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Radiomic nomogram based on MRI to
predict grade of branching type intraductal
papillary mucinous neoplasms of the
pancreas: a multicenter study
Sijia Cui1,2†, Tianyu Tang3,4†, Qiuming Su5, Yajie Wang1, Zhenyu Shu1, Wei Yang1,6 and Xiangyang Gong1,7*

Abstract

Background: Accurate diagnosis of high-grade branching type intraductal papillary mucinous neoplasms (BD-
IPMNs) is challenging in clinical setting. We aimed to construct and validate a nomogram combining clinical
characteristics and radiomic features for the preoperative prediction of low and high-grade in BD-IPMNs.

Methods: Two hundred and two patients from three medical centers were enrolled. The high-grade BD-IPMN
group comprised patients with high-grade dysplasia and invasive carcinoma in BD-IPMN (n = 50). The training
cohort comprised patients from the first medical center (n = 103), and the external independent validation cohorts
comprised patients from the second and third medical centers (n = 48 and 51). Within 3 months prior to surgery, all
patients were subjected to magnetic resonance examination. The volume of interest was delineated on T1-
weighted (T1-w) imaging, T2-weighted (T2-w) imaging, and contrast-enhanced T1-weighted (CET1-w) imaging,
respectively, on each tumor slice. Quantitative image features were extracted using MITK software (G.E.). The Mann-
Whitney U test or independent-sample t-test, and LASSO regression, were applied for data dimension reduction,
after which a radiomic signature was constructed for grade assessment. Based on the training cohort, we
developed a combined nomogram model incorporating clinical variables and the radiomic signature. Decision
curve analysis (DCA), a receiver operating characteristic curve (ROC), a calibration curve, and the area under the ROC
curve (AUC) were used to evaluate the utility of the constructed model based on the external independent
validation cohorts.
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Results: To predict tumor grade, we developed a nine-feature-combined radiomic signature. For the radiomic
signature, the AUC values of high-grade disease were 0.836 in the training cohort, 0.811 in external validation
cohort 1, and 0.822 in external validation cohort 2. The CA19–9 level and main pancreatic duct size were identified
as independent parameters of high-grade of BD-IPMNs using multivariate logistic regression analysis. The CA19–9
level and main pancreatic duct size were then used to construct the radiomic nomogram. Using the radiomic
nomogram, the high-grade disease-associated AUC values were 0.903 (training cohort), 0.884 (external validation
cohort 1), and 0.876 (external validation cohort 2). The clinical utility of the developed nomogram was verified
using the calibration curve and DCA.

Conclusions: The developed radiomic nomogram model could effectively distinguish high-grade patients with BD-
IPMNs preoperatively. This preoperative identification might improve treatment methods and promote personalized
therapy in patients with BD-IPMNs.

Keywords: Branch duct type, Intraductal papillary mucinous neoplasm, MRI, Radiomics, Nomogram

Introduction
The pancreatic ductal system mucinous epithelium can
develop mucin-producing tumors, such as intraductal
papillary mucinous neoplasms (IPMNs) of the pancreas.
IPMNs represent approximately 21–33% of cystic neo-
plasms and is one of the precursors of pancreatic cancer
that is identifiable radiographically [1–3]. In the past two
decades, we found that the detection rate and incidence
of IPMNs have increased significantly as a result of the
use of advanced diagnostic imaging technology [1, 4, 5].
When a patients is suspected of having an IPMN, deter-
mining the grade of malignancy for an individual patient
permits decisions regarding whether surgery or surveil-
lance is appropriate to be made. However, although cli-
nicians are experienced at diagnosing and treating
IPMNs, it is still challenging to distinguish high-grade
IPMNs (i.e., high-grade dysplasia (HGD) to invasive car-
cinoma) from low-grade IPMNs (i.e., low-grade dysplasia
(LGD) to intermediate-grade dysplasia (IGD)) before
surgery.

Currently, laboratory tests, endoscopy, cytology, and
imaging technologies play the main roles in differentiat-
ing between high-grade and low-grade IPMNs. The
International Association of pancreatic diseases (IAP)
recommends active surgical treatment for IPMNs of the
main duct type and mixed type, while for IPMNs of the
branch duct type, according to the revised 2017 inter-
national consensus guidelines, surgery is recommended
for tumors with indicative features, such as mural nod-
ules, cyst size > 3 cm, main pancreatic duct (MPD) size
> 5 mm, rapid cyst growth (≥ 5 mm over 2 years), and in-
creased serum carbohydrate antigen (CA19–9 > 37 ng/
ml) levels [6, 7]. The IAP guidelines noted that the mean
prevalence of invasive malignancy in BD-IPMNs was
17.7% (1–37%) [8]. In this setting, a considerable num-
ber of patients with benign lesions received unnecessary
invasive surgery, and the existing grade assessment sys-
tem, with unsatisfactory specificity and positive

predictive value, remains unreliable [9, 10]. Therefore,
there is an urgent need for a highly sensitive and specific
preoperative prediction system to help establish individ-
ualized treatment decisions. Medical imaging produces
essential information for the preoperative assessment of
BD-IPMNs. It has been suggested that computed tomog-
raphy (CT)-derived radiological features could assess the
grade of BD-IPMNs objectively [11–13]. Radiomics is
the quantitative analysis of images that comprise a large
number of features combined with machine learning
[14]. Radiomics has demonstrated potential utility in
oncological imaging in prognosis, detection, and differ-
ential diagnosis assessments, such as in the lung [15],
breast [16], prostate [17, 18] and liver [19]. However, to
the best of our knowledge, there has been no previous
research using magnetic resonance (MRI)-derived radio-
mics in the grade assessment in patients with BD-
IPMNs. Some scoring systems or nomograms to predict
malignancy from clinical variables have been suggested
[20–22]; however, these methods had limitations, e.g.,
the lack of external or internal validation of their clinical
efficacy.
Thus, the present study aimed to construct a predict-

ive model that integrated clinical variables and a radio-
mic signature for preoperative grade assessment in
patients with BD-IPMNs. This improved preoperative
evaluation model could spare low-grade patients from
potentially morbid surgery and permit high-grade pa-
tients to undergo resection before transformation into
an invasive phenotype [23].

Methods
Workflow
The research workflow is shown in Fig. 1, and comprises
four parts: Acquiring the images, segmenting the region
of interest (ROI), extracting features, and prediction
model construction. We acquired T1-w, T2-w MRI im-
ages and CET1-w images, and radiologists outlined the
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tumor area manually on all image slices. Then, the quan-
titative radiomic features were extracted from the ROI,
after which a machine learning model was established to
assess the grade of BD-IPMNs.
The machine learning model-based tumor pathological

grade assessment was developed and validated using
three separate datasets. Medical center A (n = 103) data
were used as the training dataset to construct the tumor
pathological grade assessment model. Medical center B
and C (n = 48 and 51) data were used as independent
validation datasets to test the developed model.
After extraction of the quantitative radiomics features

from the ROI, least absolute shrinkage and selection op-
erator (LASSO) regression, Spearman correlation ana-
lysis, analysis of variance (ANOVA) tests, and Mann–
Whitney U test, were applied to select the best radiomics
features from the radiomic signature. Then, to construct
the tumor pathological grade assessment nomogram,
multivariate logistic regression was used to integrate the
clinical variables and the radiomic signature.

Patients
The Institutional Review Boards of the three centers ap-
proved this retrospective study. The provision of signed
informed consent was waived. This study was conducted
following the tenets of the Declaration of Helsinki. Be-
tween Mar. 2012 and Feb. 2020, patients who were re-
ported to have BD-IPMNs on pathological assessment
and who underwent an MRI scan of their pancreas be-
fore surgery were included in this study. If the branch
duct-type information was not included on the

pathology report, patients with BD-IPMNs were selected
according to their pre-operative MRI report. Among
them, 91 patients were excluded as follows: Patients
lacking complete clinical data (n = 23), suboptimal MRI
image quality caused by severe motion artifacts (n = 9,)
and patients who did not receive an MRI scan within 3
months before surgery (n = 59)(Fig. S1).
A multidisciplinary team comprising, surgeons, oncol-

ogists, and radiologists assessed the patients. Clinical
characteristics (e.g., sex, symptoms (abdominal pain or
fatigue), age, mural nodule, cyst size, main pancreatic
duct (MPD) size, CA19–9 and CEA level) were obtained
through review of the clinical data by a surgeon and a
radiologist with over 10 years of clinical experience. The
size of the MPD was determined at the maximum dila-
tion point of the pancreatic duct. Mural nodules were
defined as any solid papillary protuberances in the cyst.
The serum level of CEA and CA19–9 were measured
using ELISA. The serum CA19–9 level was judged to be
elevated if it was higher than the upper limit of normal
(37 U/mL). The serum CEA level was judged to be ele-
vated if it was higher than the upper limit of normal (5
U/mL). The pathological grade (LGD to invasive carcin-
oma) was assessed by two pathologists with over 10 years
of experience in abdominal tumor diagnosis according
to the 2010 World Health Organization classification
[24].

Acquisition of MRI images
Four different scanning images: preoperative T1-w, T2-
w, CET1-w arterial phase, and CET1-w portal venous

Fig. 1 Workflow of the development of the radiomic nomogram
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phase were acquired for all images. T1-w and CET1-w
images were collected during breath holding and T2 im-
ages were collected by breath triggering. The details of
MRI image acquisition are shown in Supplementary ma-
terial I.

Tumor segmentation and Radiomics feature extraction
To extract the features, portal venous phase imaging, ar-
terial phase imaging, and pre-contrast T1-w, T2-w were
used (Fig. S2). Radiologists manually contoured the ROIs
on the MRI images. If possible, reference images were
acquired using contrast-enhanced computed tomog-
raphy (CT). Image standardization before ROI segmen-
tation was conducted, which makes the thickness of the
layer consistent, thus ensuring that the size and bedding
of each ROI segmentation are consistent. Before ROI
segmentation, the two radiologists who performed the
analysis (Y.J.W. and W.Y) were blinded to the clinical
outcome. The whole tumor was segmented manually
using ITK-SNAP (www.itk-snap.org) on all slices of the
tumor [25]. According to previously published studies,
when there were multiple tumors, the tumors with the
largest diameter were selected for analysis [26]. One of
the radiologists drew the tumor boundary, which was
verified by the other radiologist.
The MITK software (Medical Imaging Interaction

Tookit 3.1.0.A, GE Healthcare) was used to extract the
radiomic features from the three-dimensional ROIs,
resulting in 328 features. The extracted features in-
cluded: Histograms, texture parameters, RLM (run
length matrix), GLCM (gray level co-occurrence matrix),
and form factor parameters. Each factor’s average value
was subtracted from all extracted radiometric features,
and divided by the standard deviation value (Z score
normalization), which eliminates the limitation imposed
by each feature’s units. To standardize the different
scales used to process the variables, each feature’s aver-
age value was subtracted from all the radiomic features
in the training data set, and then divided by their stand-
ard deviation values, respectively. Then, using the mean
and standard deviation values derived from the training
dataset, the same normalization method was applied.
To construct a realistic radiomic signature that com-

bines the most appropriate radiomic features we used
the LASSO regression method, as described by Monica
and Kumamaru, to select the most nonredundant and
robust radiomic features [27, 28]. Supplementary mater-
ial II describes the details of the LASSO method. To
predict the grade assessment for each patient, the best
selected radiomic features from the training cohort were
recalculated using a linear combination of selected fea-
tures weighted by their respective coefficients. Receiver
operating characteristic (ROC) curve and area under the
ROC curve (AUC) were used to evaluate the predictive

accuracy of the developed radiomic signature. The re-
producibility of radiomics feature extraction was
assessed using intra- and inter-class correlation coeffi-
cients (ICCs). Initially, 30 ROIs were chosen randomly
from each sequence. To calculate the intra-observer
ICC, reader A segmentation was repeated at a 7-day
interval and compared with the original segmentation.
Comparing the segment extraction of reader B with that
of reader A (first time) was used to calculate the inter-
observer ICC. An ICC value greater than 0.8 was consid-
ered to show good consistency of feature extraction [29].

Radiomic Nomogram construction
After univariate logistic regression, independent predic-
tors of high-grade BD-IPMNs were selected using multi-
variate logistic regression analysis, and then the new
radiomic nomogram was established using these inde-
pendent predictors. Next, to test the calibration and rec-
ognition performance of the radiomic nomogram, the
training and validation sets were used. The calibration
curve displayed the performance characteristics of the
multimodal radiomic nomogram models graphically.
The predictive accuracy of the combined nomogram
model was indicated by the degree of overlap between
the diagonal in the graph and the calibration curve. The
independent validation cohorts of 48 and 51 patients
from the second and third medical centers were used to
validate the radiomic nomogram. In the three cohorts
(training and two independent validation cohorts), the
clinical utility of the radiomic nomogram model was
assessed using decision curve analysis (DCA). Supple-
mentary material III shows the details of the DCA
method.

Statistical analysis
SPSS 18.0 (IBM, Armonk, NY, USA), R software (v.
3.5.1, Vienna, Austria), and MedCalc software v. 15.2.2
(https://www.medcalc.org/) were used to perform all the
statistical analyses. To compare continuous variables,
Mann–Whitney U-tests and the independent-sample t-
test were performed when appropriate. To compare cat-
egorical variables between groups, Fisher’s exact test or
a chi-squared test was used. To assess the impact of var-
iations between intra- and inter-readers in the extracted
radiomics features, intra- and inter-class correlation co-
efficients (ICC) were determined. In the ROC analysis,
the best threshold was determined using the Youden
Index. For the developed logistic regression models, the
goodness of fit was examined using the Hosmer-
Lemeshow test. The “glmnet” package was used to carry
out the LASSO regression analysis. The “pROC” package
was used to produce the ROC plots. The “rms” package
was used to plot the nomogram and calibration curve.
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For DCA, the “rmda” package was used. Statistical sig-
nificance was accepted at P < 0.05.

Results
Patients characteristics
Among the three medical centers, we recruited 202 pa-
tients diagnosed with BD-IPMNs. The training cohort
comprised patients from the first medical center (n =
103). The external independent validation cohorts com-
prised the patients from the second and third medical
centers (n = 48 and 51). The characteristics of the pa-
tients in the training and validation datasets were evenly
distributed (Table S1). There were no statistically signifi-
cant differences in BD-IPMN pathological grade assess-
ment and clinical characteristics (sex, age, symptoms,
mural nodule, cyst size, MPD size, CA19–9, and CEA)
between the training and validation datasets. Pathologic-
ally, high-grade BD-IPMNs were detected in 24.8% pa-
tients. The detailed distribution of clinical characteristics
in the low-grade and high-grade groups is summarized
in Table 1. In the training and validation datasets, we
noted significant differences for the cyst size, mural nod-
ule, MPD size, and CA19–9 between the low grade and
high grade groups.

Selection of Radiomics features and construction of the
Radiomics signature
In the training dataset, 334 statistically significant fea-
tures (P < 0.05) between the low-grade and high-grade
groups were identified from 1312 texture features, from
which 51 features were identified by Spearman correl-
ation analysis. To construct the radiomics signature,
LASSO was used to select the nine most valuable texture
features (Fig. S3), including five GLCM features, two
histogram features, one texture parameter feature, and
one form factor feature. The LASSO regression method
derived the coefficient for each selected feature. Then
the radiomic features classification and the calculation of
texture features after dimension reduction are carried
out (Table S2 and Fig. S4). Supplementary material II
shows the details of the selected features and the for-
mula used to calculate the radiomic signature. The de-
veloped radiomic signature model produced a good
result when predicting the histological grade (LGD/IGD
vs. HGD/associated invasive carcinoma), resulting in an
AUC of 0.836 in the training set (95% confidence inter-
val (CI), 0.750–0.901), 0.811 in validation set 1 (95% CI,
0.671–0.909), and 0.822 in validation set 2 (95% CI,
0.690–0.915). Figure 2a–c shows the ROC curves of the
radiomic signature based on the three datasets. Next, we
determined the quantitative scores of the radiomic sig-
nature for each patient with respect to the classification
of grade assessment of BD-IPMNs, to show the effective-
ness of the radiomic signature model at the individual

level (Fig. 3a–c), the percentage of patients in the low
grade category whose rad scores overlap with high grade
category were 58.4% in the training set, 60.5% in valid-
ation set 1 and 51.4% in validation set 2. Table 2 shows
the details of the performance evaluation of the radiomic
signature.

Construction of the combined Nomogram
In the univariate analysis of the training cohort, the low-
and high-grade groups showed significant differences for
the CA19–9 level, largest cyst size, size of the MPD,
mural nodule, and the radiomic signature. The AUC
value for all the significant variables in the univariate
analysis showed in Table 3. Multivariate logistic analysis
showed that the size of the MPD (odds ratio (OR):
4.263, 95% CI: 1.762–10.3113, P = 0.001), the CA19–9
level (OR: 8.402, 95% CI: 1.622–43.524, P = 0.011), and
the radiomic signature (OR: 3.434, 95% CI: 1.638–7.197,
P = 0.001) were independent parameters of high-grade of
BD-IPMN. Therefore, a radiomics nomogram model in-
corporating the developed radiomics signature with the
size of the MPD and the CA19–9 level was constructed.
A weighted number of points was assigned to each fac-
tor. The nomogram was then used to calculate the total
point score of each patient, which was analyzed for its
correlation with the estimated probability of high-grade
of BD-IPMNs (Fig. 4a).

Radiomic Nomogram performance evaluation
ROC analysis was used to confirm the utility of the com-
bined nomogram, resulting in an AUC of 0.903 (95% CI,
0.828–0.952), a sensitivity of 0.734, and a specificity of
0.948 for the training set; an AUC of 0.884 (95% CI,
0.759–0.958), a sensitivity of 0.900, and a specificity of
0.790 for validation set 1; and an AUC of 0.876 (95% CI,
0.754–0.952), a sensitivity of 0.857, and a specificity of
0.837 for validation set 2 (Fig. 5a–c). The AUC values
showed that the combined nomogram performed well in
the assessment of tumor grade. The calibration curve
showed that there was sufficient consistency between
the nomogram-estimated grade and the actual observed
in the three cohorts (Fig. 4b-d). Table 4 shows the de-
tails of the radiomic nomogram’s performance.
DCA was used to reveal the utility of the combined

nomogram for clinical decision making. The clinical
utility of the corresponding strategies was demon-
strated by the area under the decision curve (Fig. 6a–
c). The area occupied by the combined nomogram
(red) was larger than that of the radiomic signature
(blue) alone, and was larger than those of the “all
“(gray) or “none” (black) strategies in the training and
the validation sets.
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Discussion
In the present study, we constructed a combined nomo-
gram and investigated its ability to predict tumor patho-
logical grade preoperatively in patients with BD-IPMNs.
The radiomic signature was based on nine features, and
was considered an effective method of preoperative
tumor grade assessment, representing a non-invasive im-
aging biomarker. Combining the radiomics signature
with clinical variables (CA19–9 and the MPD size), as a
combined nomogram model, significantly improved the
predictive performance. The repeatability and reliability
of the developed prediction model was confirmed using
independent datasets from other institutions.
Preoperative grade assessment of patients with BD-

IPMNs is clinically important. According to the current

consensus, most of the excised BD-IPMNs are low-grade
diseases. The average incidence of invasive malignant tu-
mors in BD-IPMNs is 17.7% (1–37%) [8]; therefore, al-
though many patients might have dangerous signs, such
as mural nodules and dilation of the main pancreatic
duct, they can still be followed up for a long time with-
out selective surgery. However, currently, the perform-
ance of the existing discrimination system is
unsatisfactory, and most studies recommend immediate
resection for patients with obstructive jaundice, en-
hanced mural nodules, and main duct dilation > 10mm
[30]. Similarly, there are no biomarkers to predict high-
grade BD-IPMNs. Therefore, an advanced discriminative
method with high sensitivity and specificity would pro-
vide valuable information to determine clinical

Fig. 2 Accuracy evaluation of the radiomic signature. The radiomic signature predicted high-grade of BD-IPMNs in the training cohort (a) (AUC =
0.836), external validation cohort 1 (b) (AUC = 0.811) and external validation cohort 2(c) (AUC = 0822)

Fig. 3 Rad-score prediction of grade of BD-IPMNs. The rad-score depicted using score dot diagrams in a the training cohort, b external validation
cohort 1, and c external validation cohort 2. Red indicates a high grade of BD-IPMNs, blue represents a low grade of BD-IPMNs. A high score
indicates a high likelihood of high-grade BD-IPMNs
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strategies, resulting in patients with low-grade IPMNs
avoiding unnecessary surgery for a benign disease. Of
note, the goal in stratifying patients is to identify those
that are at risk of developing or harboring invasive ma-
lignancy, and so even if patients with “benign” disease
undergo resection this may be of treatment benefit so
that they do not develop future carcinoma.
In the present study, we analyzed the predictive power

of quantitative MRI features to assess the grade of BD-
IPMNs. The results showed the potential value of radio-
mic features. We analyzed both high and low-order
radiomic features identified in previous studies. The
histogram parameter (low-order feature) is associated to
single pixel characteristics, describing the distribution of
voxel intensity via common and basic measures [31].
Hoffman et al. performed preoperative MRI texture ana-
lysis [32] and showed that intensity histogram-based
statistical features and entropy from MRI images could
predict the malignancy of BD-IPMNs. High order radio-
mic features, including GLCM features, mainly assess
the spatial relationships among local neighboring pixels
[33, 34]. Hanania et al. [13] identified 14 imaging bio-
markers within GLCM features that predicted the histo-
pathological grade within cyst contours. Tobaly et al.
[35] developed a radiomic model mostly based on high
order CT radiomic features, which showed high diagnos-
tic performance in differentiating benign from malignant

IPMNs. Our results showed that most of the selected
features were high-order features, which was consistent
with the results presented by previous studies. There-
fore, we hypothesized that the tumor biology and het-
erogeneity were better represented by high-order
features. Previous studies recognized the value of asses-
sing pathological features among radiomic features, such
as in nonfunctional pancreatic neuroendocrine tumors,
soft-tissue masses, and rectal cancer [36–38]. However,
it remains challenging to associate a single radiomic fea-
ture with the complex biological processes of tumors.
Therefore, it is common to construct a multi-factor
panel to estimate the results in a radiomic background.
Multi-factor based radiomic methods are usually more
suitable to describe the complex heterogeneity of BD-
IPMNs. The results presented here indicated that our
radiomic signature could satisfactorily discriminate low-
grade and high-grade of BD-IPMNs in the patients in
the training and validation cohorts.
According to previous studies of IPMNs, the symp-

toms, obstructive jaundice, presence of mural nodules,
cyst size, age, and sex were also associated with path-
ology grade assessment [21, 39]. However, we failed to
confirm these results in the present study. In addition,
parameters like pain could be subjectively reported ac-
cording to the different sensitivities of patients to
tumor-related abdominal pain, which might also be

Table 2 Univariate and multivariate logistic regression analysis of the radiomic signature and preoperative clinical parameters

Characteristics Univariate analysis Multivariate analysis

OR 95% CI P OR 95% CI P

Radiomics signature 3.616 1.977 ~ 6.612 < 0.001 * 3.321 1.646 ~ 6.701 0.001 *

Age 0.963 0.910 ~ 1.018 0.185

Symptom 2.023 0.821 ~ 4.985 0.122

Sex 0.814 0.302 ~ 2.193 0.683

MPD size 3.355 1.912 ~ 5.887 < 0.001 * 2.878 1.330 ~ 6.227 0.007*

Largest cyst size 2.525 1.019 ~ 6.261 0.042 * 0.413 0.088 ~ 1.929 0.261

Enhancing mural nodule 2.810 1.104 ~ 7.152 0.027 * 0.943 0.174 ~ 5.103 0.945

CA19–9 > 37kU/L 8.667 3.183 ~ 23.599 < 0.001 * 8.799 1.793 ~ 43.190 0.007*

CEA > 5 ng/mL 0.984 0.319 ~ 3.036 0.978

MPD Main pancreatic duct, CEA Carcinoembryonic antigen, CI Confidence internal
Significant parameters with P < 0.05 in the univariate analysis were included in the multivariate logistic regression analysis

Table 3 AUC values for all the significant variables in univariate analysis of three groups

Characteristics Training set External Validation set 1 External Validation set 2

AUC 95% CI AUC 95% CI AUC 95% CI

Radiomics signature 0.836 0.754 ~ 0.917 0.811 0.669 ~ 0.952 0.822 0.701 ~ 0.943

MPD size 0.791 0.683 ~ 0.899 0.747 0.572 ~ 0.923 0.793 0.647 ~ 0.939

Largest cyst size 0.613 0.486 ~ .0740 0.705 0.519 ~ 0.891 0.681 0.516 ~ 0.846

Enhancing mural nodule 0.614 0.484 ~ 0.744 0.732 0.548 ~ 0.915 0.686 0.517 ~ 0.855

CA19–9 > 37kU/L 0.730 0.608 ~ 0.852 0.758 0.576 ~ 0.940 0.767 0.604 ~ 0.931

MPD Main pancreatic duct, AUC Area under the receiver operating characteristic (ROC) curve, CI Confidence internal
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Fig. 4 Radiomics nomogram a to predict high-grade BD-IPMNs. The radiomic nomogram was constructed using the rad-score, the CA19–9 level,
and the size of the MPD in the data from the training cohort. Calibration for high-grade BD-IPMNs in b the training cohort, c external validation
cohort 1, and d external validation cohort 2. The optimal nomogram is indicated by the dotted line reference line. The performance of the
radiomics nomogram in high-grade prediction is indicated by the dashed line, and bias in the nomogram is corrected using the solid line

Fig. 5 Accuracy evaluation of the radiomic nomogram. The accuracy of the radiomic nomogram to predict high-grade of BD-IPMNs was
evaluated in the training cohort (a) (AUC = 0.903), external validation cohort 1 (b) (AUC = 0.884), and external validation cohort 2 (c) (AUC = 0.876)
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associated with tumor infiltration into the viscera, blood
vessels, or peripheral nerves. We observed that age and
sex were not related to grade, which might be related to
populations from different ethnicities. Obstructive jaun-
dice was rare in the patients in our study, which could
be related to the limited sample size.
The radiomic nomogram constructed in our study in-

corporated clinical factors (the size of MPD and CA19–
9 levels), which might be useful to identify those patients
at risk of malignancy and to select the best treatment.
The CA19–9 level is useful for the differential diagno-

sis of pancreatic carcinoma and benign pancreatic dis-
eases, and increased CA19–9 levels are an independent
predictor of malignant BD-IPMNs [20, 40–42]. However,
in the present study, CA19–9 alone achieved an AUC of
0.762 to discriminate high-grade in patients training set.
Thus, CA19–9 alone is not sufficient to evaluate the
high-grade of BD-IPMNs accurately. Previous studies
showed that main duct dilatation was a significant pre-
dictor of malignancy and suggested that the patients
with main duct dilatation over 10 mm should undergo
resection without further testing or calculation [39]. In
the present study, we divided the MPD dilation into four
degrees according to previous studies [10, 39], and found
that patients with a larger MPD dilation were more
likely to have a high-grade of BD-IPMNs.
The DCA curve showed that the radiomic nomogram

was superior to the radiomic signature over a large
threshold probability range, which indicated that the
clinical parameters increased the incremental value for

BD-IPMN grade assessment in the training and valid-
ation sets.
The established grade assessment model has obvious

advantages. For clinicians seeking low-cost techniques to
improve patient management, quantitative image ana-
lysis is attractive, because it comprises a noninvasive dis-
ease assessment at multiple time points and tumor sites
compared with conventional diagnostic imaging. In the
current study, the results showed that the AUC of the
model was further improved to 0.903 by combining the
nomogram with clinical characteristics and the radiomic
signature, suggesting that advanced imaging technology
should be considered together with well-known clinical
factors. In addition, the pre-operative data used to estab-
lish the grade assessment model is easy to obtain, with
less additional costs and provides good results.
The present study had certain limitations. First, be-

cause of the retrospective design of our study, there may
be selection bias. Second, this study involved a relatively
small sample, and the low-grade and high-grade groups
were not further separated into patients with low and
intermediate-grade dysplasia or high-grade dysplasia and
patients with associated invasive carcinoma. However,
our cohort was sufficient to build a reliable model.
Third, the area of potential peritumoral infiltration were
not included in this study, which may result in under-
estimation of tumor area. In future, studies are still
needed for detailed analysis of features extracted from
peritumoral area. However, as we focus on the visible
tumor area, the results are still reliable. Our study had

Table 4 Predictive performance of the radiomic signature and radiomic Nomogram

Model Radiomic signature Radiomic nomogram

Specificity Sensitivity AUC (95% CI) Specificity Sensitivity AUC (95% CI)

Training set 0.740 0.769 0.836 (0.750 ~ 0.901) 0.948 0.734 0.903 (0.828 ~ 0.952)

Validation set 1 0.816 0.700 0.811 (0.671 ~ 0.909) 0.790 0.900 0.884 (0.759 ~ 0.958)

Validation set 2 0.812 0.714 0.822 (0.690 ~ 0.915) 0.838 0.857 0.876 (0.754 ~ 0.952)

AUC Area under the receiver operating characteristic (ROC) curve, CI Confidence interval

Fig. 6 Clinical utility evaluation of the radiomic signature and the radiomic nomogram using DCA curves. Evaluation in the training cohort (a),
external validation cohort 1 (b), and external validation cohort 2 (c). The y-axis shows the net benefit. The x-axis shows the threshold probability.
The highest net benefit was gained using the radiomic nomogram (red line) compared with the radiomic signature (blue line), the treat-all
strategy (gray line), and the treat-none strategy (horizontal black line)
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another limitation: Tumor area segmentation has to be
performed manually by radiologists. Automatic segmen-
tation will be more convenient and should become the
standard. In the future, we will construct a fully auto-
matic prediction model incorporating automatic seg-
mentation of the pancreas and cyst areas.

Conclusions
The preoperative pathological grade of BD-IPMNs could
be predicted effectively using the developed nomogram
model combining the radiomic signature and tumor
clinical characteristics. The predictive nomogram model
represents an accurate and noninvasive assessment
method for patients with BD-IPMNs before surgery,
which will help clinicians to alter the treatment protocol
for each patient and thus obtain improved clinical out-
comes in the future.
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