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Abstract

Objective: Regulatory T cells (Tregs) play a central role in immune responses to

infectious agents and tumors. Paradoxically, Tregs protect self‐cells from the immune

response as a part of peripheral tolerance and prevents autoimmune disorders,

whereas during the process of carcinogenesis, they are exploited by tumor cells for pro-

tection against antitumor immune responses. Therefore, Tregs are often considered as

a major obstacle in anticancer therapy. The objective of this review is to provide a cur-

rent understanding onTregs as a potential cellular target for achieving therapeutic gain

and discuss various approaches that are implicated at preclinical and clinical scenario.

Recent findings: Several approaches like immunotherapy and adjuvant chemother-

apy, which reduce Tregs population, have been found to be useful in improving local

tumor control. Our recent observations with the glycolytic inhibitor, 2‐deoxy‐D‐glu-

cose, established as an adjuvant in radiotherapy and chemotherapy of tumors also

show that potential of 2‐deoxy‐D‐glucose to improve local tumor control is linked

with its ability to reduce the Tregs pool.

Conclusions: Several published studies and emerging evidences indicate that sup-

pression of Treg numbers, infiltration into the tumors, and function can improve the

cancer therapy by enhancing the antitumor immunity.
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1 | INTRODUCTION

Cancer is the second biggest cause of morbidity and mortality after

cardiovascular diseases in the world.1 It is well established that cancer

primarily arises because of uncontrolled and rampant growth of self‐

cells leading to what is loosely defined as “malignancy” besides the

other hallmarks of cancer as described by Hanahan and Weinberg.2

At the initial stages of tumor progression, tumor cells are recognized

by the cells of the innate immune system, while at later stages, tumor

cells use several strategies to evade immune responses.3,4 The

adaptive immune response is initiated and matured as a result of the
d, who contributed in the ini-

et with an untimely death.

wileyonlinelibrary.com/jo
expression of tumor‐associated antigens recognized by the immune

system of the host.5,6 Nevertheless, tumors can escape immune

surveillance. The process of evasion (immune editing) results from

various mechanisms indicating that the immune responses to tumor

cells create selective pressures that decide their survival and progres-

sion including spread.7,8 Among the several mechanisms known,

suppression of cytotoxic T cell response to tumors by regulatory T

cells (Tregs) plays an important role. Evidences from mouse models

and cancer patients show that the population of Tregs increases in

parallel with the tumor growth, while depletion of Tregs in mice

increases the antitumor immunity and reduces tumor growth.9,10

Treg cells (CD4+CD25+FoxP3+) are a specialized subset of CD4+ T

cells and are different from other immune cells because of high

expression of CD25 (interleukin [IL]‐2 receptor) and transcription
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factor FoxP311 (forkhead box P3). The role of Tregs has been exten-

sively investigated in autoimmunity, allergy, and microbial infec-

tions.12-14 Tregs are mainly classified into 2 types on the basis of

their origin: n‐Tregs (naturally occurring Tregs) and i‐Tregs (inducible

Tregs). n‐Tregs are mainly generated in thymus and suppress immune

effector cells in a contact‐dependent manner, while i‐Tregs are found

to be generated in the periphery and suppress immune responses by

several ways, which include production of inhibitory cytokines, such

as IL‐10, IL‐35, and transforming growth factor (TGF)‐β, induction of

cytolysis by the production of granzymes, disruption of effector cell

metabolism, and dendritic cell–mediated suppression.15-17 Several

new subsets of Tregs have been discovered and extensively studied.18

Tregs on the one hand save self‐cells from recognition by immune

system and protect body from autoimmunity, and on the other hand,

they compromise the antitumor immunity.13,14 It is well established that

in mouse and human malignancies, body's own cells become

deregulated and avoid death from chemotherapeutic agents by up‐

regulating the pool of Tregs and escaping immune response.19-21 There-

fore, strategies that target Treg cells have been found to be successful

in achieving local tumor control. Targeting Tregs‐specific molecules

using monoclonal antibodies and several chemotherapeutic drugs have

been found to deplete Tregs, besides their established antitumor

effects.22-27 Our recent studies have shown that the glycolytic inhibitor

2‐deoxy‐D‐glucose (2‐DG) that target metabolic reprogramming of

tumors also reduce the levels of i‐Tregs.28,29 All these studies suggest

that suppression of Tregs level and/or function can restore antitumor

immunity, which can be exploited for the treatment of tumors.

Other interesting approaches such as directing naïve T cells and

Tregs into Th17 and other subpopulation of cell fates have been the

topic of several recent reviews. This review summarizes the current

status of Tregs‐based targeted therapies as well as conventional

chemotherapeutic agents that reduce Tregs thereby leading to

improved therapeutic gain.
2 | TREGS IN SURVIVAL AND PROGNOSIS

Increased presence of Tregs is generally associated with reduced

survival and poor prognosis in many types of cancer30,31 such as renal
cell carcinoma32 primarily due to their capacity to inhibit antitumor

immunity. However, in colorectal carcinoma33-37 and B‐cell

lymphoma38 patients, high Treg cell infiltration is associated with a

favorable prognosis. In case of B‐cell lymphomas or other hematolog-

ical cancers, this could be due to an additional role of Tregs in

regulating malignant immune cell by recognizing tumor antigens on

MHCII on the tumor cell leading to tumor cell killing.39 Similarly, in

large intestine, the presence of microbiological flora results in

increased Th17‐mediated inflammatory antimicrobial response that

can promote cancer growth. Attenuation of this tumor‐enhancing

response by Tregs may provide an explanation for favorable prognosis

in colorectal carcinoma patients with high Treg cell numbers in the

tumor.34 Therefore, it appears that Tregs play diverse roles in different

types of cancers and may be useful in some settings, which need a

thorough understanding of their relationship with other cells, effects

of their anatomic distribution, and other factors.
3 | SPECIFIC AND NONSPECIFIC
APPROACHES FOR THE MODULATION OF
TREGS

Tumors use numerous mechanisms to suppress host immunity includ-

ing altered antigen‐presenting cell function, fostering dysfunctional T

cell co‐signaling and generating an immune‐subversive cytokine

milieu.3 Moreover, accumulating evidences suggest that the effects

of anticancer treatments on the immune system significantly contrib-

ute to their overall efficacy, besides their direct effects on the tumor

cells/tissues.40 Therefore, agents that have the potential to restore

host immunity have been investigated as immunotherapeutic as well

as adjuvant to other therapeutic modalities. Among several

approaches to modulate immune status, eliminating CD4+CD25+ T

cells has been found to enhance antitumor immunity by abrogating

immunological unresponsiveness of syngeneic tumor in‐vivo and in‐

vitro.41 This can be achieved through specific depletion of Tregs by

blocking the specific surface receptors like CTLA‐4, CD25, or various

chemokine receptors (eg, CCR5, which induces migration of Tregs to

tumor sites)22-25 (Figure 1). Administration of agonist anti‐GITR or

anti‐OX40 antibodies is also capable of evoking antitumor immunity
FIGURE 1 Specific and nonspecific
strategies to attenuate the numbers or
function of regulatory T cells (Tregs). The
depletion of Tregs, blocking of their
recruitment to the tumor tissues or inhibition
of their immunosuppressive function leads to
restoration of antitumor immunity
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and resulting in the eradication of established tumor25,26 (Figure 1).

Interestingly, several chemotherapeutic agents like aromatase

inhibitor, cyclophosphamide, fludarabine, gemcitabine, and

mitoxantrone have also been found to deplete Tregs, besides their

established antitumor effects27 (Figure 1). Our recent studies have

shown that systemically administered 2‐DG significantly enhances

the antitumor effects of radiation and anticancer drugs42-44 that

appears to be related to the immunomodulation induced by the com-

bination.28 Interestingly, the complete response (tumor‐free survival;

cure) observed only in nearly 50% of the animals following the

combined treatment with tumor irradiation and 2‐DG was found to

be strongly linked to the immune stimulation characterized by selec-

tive lymphodepletion, shift from Th2 to Th1 and attenuation of the

immune‐suppressive network.28 Interestingly, the immune stimulation

appeared to be related to the depletion of i‐Tregs brought about by

the combined treatment28,29 in spleen, peripheral blood, lymph node,

and in the tumor.44 However, natural Tregs (Tregs in nontumor‐

bearing mice) were not influenced, suggesting a differential effect on

n‐Tregs and i‐Tregs by the combination. Although inhibition of

glycolysis (including by 2‐DG) is known to reduce the FoxP3

level, essential for the functioning of Tregs,45 the differential effects

on n‐Tregs and i‐Tregs are not understood. These differential effects,

however, could be related to differences in the metabolic profile as

metabolic reprogramming of lymphocytes in general has been

suggested to be context and environment dependent.46 Thus, 2‐DG

not only sensitizes tumor cells by modifying glycolysis‐dependent

and glycolysis‐independent damage response pathways47 but also

stimulates antitumor immunity mainly by reducing the Tregs

(Figure 1). Therefore, 2‐DG appears to be a good candidate as an

adjuvant for immunotherapy besides its established role as an

adjuvant for chemotherapy and radiotherapy.48,49

In addition, several studies have shown that disruption of chemo-

kine signaling leads to reduced migration of Tregs to the tumors50,51

(Figure 1). Reducing CCL5 production by tumors or CCR5 inhibition

by TAK‐779 resulted in reduction in tumor growth in human and

murine pancreatic tumor models.50 Targeting of CCL17/22‐CCR4 axis,

which is important in several types of cancers including lymphoma,

lung, ovarian, gastric, breast, and prostate,52 by CCR4‐targeted anti-

bodies has shown effective Treg depletion and antitumor response53-

58 (Figure 1).

Collectively, these studies suggest that suppressing the Treg

function can restore antitumor immunity, which can be used as an

approach for therapy.
4 | REGULATION OF ANTITUMOR
IMMUNITY BY TREGS AND IMPLICATIONS ON
THE OUTCOME OF THERAPIES

Studies in mouse models suggest that Tregs are major regulators of

antitumor immunity.59-61 They not only inhibit natural killer cell–

mediated cytotoxicity but also suppress the proliferation of and IFN‐γ

production by CD4+ and CD8+ T cells thus impairing the antitumor

immune response.59,60 However, in the clinical scenario, increased

level of Tregs has also been shown to be associated with reduced
survival and poor prognosis in patients of different types of

cancers.30,62-65 As discussed in this review, one of the obstacles for

specific depletion of FoxP3+ Tregs is that both FoxP3+ Tregs and

effector T cells exhibit an activated phenotype, especially in expres-

sion patterns of cell surface molecules. Both are high in expression

of CD25, an activation marker; CTLA‐4, an immune checkpoint; and

OX40 and GITR, immune co‐stimulatory molecules.25,66-69 Therefore,

there may be a limitation in differentially targeting each molecule

alone for Treg depletion. With current knowledge, however, the

search is under way to find a highly specific cell surface marker for

FoxP3+ Tregs. Another way of augmenting tumor immunity is to

design combination therapy targeting both Tregs and non‐Treg cells

and alter numerical or functional balance between the 2 populations,

ie, to deplete Tregs or attenuate Treg suppressive function and to

simultaneously expand effector T cells or augment their effector activ-

ity.65 Therefore, it appears that a delicate balance between Treg and

effector T cells is important, as a very low number of Tregs will result

in autoimmunity, while a higher number can suppress the immune sys-

tem and result in tumor chemoresistance leading to poor prognosis

and reduced survival of patients.
5 | CROSS TALK BETWEEN TREGS AND
INFLAMMATION

Tregs are known to suppress the antitumor immune response during

cancer progression. They not only suppress innate but also the adap-

tive immune responses activated during the cancer progression.70

Although Tregs have always been a fascinating target for cancer

therapy, manipulating them as a therapeutic approach has received

relatively less attention.71 Targeting Tregs without addressing the

cause of their up‐regulation might even lead to more inflammation

and aggressive cancer progression. Indeed, we recently reported this

in tumor‐bearing mice following the administration of 2‐DG alone.72

Up‐regulation of Tregs during heightened inflammation as in the case

of cancer is a defense mechanism to protect the collateral damage, but

suppression induced by the Tregs becomes nonspecific and also

suppresses the antitumor immune response. Therefore, approaches

that target the source of inflammation (source of induction of Tregs)

besides decreasing (depleting) Tregs may be more efficient in enhanc-

ing the therapeutic gain, as observed following the combination treat-

ment with 2‐DG and radiation.28 These studies also indicate that the

extent of decrease inTregs coupled with reduction in the inflammation

are essential in achieving local tumor control as modifying any one of

them did not elicit complete response.28,72 Further, induction of Tregs

associated with different malignancies has been shown to polarize

macrophages toward M2 type,73,74 suggesting that depletion of Tregs

may lead to macrophagic polarization toward M1 and correlate with

local tumor control, as has been reported by us recently. 72
6 | NEW APPROACHES FOR TARGETING
TREGS

Although many approaches are currently available for the depletion of

Tregs, relentless search for novel targets or depletors of Tregs are
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increasing the hope for an effective cancer immunotherapy. In line

with this, RANKL expression on Tregs has been shown to activate

RANK (NF‐κB) receptor on cancer cells75. RANKL activity is greatly

increased in the cancers that metastasize to bones such as breast

and prostate cancers.76,77 Furthermore, RANKL‐RANK signaling

appears to have a role in the functioning of the immune system as

RANKL is expressed by T helper cells as well as Tregs and are also

involved in dendritic cell maturation.75,78 Therefore, inhibitors of

RANK signaling, like anti‐RANKL antibody denosumab, holds

promising potential in preventing Tregs‐assisted metastases of

established cancers.75 Another novel strategy for Tregs immunother-

apy is targeting FoxP3, a master transcription factor of Tregs, through

RNA interference (Figure 1). This window of hope opened up when it

was shown that administration of miR‐31, a negative regulator of

FoxP3, through a lentiviral vector abrogated Treg function.79 The

issue to be addressed while targeting FoxP3 is that it is also expressed

in T effector population80 as well as in some cancer cells,81 so the

outcome can also be therapeutically detrimental. Furthermore, up‐

regulated COX‐2 expression is a characteristic feature of tumor

environment82 and several COX‐2 inhibitors have been shown to

deplete Tregs (Figure 1).83

Tumor‐derived exosomes have been found to influence the levels

and functioning of Tregs in the effusions from malignant cells, with the

cell surface TGF‐β1 mediating the FoxP3 expression.84 Therefore,

containing malignant effusion‐derived exosomes expressing TGF‐β1

appears to be an attractive immunotherapeutic strategy for overcom-

ing Treg‐induced immune suppression.84 Furthermore, recent

evidences point toward the contribution of vascular endothelial

growth factor receptor 2 in the induction of Tregs,85 suggesting

thereby that vascular endothelial growth factor receptor 2 may be a

useful target in overcoming immune suppression caused by tumors

and improve therapy. The safety of combining peptide vaccination

using VEGFR1/2 with or without chemotherapy has been established

in phase I clinical trials in patients with pancreatic cancer and renal cell

carcinoma,86,87 while the clinical efficacy is yet to be established.
7 | CONCLUSIONS

Emerging evidences are convincing enough to support the notion that

attenuating the impact of Tregs (by depletion, blocking their infiltra-

tion into tumors and reducing differentiation and signaling) has the

potential to enhance tumor immunity88-91 thereby improving the

efficacy of cancers therapy and, in particular, the immunotherapy92

(Figure 1). Unfortunately, it has the risk of enhancing normal tissue

toxicity and induction of autoimmunity due to the sharing of the same

receptor by other effector T cells leading to autoimmune disorders

and diseases because of uncontrolled pathological immune

responses.93-102 Therefore, a careful consideration is required on the

extent of depletion and the context (ie, location, homing,

and cytokine milieu) and an approach that selectively depletes

tumor‐associated i‐Tregs, while maintaining the naturally occurring

n‐Tregs. Several interesting approaches including the conversion of

inducible Tregs into other antitumor T cell subpopulations have been

found to be useful, besides certain chemotherapeutic agents, which
reduce Tregs in addition to their primary target (tumor).25,27 Our

recent observations with the glycolytic inhibitor, 2‐DG42,44,48,49,103-

106 suggest that metabolic modifiers like this glucose analog can also

effectively deplete Tregs and may be related to their antitumor

efficacy. Since 2‐DG/metabolic modifiers have little or no undesirable

effects on the normal cells, they can be used more successfully to

boost antitumor immune response and enhance the efficacy of

radiotherapy, chemotherapy, and immunotherapy.
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