the 

electrophysiological connectome (eConnectome) (6, 97). Algorithms have been developed 

for estimating functional connectivity from electrophysiological source signals derived from 

EEG (or MEG), including directed transfer function (DTF) algorithm (98), the adaptive DTF 
(ADTF) (99–101), direct DTF (dDTF) (102), and partial directed coherence (PDC) (103). 

The eConnectome approach (104, 105) has stirred interest in studying pathological networks 

such as epilepsy, where determining the source that drives seizures is of particular 

importance (106). MEG is also an effective tool for studying resting network functional 

connectivity and has been shown to correlate well with fMRI studies with the added value of 

high temporal resolution (107). Such approaches have been applied to determine epileptic 

networks with positive results indicating the merits of integrating ESI with functional 

connectivity in mapping brain networks (108, 109).

Fig. 4 schematically illustrates the eConnectome approach for mapping functional brain 

networks with ESI.

5.3 Dynamic Causal Modeling

The aforementioned methods for directional connectivity are all data-driven. Model-based 

connectivity measures such as the dynamic causal modeling (DCM) has also drawn much 

attention (110). While there are some similarities between DCM and Granger causality 

algorithms, they are fundamentally different (111). Model-based methods depend on the 

choice of the model and its parameters; thus many different parameters need to be tested to 

ensure unbiased results (112). This brings higher computational demand but may lead to 

valuable insights if the model and parameters can be appropriately selected.

6. MULTIMODAL NEUROIMAGING

Where EEG and MEG fall short in neural imaging is opposite to where fMRI excels, and 

vice versa. EEG and MEG can resolve neural events with high temporal resolution but 

limited spatial resolution (113); fMRI localizes brain activity with millimeter precision but 

cannot probe the rapidly changing neuronal dynamics (114). Their complementary strengths 

and limitations have motivated researchers to integrate EEG/MEG and fMRI towards a 

multimodal imaging tool that is more powerful than each of them alone (115–117). The 

feasibility of concurrent EEG and fMRI acquisition makes EEG more preferable than MEG, 
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especially for functional imaging in task-free or self-paced states that are hard to precisely 

replicate in separate experiments.

6.1 Synaptic Activity: the Common Origin of fMRI and EEG/MEG

The origin of fMRI is rather complex and incompletely understood (118). The most widely 

used fMRI signal is blood oxygenation level dependent (BOLD) (119) and observable with 

rapid pulse sequences sensitized to the T2*-weighted contrast (120–122). What causes the 

BOLD effect is the varying concentration of deoxygenated hemoglobin relative to the total 

hemoglobin that is either deoxygenated or oxygenated (123). As neural activity elevates, 

local oxygen consumption and demand increases, triggering vasodilation of arterioles and 

capillaries to increase cerebral blood flow (124), which supplies oxygenated hemoglobin in 

excess of the metabolic rate of oxygen consumption (125). As a result, the concentration of 

deoxygenated hemoglobin decreases in capillary and venous vessels, reducing the 

paramagnetic susceptibility effect and thus increasing the T2*-weighted signal (123). Such a 

cascade of metabolic and vascular events, known as the neurovascular coupling, involves 

complex signaling among neurons, astrocytes, and the local vasculature (124, 126, 127), and 

remains a topic of active research enabled by emerging tools (128).

The mechanism of neurovascular coupling is incompletely understood but essential to 

interpretation of fMRI (114, 118). Increasing evidence suggests that the primary source of 

fMRI is synaptic activity, rather than spiking activity, in the gray matter (129, 130). In 

primates, synaptic activity consumes much more energy than action potentials (131); the 

gray matter is more densely vascularized than the white matter (132). As such, synaptic 

activity is a stronger driver of energy demand, and the gray-matter vasculature further 

amplifies the metabolic fluctuation into an even greater vascular effect. Importantly, the 

synaptic contribution to the BOLD signal implies that fMRI and EEG/MEG may reflect 

highly distinct manifestations of the same physiological origin. Of synaptic activity in the 

gray matter, the metabolic and vascular effects give rise to fMRI through neurovascular 

coupling with a severe loss in temporal specificity; the electromagnetic effect gives rise to 

EEG/MEG through head volume conduction with a severe loss in spatial specificity.

Studies that have directly compared fMRI and neural signals lend strong support to the 

above notion (129, 130, 133–135). In neural signals, LFP reflects the synaptic input to a 

neuronal ensemble, and multi-unit activity (MUA) reflects its spiking output. When recorded 

simultaneously during sensory stimulation, the BOLD response is more correlated with LFP 

than MUA (129, 130). After dissociating neuronal input and output, the BOLD response is 

still correlated with LFP but not with MUA (133, 134). Although it is perhaps most notable 

in the gamma range, the LFP-BOLD correlation is not limited to any single frequency, but 

spans a broadband (135). In the absence of any sensory input, spontaneous BOLD 

fluctuations are still correlated with underlying synaptic activity observed with LFP (136, 

137), ECoG (138), and EEG (139, 140). Given these findings, it is reasonable to state that 

fMRI and EEG signals, to a large extent, share a common origin of cortical synaptic activity, 

but reflect its distribution and dynamics in highly different spatial and temporal scales with 

distinctive sensitivity, resolution, and specificity (141).
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6.2 Joint Solutions to Two Inverse Problems

Most fMRI-EEG/MEG combined imaging methods are being developed in the context of 

two inverse problems. One is a spatially inverse problem, i.e. spatial localization of 

temporally resolved EEG/MEG signals (8, 142). The other is a temporally inverse problem, 

i.e. temporal decomposition of spatially resolved fMRI signals (143, 144). When fMRI is 

utilized to help solve the EEG/MEG inverse problem (i.e. fMRI-constrained EEG/MEG 

ESI), the solution benefits from the spatial precision and resolution of fMRI while inheriting 

the intrinsic temporal resolution from EEG/MEG (115, 117). When EEG is utilized to solve 

the fMRI inverse problem (i.e. EEG-informed fMRI), the solution benefits from the use of 

EEG to separate neural components or events in time or frequency while inheriting the 

intrinsic spatial resolution of fMRI (116, 140). What is more preferable is a “symmetric” 

strategy to arrive at the estimation of a common set of unknown sources that simultaneously 

fit both fMRI and EEG measurements. Such a strategy is lacking despite initial progress 

(145), and awaits further quantitative understanding and modeling of the basis of and 

coupling between fMRI and EEG.

Fig. 5 schematically illustrates the joint inverse problem of fMRI and EEG/MEG.

6.3 Using fMRI for the EEG/MEG Inverse Solution

The fMRI-constrained EEG/MEG analysis has evolved from being mostly empirical to 

being progressively more principled. Perhaps, the earliest and simplest method is to use 

fMRI activation foci to place multiple current dipoles, and then to fit the dipole moments to 

event-related potentials (146). The estimated time series of each dipole reports the response 

dynamics at the corresponding fMRI hotspot. While overly simplified, this method is 

valuable in revealing the temporal sequence of task-evoked neural responses underlying 

perception or cognition (146, 147).

An alternative method is to improve the EEG/MEG-based estimation of cortical current 

density by using algorithms with fMRI-biased regularization (97, 148–150). Although they 

may be implemented in different theoretical frameworks, e.g. weighted minimum norm (97), 

Wiener filter (149, 150), and Bayesian inference (43), such algorithms all share and utilize a 

common assumption that EEG/MEG sources are more likely to occur at where fMRI views 

as activated. Often critical is the choice of the hyper-parameter that controls the fMRI bias. 

This choice is mostly empirical for the lack of biophysical and quantitative interpretation of 

fMRI activation. In fMRI, a voxel being activated means that the voxel’s signal is 

significantly different from noise and it is predictable by the stimuli and tasks of interest. 

Note that this statistical meaning does not inform any physical characteristic about 

neuroelectric activity. A more rational choice requires further understanding and modeling 

of the relationships among EEG/MEG, fMRI, and stimuli.

It is feasible to model the relationship between fMRI and EEG/MEG given relatively simple 

stimuli that repeat as discrete events and/or in alternating blocks (115). For event-related or 

block-design paradigms, it has been shown that the BOLD effect size given repeated stimuli 

in a long time-scale is approximately proportional to the integral of the power of stimulus-

evoked synaptic activity in a short period following each stimulus (151). This relationship 
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yields a quantitative model to relate fMRI to EEG/MEG, enabling a more principled way for 

using fMRI to constrain the EEG/MEG inverse solution for stimulus-evoked responses 

(150–152). However, this model fails to account for negative BOLD responses (153), or 

changes in spontaneous activity (154). The limitation is worth noting, since spontaneous 

activity consumes most energy (155), drives BOLD fluctuations (143), and interacts with 

tasks or stimuli (156, 157).

6.4 Using EEG for the fMRI Inverse Solution

Compared to fMRI-constrained EEG/MEG inverse solutions, using EEG to inform fMRI 

mapping is more straight-forward (140, 158). The central idea is to extract features from 

EEG, and then relate them to the voxel-wise fMRI signal. With this idea, one may generate 

high-resolution activity maps presumably underlying the EEG features of interest (158), or 

address the EEG correlates to fMRI activity at specific voxels, regions, or networks (144, 

159).

Features of EEG are often defined and extracted by frequencies or frequency bands (e.g. 

delta, theta, alpha, beta, and gamma). Different frequency components can be extracted by 

simply filtering EEG within narrow bands. Such band-pass filtered signals, often coined as 

oscillations or rhythms, have been thought to bear important functional roles (160) and 

indicate brain states (161). Although the oscillation itself is too fast for fMRI to follow, its 

power or amplitude fluctuation falls in a similar time range as the fMRI signal (162). 

Correlation between the fMRI signal and the power fluctuation of an oscillation at a given 

frequency has been used to map the network that generates brain rhythms (140, 143). An 

excellent example is the alpha rhythm – a hallmark phenomenon in EEG. Studies have 

shown that the alpha-band power is correlated to the fMRI signal from visual and 

sensorimotor cortices (163), attention network (164, 165), and thalamic nuclei (166). The 

EEG-fMRI correlation in the thalamus demonstrates the synergistic merit of fMRI-EEG, 

since the thalamus is too far away to generate reliable EEG and localizing such deep sources 

with EEG alone is challenging. Beyond the alpha band, other frequency bands have also 

been studied in a similar fashion, e.g. showing the negative coupling between frontal theta 

rhythm and default-mode network (167).

Caution should be taken when correlating the fMRI signal to a single frequency component 

of EEG. This is because EEG, or its underlying neural activity, nearly never manifests itself 

as a single-frequency rhythm; instead, it always contains a mixture of rhythms, and an 

arrhythmic component that follows a power-law (1/f) distribution across a broadband (168). 

Different frequency components are often related to each other such that the magnitude of 

one frequency is coupled to the magnitude or phase of another frequency (169). Therefore, it 

is important to consider all frequency components together as a collective account of the 

fMRI signal, while disentangling the differential contributions from broadband vs. 

narrowband components (139, 170), as well as oscillations at different frequencies (171). In 

this regard, recent findings suggest that (broadband) arrhythmic and (narrowband) rhythmic 

processes account for global and modular patterns of functional connectivity observed with 

resting state fMRI, respectively (170). The EEG correlates of resting state networks exhibit 

He et al. Page 12

Annu Rev Biomed Eng. Author manuscript; available in PMC 2021 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



their distinct spectral signatures, characterizing the way by which neural oscillations support 

inter-regional interactions within networks (144, 159).

From EEG, features can also be extracted as characteristic spatial patterns or microstates that 

reoccur over time (8, 172). The EEG microstates have been found to correlate with the fMRI 

signal in the resting state (173–175). Moreover, for event-like tasks or stimuli, EEG features 

may also be extracted from temporal variations in single-trial potentials, and their 

correlations with fMRI reveal rich temporal dynamics of information processing in task-

evoked neural networks (176, 177).

6.5 Challenges and Opportunities

A critical challenge for integrating fMRI and EEG is the strong electromagnetic interference 

that causes artifacts in simultaneously acquired fMRI and EEG signals (178). The artifacts 

are more of concern for EEG than for fMRI, and tend to deteriorate in higher fields (179). 

Existing ways of removing such recording artifacts are mostly in post-processing algorithms 

(180). Hardware solutions that reduce or eliminate the artifacts are needed for broader and 

more routine applications of fMRI-EEG. Initial progress is encouraging and merits further 

development (181).

Combining fMRI and EEG serves to bridge brain signals across spatial and temporal scales. 

Questions remain as to how functional information reported with fMRI-EEG relates to the 

brain’s structural characteristics, the roles of different neuronal circuits, and the excitation-

inhibition balance. Such questions are approachable from multiple perspectives, some of 

which are speculated as below.

For example, the relationships between fMRI and EEG in distinct frequencies likely reflect 

the spectral signatures of regional activity and inter-regional interaction (144, 182, 183). 

Such spectral signatures may be closely related to the topological properties of structural 

connectivity. As illustrated in Fig. 6, neuronal communication takes time, depending on the 

distance and the velocity of signaling between neurons (Fig. 6.a). The frequency of neuronal 

oscillation is inversely related to the cumulative time delay for information to travel out of a 

region and back to itself through an indirect poly-synaptic pathway (Fig. 6.b). As a region is 

involved in many such pathways with various time delays (Fig. 6.c), the spectrum of 

regional activity should indicate the histogram of the time delays of all structural circuits in 

which this region is actively involved for a given period of time (Fig. 6.d). It is plausible to 

predict that when a region (or a pair of regions) is engaged in relatively local-scale 

processing, it tends to involve shorter pathways and less synapses, giving rise to shorter time 

periods and thus higher frequency components will be more evident. Such interpretation and 

prediction remain to be tested, but represent a plausible scenario about the fundamental 

relationships between circuit structures and dynamics.

Spectral information in EEG/MEG or EEG-fMRI may be interpreted in relation to 

feedforward and feedback pathways. Recent studies suggest that the frequency of neural 

oscillations marks the directionality of network interactions: low-frequency oscillations (e.g. 

alpha) reflect feedback processes and high-frequency oscillations (e.g. gamma) reflect 

feedforward processes (184–186). Such findings are consistent with the observable laminar 

He et al. Page 13

Annu Rev Biomed Eng. Author manuscript; available in PMC 2021 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



profile of fMRI (187), LFP-based phase relationship (184), and effects of neuromodulation 

(188). Although the findings need further replication and validation, conceivable 

implications include using the frequency information to infer directional networks, and to 

investigate the dynamics and roles of feedforward vs. feedback pathways against theories in 

computational neuroscience, e.g. predictive coding (189, 190) and free-energy principles 

(191).

7. CONCLUSIONS AND FUTURE TRENDS

EEG and MEG are non-invasive measurements, which record brain electromagnetic activity 

with high temporal resolution. Once ESI is applied to high density EEG/MEG recordings, 

brain electrical activity can be imaged with sub-lobar resolution in the order of ~ 5mm, or 

the level of cortical gyri and sulci (192). ESI also disentangles the sensor-level signals to 

reveal electrophysiological dynamics in regional activity or inter-regional connectivity, 

yielding new insights to brain functions in health (193) and disease (194–196).

Given its current advances and continuing development, ESI will be increasingly used for 

clinical applications. The inexpensive EEG setups available in most clinical settings, the 

availability of computers, and the accessible open-source ESI analysis tools will enable 

broad applications of EEG source imaging. Furthermore, the capability of imaging dynamic 

brain activity from the whole brain, makes ESI a desirable means for studying large brain 

networks in human.

While ESI can provide highly valuable information about brain networks and dynamics, it 

also has the advantage of being integrated with other modalities such as the fMRI to 

combine the high temporal resolution of the EEG with the high spatial resolution of fMRI 

(see Section 6). The need for increasing the spatiotemporal resolution in imaging brain 

function is ongoing (197). It is foreseeable that developments in designing better ESI 

algorithms, and combining EEG/MEG with other neural imaging or modulation techniques, 

such as transcranial focus ultrasound (198), will be at the frontiers in advancing functional 

neuroimaging.
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8. Box 1 –

Open Source ESI Software

ESI algorithms are widely available to public via free and open source software. Some of 

these toolboxes are capable of performing source imaging as well as connectivity 

analysis, like eConnectome (104), FieldTrip (199) and MNE (200) and Nutmeg (201), 

while some mainly focus on source imaging, such as the BrainStorm (202). There are 

toolboxes which are more specialized for time-series and component analysis such as the 

EEGLAB (203) toolbox and some are more specialized with scalp topographical 

analysis and clustering such as CARTOOL (204). The statistical parameter mapping 

(SPM) toolbox (205, 206) is a widely used toolbox which was developed initially for 

fMRI and DCM analysis and now includes EEG/MEG analysis. There are some 

toolboxes such as the partial directed coherence (PDC) (207) and the source information 

flow (SIFT) (208) toolboxes, which are specialized for connectivity analysis without 

much work on source imaging.

Subject specific head models derived usually from subject’s MRI is necessary to solve 

the forward problem and is ultimately used in ESI; such toolboxes include the 

FreeSurfer (209), BrainSuite (210) and BrainVISA Anatomist (211). The 

OpenMEEG (212) can be used to make subject specific BEM models.

There are many more freely available open source toolboxes online as well as 

commercial software. We intended to provide a few examples of the more well-known 

toolboxes to guide the readers. All of the introduced toolboxes above have extensive 

online tutorial and user guides and are relatively easy to set up and work with.
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Fig. 1. Physiological Basis of EEG/MEG and the Biophysical Modeling of Forward and Inverse 
Problem.
The electrical activity of the brain is due to the ions (charges) that enter and exit the selective 

membrane of neurons. EEG and MEG signals represent scalp manifestation of the 

underlying activation of synchrony neuronal ensembles, which encode brain function or 

dysfunction. Current dipoles can be used to model neuronal currents. Maxwell’s equations 

can be solved to obtain the electric potential (EEG) and the magnetic field (MEG) – the so-

called forward problem. Various numerical techniques, such as the boundary element 

method (BEM) and the finite element model (FEM), can be used to model head volume 

conductor linking neuronal current dipoles to EEG/MEG. The current density distribution of 

brain activity can be estimated from scalp EEG and MEG by means of signal processing 

algorithms – the so-called inverse problem.
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Fig. 2. Electrophysiological Source Imaging (ESI) In a Glimpse.
Different classes and families of source imaging algorithms are depicted in this figure. In the 

center, an underlying brain activity with two separate sources and corresponding time-course 

of activity is simulated; the forward problem is solved and the scalp potential distribution is 

calculated (simulated EEG). On the upper left the solution of the dipole localization method 

for the given example is depicted. In the rest of the figure, major families of inverse 

algorithms are shown and some of the well-known algorithms in each family are listed as 

examples. For each case, the algorithm used to solve and produce the result is marked with 

an asterisk under the result. The mathematical formulation for the algorithm marked by the 

asterisk is provided under each solution for the reader’s interest. The interested reader 

should refer to the cited papers in the manuscript for more information regarding these 

inverse algorithms. The lead-field matrix from the current dipole distribution and the scalp 

potential is denoted by K, the scalp potential φ, the current density distribution j and in the 

dipole model dj. The inverse imaging operator (for the MN family) is denoted by T and λ 
and α are regularization parameters. In the beamforming family, the data covariance is 

denoted by ℛϕ and the spatial filter weights wr. For the IRES algorithm V is the discrete 

gradient operator, Σ the estimated noise covariance and ε estimated noise power. MN: 
Minimum Norm, WMN: Weighted MN, LORETA: Low Resolution Electromagnetic 

Tomography, sLORETA: Standardized LORETA, dSPM: dynamic Statistical Parametric 

Mapping, LCMV: Linearly Constrained Minimum Variance, DICS: Dynamic Imaging of 

Coherent Sources, VBB: Vector-Based Beamformer, MUSIC: Multiple Classification 

Algorithm, FINE: First Principle Vector, VB-SSI: Variation-Based Sparse Source Imaging, 

IRES: Iteratively Reweighting Edge Sparsity, SBL: Sparse Bayesian Learning, FOCUSS: 
Focal Undetermined System Solution.
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Fig. 3. Electrophysiological Source Imaging of Seizure.
Seizure onset zones (SOZs) and the source time-frequency representations (TFRs) estimated 

from a typical seizure in patient 1 with frontal lobe epilepsy (top) and patient 2 with 

temporal lobe epilepsy (bottom). The estimated SOZ (left and middle panels, yellow to 

orange colorbar) is co-localized with surgically resected zones (shown in green) in patient 1, 

and SPECT foci (green) in patient 2. The TFR (right panels) shows the time-frequency 

evolution at the maximal estimated SOZ point. Intracranial electrodes were implanted in 

patient 2 (spherical dots) and SOZs determined from intracranial seizure recordings (Red 

Spherical dots). (Adapted with permission from (83))
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Fig. 4. The Concept of Electrophysiological Connectome (eConnectome).
Electrophysiological source imaging can not only image brain activity but also functional 

connectivity of the brain. The eConnectome approach is to estimate brain network dynamics 

from noninvasive surface measurements such as EEG and MEG. The location of activity 

(nodes), the time-course of activity at such nodes, the dynamics/connectivity among these 

nodes (links) can be estimated from EEG/MEG to reveal the underlying brain networks. ESI 

is a key element in realizing this goal. eConnectome has been shown to be effective and 

accurate in imaging brain network dynamics in the source domain. In the figure, arrows 

show information flows and directional functional connectivity, or causality.
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Fig. 5. Illustration of the Common Origin and the Joint Inverse Solutions of fMRI and EEG/
MEG.
The spatially inverse problem refers to spatial localization and imaging of temporally 

resolved EEG/MEG signals. The temporally inverse problem refers to temporal 

decomposition of spatially resolved fMRI signals. Both fMRI and EEG (or MEG) have 

synaptic origins.
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Fig. 6. The Structure-Function Relationship in Spectral Signatures of Brain Activity and 
Connectivity Observable with fMRI-EEG/MEG.
(a) The time delay between two interconnected regions depends on the axonal length (l), 
conduction velocity (v), and synaptic delay (δ). (b) The cumulative delay of a circular path 

entails the sum of delays via every path, and contributes to network dynamics at one specific 

frequency. (c) A region can be involved in multiple circuits with distinct frequencies. (d) The 

spectrum at this region indicates its relative involvements in all circuits for a given period.
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