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Abstract

Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a 

maladaptive response to environmental stimuli, that can contribute to the development of a 

pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis 

dysfunction is associated with various neuropsychiatric disorders, including major depressive, 

alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, 

glucocorticoids are critical mediators of the stress response and exert their function through 

specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-

integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to 

regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the 

response to stress. The dynamic interplay between stress response and epigenetic modifiers 

suggest DNA methylation plays a key role in the development of stress surfeit disorders.

1. Introduction

1.1 Stress: A historical perspective

An organism’s ability to cope with a changing environment is key to its survival. 

Accordingly, physiological processes that allow for the interpretation and integration of 

external stimuli have been evolutionarily favored and are found in all living organisms today 

(Nesse, Bhatnagar, & Ellis, 2016). The early practice of medicine revolved around 

understanding vulnerability to disease as a result of environmental factors. Hippocrates 

(c.460–c.370 BC) was one of the first to attribute human diseases to disturbances in the 

steady state of the supposed four humors of an organism (i.e., blood, phlegm, yellow and 

black bile). However, this notion omits the ability of the organism to maintain a “steady-

state” independent of a changing environment. It was only in 1878 that Claude Bernard 

developed the idea that the inner organism maintains a balance by introducing the concept of 

“milieu intérieur” or inner milieu (Bernard, Dastre, Vulpian, & Bert, 1878). Building upon 

Hippocrates humor theory, this new physiological concept defined how the optimal 

functioning of a working system depends not only on the fine balance between all its 

components, but also on the interaction among them in spite of any external stimulation. 

Less than a century later, Walter Cannon introduced the more refined concept of 
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“homeostasis,” defined as “the constant conditions which are maintained in the body” akin 

to an equilibrium state (Cannon, 1932). Hence, homeostasis, from the Greek ομοιος, 

“similar,” and στασις, “remain still,” is the inherent ability of an organism to maintain and 

regulate its inner variables in order to keep internal conditions stable and relatively constant 

over time. Stimuli that the organism perceives as threatening against the established 

equilibrium are considered “stressors” (Lazarus & Folkman, 1984) and are anchored in our 

fast-evolving culture. In response to threat, an appropriate physiological response is essential 

for survival.

Bernard and Cannon’s work laid the foundation for Hans Selye’s theory of the “General 

Adaptation Syndrome” (Selye, 1950, 1976) that defined stress as the non-specific response 

of the organism to a stimulus. According to Selye, the response to stress can be subdivided 

into three phases. First, the organism perceives and identifies the stimulus as a new 

condition. This triggers the “alarm reaction” phase, which requires the mobilization of 

energetic resources. During this alarm state, the endocrine systems have evolved to rapidly 

cope with environmental stressors. Catecholamines, such as epinephrine and norepinephrine, 

which are produced by the sympathetic nervous system, result in enhanced muscular tone, 

increased blood pressure and mobilization of energy stores enabling an adapted response to 

stress, that is, the “fight-or-flight” response described by Cannon and de la Paz (1911). 

Following this alarm phase, the organism enters the “resistance” phase in which it attempts 

to resist stress (by the activation of the neuroendocrine system and the release of 

glucocorticoids) and restore its equilibrium, or homeostasis. Finally, if stress persists, the 

organism will enter a third phase called “exhaustion” which could lead to both psychological 

and physiological damage. The organism is exhausted by the first aggression and as a result 

every new adverse stimulus becomes a greater challenge. Accordingly, while responses to 

the acute exposure of stress may be beneficial for the defense of the organism, repeated 

exposure to stressful events can be detrimental.

The concept that the organism has to regain equilibrium after exposure to stress has been 

broadly reconsidered in the last century. In contrast to the notion of homeostasis, where the 

equilibrium is considered to be constant and true to form, Sterling and Eyer (1988) 

introduced a new concept defined as “allostasis” in which the response to stress causes 

changes in the current state in order to attain a different equilibrium. This suggests that if an 

appropriate response to stress is needed, it does not necessarily imply a return to the status 
quo ante, but instead requires an active adaptive process, thus “remaining stable by being 

variable” (Sterling & Eyer, 1988). Allostasis becomes a crucial process for the organism to 

adapt to predictable and unpredictable events. Nevertheless, the persistence of adverse 

events may lead to discrepancies in the organism’s ability to cope with stress and eventually 

to an energetically costly, inadequate physiological response. Bruce McEwen (1998) coined 

the concept of “allostatic load” followed by an “overload” that could facilitate the 

development of a pathological state. “Allostatic load refers to the price the body pays for 

being forced to adapt to adverse psychosocial or physical situations” (McEwen, 2000). Thus, 

physiological alterations of the HPA axis lie at the core of numerous neuropsychiatric 

disorders (Gray, Kogan, Marrocco, & McEwen, 2017; Koob et al., 2014; McEwen & Akil, 

2020; Pariante & Lightman, 2008).
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1.2 The integrative pathways of the stress response

The first evidence that sensorial perception of environmental stimuli is linked to specific 

inputs in the brain was provided by Geoffrey Harris (1972), who established the existence of 

communication between the brain and the body mediated by the neuroendocrine system. The 

brain integrates both internal and external stimuli and shapes the appropriate systemic and 

behavioral responses (McEwen, 1998). Specifically, the hypothalamus is the great conductor 

of a variety of neuronal pathways and serves as the common integrator of external and 

internal stimuli. In response to stress, the hypothalamic-pituitary-adrenal (HPA) axis is 

activated (Fig. 1). The hypothalamic hormones, corticotropin-releasing hormone (CRH) and 

vasopressin (AVP), are the two upstream factors that are essential for the activation of 

behavioral and endocrine responses to stress. CRH and AVP, which were first isolated by 

Vale, Spiess, Rivier, and Rivier (1981), are released by the paraventricular nucleus (PVN) of 

the hypothalamus and then act on the anterior pituitary to induce the production of pro-

opiomelanocortin (POMC). POMC is cleaved by prohormone convertase 1 and 2 and 

carboxypeptidase E into adrenocorticotropic hormone (ACTH), melanocyte-stimulating 

hormones (MSHα, −β, and −γ), β-endorphin, and other bioactive peptides (Mains, Eipper, 

& Ling, 1977; Roberts & Herbert, 1977). ACTH released from the anterior pituitary targets 

the zona fasciculata and zona reticulata of the adrenal cortex where it binds to 

melanocortin-2 receptors to stimulate the production of glucocorticoids (cortisol in humans 

and corticosterone in rodents) and androgens (Ising & Holsboer, 2006). Glucocorticoids are 

critical regulators of brain function and appear to be the final mediators of the stress 

response (Wong et al., 2012). It is important to understand that these steroids are involved in 

both the rapid response to stress as well as long-term adaptation.

Under non-stressful conditions, the secretion of both CRH and AVP in the portal circulation 

is circadian and pulsatile. This particular pattern of secretion is maintained along the entire 

HPA axis (Calogero et al., 1992; Horrocks et al., 1990; Veldhuis, Iranmanesh, Johnson, & 

Lizarralde, 1990). When the organism is exposed to stress, neurons in the PVN synchronize 

to increase the pulsatile release of CRH and AVP in the circulation (Calogero et al., 1992). If 

stress becomes persistent, there is a marked shift in the hypothalamic CRH/AVP signal in 

favor of AVP, as well as the down-regulation of CRH receptors within the anterior pituitary, 

suggesting a dynamic role for AVP in regulating the HPA axis (Scott & Dinan, 1998). 

Control of the hypothalamic neuronal activity involves various integrative systems, 

organized in polysynaptic pathways, that regulate the activity of CRH neurons in the 

hypothalamus, including (i) the peri-PVN area (Ziegler & Herman, 2000); (ii) intermediate 

areas formed by the bed nucleus of the stria terminalis (BNST), the medial preoptic area and 

the ventrolateral region of the dorsomedial hypothalamic nucleus; (iii) cortico-limbic 

structures, e.g., the hippocampus and the medial prefrontal cortex (PFC), which negatively 

regulate the activity of the HPA axis, as well as the central nucleus of the amygdala, which 

instead exerts a stimulatory control on the HPA axis (Herman, 2012).

Since the groundbreaking case of patient H.M., the role of the hippocampus in cognitive and 

emotional processes has been extensively investigated (Scoville & Milner, 1957; Squire, 

1992). The hippocampus is actively involved in the inhibitory regulation of HPA axis 

activity (Bohus, 1975; Dunn & Orr, 1984; Herman et al., 1989). In particular, the ventral 
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subiculum is instrumental for the homeostatic regulation of the HPA axis after exposure to 

stress. Excitatory axons of hippocampal pyramidal neurons project to regions that are known 

to negatively modulate the activity of PVN hypothalamic neurons, such as the posterior 

BNST, and the peri-PVN regions including the subparaventricular zone, the medial preoptic 

area, and the ventrolateral region of the dorsomedial hypothalamic nucleus, which in turn 

send inhibitory GABAergic projections to the PVN (Herman, 2012). While the dorsal part of 

the hippocampus is specifically involved in memory function, the ventral part modulates 

emotional and affective processes (Fanselow & Dong, 2010). However, recent work suggests 

that these delineations are not as distinct as originally proposed as the ventral hippocampus 

has also been implicated in cognitive processes (Strange, Witter, Lein, & Moser, 2014). 

Moreover, the hippocampus is a key station for the stress neuronal circuit and is tightly 

connected to brain regions that are involved in the regulation of mood, anxiety, and social 

behavior, such as the ventral tegmental area, nucleus accumbens, amygdala, and medial PFC 

(Belujon & Grace, 2011). As a result of its wide connectivity, the hippocampus plays a 

critical role in context-dependent processes, including decision-making and reward-seeking 

behaviors (Belujon & Grace, 2011; Ito & Lee, 2016). Of note, the hippocampus is 

particularly enriched in corticosteroid receptors (Barbaccia, Serra, Purdy, & Biggio, 2001; 

Reul & de Kloet, 1985).

Studies conducted in the hippocampus paved the way for the characterization of other brain 

regions highly impacted by stress, including the PFC, which is particularly important for the 

control of executive function, self-regulatory behaviors and working memory (Arnsten, 

2009; Goldman-Rakic, 1995; McEwen & Morrison, 2013). The PFC is known to project to 

multiple brain regions and influence the activity of the HPA axis (Diorio, Viau, & Meaney, 

1993). In particular, the important role of the infralimbic cortex in the control of the HPA 

response to stress has been supported by the evidence that lesions of this region decrease 

glucocorticoid response to stress (Radley, Arias, & Sawchenko, 2006; Sullivan & Gratton, 

1999). Thus, impaired PFC function and plasticity have been associated with numerous 

neuropsychiatric disorders (Goto, Yang, & Otani, 2010; Hains & Arnsten, 2008; 

Moghaddam, 2003).

1.3 Glucocorticoids and glucocorticoid receptors: The final mediators of the stress 
response

Glucocorticoids, the final actors of the stress response, act through specific receptors that are 

ligand-activated transcription factors. These receptors are ubiquitously distributed and 

particularly expressed in stress-integrative pathways (Funder & Sheppard, 1987; Reul & de 

Kloet, 1985). In 1985, Reul and de Kloet showed the existence of two receptor systems for 

corticosteroids: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). MRs 

correspond to type-I high affinity glucocorticoid receptors, whereas GRs correspond to type-

II low affinity glucocorticoid receptors (Arriza, Simerly, Swanson, & Evans, 1988; Reul & 

de Kloet, 1985). GRs, which are encoded by the NR3C1 (nuclear receptor subfamily 3, 

group C, member 1) gene, play a major role in the anti-inflammatory/immune suppressant 

and metabolic action of glucocorticoids. GRs are further involved in the negative feedback 

regulation of the HPA axis in response to high levels of glucocorticoids (e.g., under stress 

conditions) (De Kloet & Reul, 1987). These steroids mediate both rapid and delayed effects 
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resulting from both nongenomic and indirect genomic mechanisms (Popoli, Yan, McEwen, 

& Sanacora, 2012).

Unbound GR is present in the cytosol where it is linked to molecular chaperones, such as 

heat-shock protein (Hsp)-70 and -90, FK-506 binding protein 4 and 5 (FKBP4, FKBP5, 

respectively), p23, and Src (Gray et al., 2017; Pratt, Morishima, Murphy, & Harrell, 2006). 

The binding of glucocorticoids to their receptors facilitates the nuclear translocation of GRs, 

which in the form of dimers, bind to glucocorticoid-responsive elements (GREs) present in 

the genome, activating or repressing proximal gene expression (Scheidereit et al., 1989). 

Positive GREs are formed by a palindromic sequence (TGTACAnnnTGTt/cCT), while 

negative GREs (GGAAGGTCACGTCCA) mediate the negative regulation of POMC and 

CRH expression by glucocorticoids (Drouin et al., 1993; Martens, Bilodeau, Maira, 

Gauthier, & Drouin, 2005). If GREs are distal from the transcription start site, the 

glucocorticoid/GR/GRE complex recruits co-activators or co-repressors (e.g., histone-acetyl 

transferases and histone deacetylases, respectively), and epigenetic actors which shape the 

gene response to glucocorticoids (Sharma, Bhave, Gregg, & Uht, 2013). Polman, de Kloet, 

and Datson (2013) identified two populations of GREs (named “GR-binding sites” or GBS) 

that are recruited as a function of glucocorticoid levels. The GBS that is recruited in 

response to a wide range of glucocorticoid levels regulates the expression of circadian genes, 

whereas the GBS specifically recruited in response to high levels of glucocorticoids regulate 

gene expression, thus allowing adaptation to the environment and the regulation of a wide 

range of physiological responses. The coordination of gene expression by GR occurs in 

concert with epigenetic modifiers that play a crucial role in shaping chromatin architecture 

to cope with the environment (Bartlett, Lapp, & Hunter, 2019; Drouin et al., 1993; Sharma et 

al., 2013).

1.4 Epigenetics: At the interface of the genome and the environment

The central nervous system plays a crucial role in orchestrating and adapting physiological 

responses to stimuli (McEwen & Akil, 2020; McEwen & Gianaros, 2011). However, the 

brain is also a target of stress; several preclinical studies have highlighted the existence of a 

stress-induced remodeling of brain structure (Liston et al., 2006; McEwen, 1999; Vyas, 

Mitra, Shankaranarayana Rao, & Chattarji, 2002). Neuronal plasticity, i.e., the ability of the 

brain to readjust and modify its morphology (Zilles, 1992), is one of the major phenomena 

responsible for the adaptation to environmental stimuli and is a key factor in how the brain 

copes with incoming stressors (Katz & Shatz, 1996). These physiological mechanisms are 

mediated by changes in gene expression, which are the result of molecular modifications 

referred to as epigenetic (Gräff, Kim, Dobbin, & Tsai, 2011; Houston et al., 2013). The 

concept of epigenetics was initially used to describe events that could not be explained by 

genetic principles. Conrad Waddington (1905–1975) first defined epigenetics as “the branch 

of biology which studies the causal interactions between genes and their products, which 

bring the phenotype into being” (Waddington, 1942). This definition highlights the dynamic 

aspect of epigenetic processes. The well documented findings of the Dutch Winter Hunger 

of 1944–45 provided the first long-term empirical evidence in humans that epigenetic 

changes induced by early-life stress persist into adulthood (Heijmans et al., 2008). 

Nowadays, epigenetics is defined as the study of any potentially stable and heritable 
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modification in gene expression or cellular phenotype that occurs without changing the 

underlying DNA sequence (Goldberg, Allis, & Bernstein, 2007).

In 1984, Francis Crick (1916–2004) proposed that “memory might be coded in alterations to 

particular stretches of chromosomal DNA” (Crick, 1984), but it was only 20 years later that 

the role of epigenetic modifications in memory formation was demonstrated (Levenson et 

al., 2004). During the last decade, preclinical and clinical studies indicated that brain 

function can be particularly affected by changes in the epigenetic landscape. Additionally, 

epigenetic dysregulation has not only been associated with neuropsychiatric diseases, 

including major depressive disorder (MDD), autism spectrum disorders (ASD), Fragile X 

Syndrome, Rett Syndrome, and schizophrenia (Costa et al., 2002; Grayson & Guidotti, 

2013; Guidotti & Grayson, 2011; Kuehner, Bruggeman, Wen, & Yao, 2019; Ptak & Petronis, 

2010; Zhubi, Cook, Guidotti, & Grayson, 2014), but also with alcohol use disorder 

(Palmisano & Pandey, 2017). Thus, the environment, interacting with the genome acts to 

disrupt developmental mechanisms providing a framework for better understanding the 

development of neuropsychiatric disorders (Millan, 2013). In this chapter, we review the role 

of DNA methylation in the development and maintenance of neuropsychiatric disorders and 

the therapeutic strategies that can be applied to reverse aberrant epigenetic programming.

2. Epigenetic actors of DNA methylation

Epigenetics defines a series of chromatin covalent modifications as “the structural adaptation 

of chromosomal regions so as to register, signal, or perpetuate altered activity states” (Bird, 

2007). Epigenetics is a dynamic chemical modification that plays a crucial role in 

establishing patterns and gene expression during development. These changes primarily 

occur at the chromatin level and involve multiple mechanisms (i) chemical modifications of 

nucleotides, i.e., DNA methylation, (ii) covalent post-translational modifications of histones 

and the incorporation of histone variants, (iii) chromatin remodeling and attachment to the 

nuclear matrix, and/or nucleosomes repositioning (Allfrey, 1970). MicroRNAs and other 

species of non-coding RNAs are also main actors of epigenetic changes (Mehler, 2008). 

These mechanisms act separately or in synergy to modulate chromatin architecture and its 

accessibility to the transcriptional machinery. DNA methylation is catalyzed by opposing 

enzymatic activities, which introduce and remove marks and are thus referred to as 

methylation “writers” or “erasers,” respectively. In addition, various classes of proteins 

responsible for the interpretation of epigenetic marks, “readers,” also regulate the steady 

levels of epigenetic modifications.

Earlier emphasis on DNA methylation indicates that the addition of methyl groups on CpG 

dinucleotides in the promoter regions of a gene is a primary mechanism for silencing 

transcriptional activity (Gruenbaum, Cedar, & Razin, 1982; Robertson & Wolffe, 2000). 

DNA methylation facilitates condensation of chromatin, sterically blocking the binding of 

transcription factors (Comb & Goodman, 1990; Klose & Bird, 2006); DNA methylation also 

indirectly facilitates the recruitment of methyl-DNA binding proteins which participate with 

additional factors forming chromatin inactivating complexes (Nan et al., 1998). However, 

the enrichment of methylated DNA also occurs at coding regions of actively transcribed 

genes. Meta-analysis of genome-wide methylation studies show that genic sequences have 
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higher levels of methylation than intergenic or promoter sequences and that the relationship 

between methylation and expression levels is bell-shaped (Jjingo, Conley, Yi, Lunyak, & 

Jordan, 2012). Thus, the functional impact of DNA methylation on transcriptional activity is 

complex and not simply related to expression silencing (for review see also Gräff et al., 

2011; Houston et al., 2013). Genome wide studies of DNA methylation have shown that this 

epigenetic modification occurs across the genome in multiple locations including at CpG 

dense promoters, transposable elements, gene regulatory regions (enhancers and promoters), 

gene bodies, as well as in CpG islands (Wen & Tang, 2014).

Multiple chemical modifications of cytosines in DNA have been observed in the mammalian 

brain. Methylation (5mC) and hydroxymethylation (5hmC) were the first to be identified 

(Kriaucionis & Heintz, 2009). The location and functions of these methylation modifications 

are very different with 5hmC levels being highest in the mammalian brain. The genomic 

distribution of 5hmC is complex and increases markedly from the fetal to the adult stage. In 

the adult brain, 13% of all CpGs are highly hydroxymethylated with genic regions and distal 

regulatory elements showing strong enrichment (Wen et al., 2014). Conversely, the majority 

of 5mC marks are located in intergenic sequences and within gene bodies, where it plays a 

key role in splice modulation (Maunakea, Chepelev, Cui, & Zhao, 2013; Wen et al., 2014). 

Only a small proportion of the total 5mC is located within promoter domains of genes, 

where it acts as a repressive mark (Maunakea et al., 2010). Non-CpG methylation, 

particularly CpA methylation, has also been observed in brain specific promoters and is 

likely involved in postnatal epigenetic processes (Guo et al., 2014; Lister et al., 2013). DNA 

methylation is one of the mechanisms lying at the core of cell specificity during 

development and several studies have highlighted its role in the development of the 

mammalian brain (Lister et al., 2013; Salinas, Connolly, & Song, 2020). The ENCODE 

project has highly contributed to defining and mapping tissue-specific epigenetic marks 

throughout the human genome (The ENCODE Project Consortium, 2011). In addition, the 

psychENCODE consortium has been investigating the role of various epigenetic marks in 

psychiatric disorders (Akbarian et al., 2015).

2.1 DNA methylation writers: DNA methyltransferases and the one-carbon metabolism

In the central nervous system, steady-state DNA methylation levels at individual genomic 

locations are the result of a dynamic enzymatic equilibrium. The covalent addition of a 

methyl group to the fifth position of cytosines in a CpG rich domain of the genome is 

mediated by a family of DNA methyl transferases (DNMTs), including DNMT1, DNMT3A 

and DNMT3B (Goll & Bestor, 2005; Grayson & Guidotti, 2013). DNMT1 plays an 

important role in the establishment and maintenance of tissue-specific patterns of methylated 

cytosine residues (Laird, 2003) and is the principal DNA methylating enzyme in mammals. 

In dividing cells, DNMT1 adds a methyl residue to palindromic CG dinucleotide sequences 

during DNA synthesis in dividing cells, copying the methylation status of the parental strand 

to the daughter strand. Reduction of DNMT1 activity has been associated with a systemic 

hypomethylation across the organism in various types of cancers and other pathological 

conditions (Hervouet, Vallette, & Cartron, 2010). DNMT3A and -3B are considered de novo 

methylation enzymes, since they do not require a DNA methylation template (Lister et al., 

2013). Thus, these two enzymes are particularly important in neuronal cells (Guo et al., 
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2014). In addition to these well-known DNMTs, DNMT2 was originally considered to be 

one of the DNA methylating enzymes based on sequence homology with other members of 

the DNMT family of proteins (Jeltsch et al., 2017). Like other DNMTs, DNMT2 uses S-

adenosyl-methionine (SAM) in catalyzing the methylation of position 38 in tRNAAspGUC 

to yield 5-methylcytosine. DNMT2 is now considered to be a member of the tRNA 

transferases (Goll et al., 2006). On the other hand, DNMT 3-like (DNMT3L) is structurally 

related to the DNMTs but is missing the amino acid residues necessary for methyltransferase 

activity (Aapola, Liiv, & Peterson, 2002). DNMT3L has been shown to stimulate de novo 

methyltransferase activity by DNMT3A and may be involved in establishing maternal 

genomic imprints. In addition, DNMT3L also mediates transcriptional repression through its 

interaction with histone deacetylase 1 (HDAC1) (Deplus et al., 2002).

The availability of the methyl group for transfer by the DNMTs is provided by SAM, which 

acts as the methyl donor for several cytosolic and nuclear methyltransferases. SAM is 

synthesized by the conversion of methionine by methionine adenosyl-transferase enzymes 

(MATs) (Cantoni, 1953). The addition of –CH3 to target cytosines in DNA is catalyzed by 

DNMTs that transform SAM into S-adenosyl-homocysteine (SAH) (Yi et al., 2000). Of 

note, SAH acts as a potent feedback inhibitor of DNA methyltransferases. Thus, the 

adenosyl homocysteine hydrolase (AHCY) rapidly hydrolyzes SAH into homocysteine to 

prevent its accumulation (Obeid & Herrmann, 2009; Tehlivets, Malanovic, Visram, Pavkov-

Keller, & Keller, 2013). Since accumulation of homocysteine can also exert negative effects 

on methyltransferase activity, the remethylation of homocysteine to methionine is catalyzed 

via the folate cycle, which converts folic acid into tetrahydrofolate (THF) and 5,10-

methylenetetrahydrofolate (5,10-MTHF). This step is of particular relevance in the brain, as 

accumulation of homocysteine has been shown to induce neuronal damage and cognitive 

dysfunction (Krebs, Bellon, Mainguy, Jay, & Frieling, 2009). The methylene 

tetrahydrofolate reductase (MTHFR) reduces 5,10-MTHF to 5-methyltetrahydrofolate (5-

MTHF) that is used as a substrate by the methionine synthase (MTR) to form methionine 

(MacFarlane et al., 2009). The synthesis of methionine may also involve the activation of the 

betaine homocysteine methyltransferase (BHMT) pathway (Blom & Smulders, 2011; 

Velzing-Aarts et al., 2005). These enzymes are part of the one-carbon metabolism pathway 

(Fig. 2) and are crucial for the biosynthesis of the methyl donor SAM and the efficiency of 

transmethylation reactions (Serefidou, Venkatasubramani, & Imhof, 2019).

DNA methylation has long been considered a stable epigenetic modification; thus, it appears 

as an appealing candidate for the study of long-lasting epigenetic programming in 

neuropsychiatric disorders. However, recent studies highlight that this epigenetic mark is not 

permanent in the genome but is a reversible and dynamic process.

2.2 DNA methylation erasers: Focus on DNA hydroxymethylation

While the addition of the methyl group is a straightforward process, DNA demethylation 

occurs through an indirect mechanism requiring the joint action of multiple enzymes. The 

first step of the demethylation pathway involves the ten-eleven translocase (TET) proteins 

that hydroxylate 5mC to form 5hmC and 5hmC to 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) (Fu & He, 2012; Wu & Zhang, 2011; Fig. 2). While increasing 
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numbers of genome-wide studies investigate the genomic distributions of 5hmC, 5fC, and 

5caC, the physiological functions of these different cytosine variants in the brain are still 

being identified (Lu et al., 2015; Wen et al., 2014). The TET family of proteins includes 3 

isoforms (TET1–3) that are 2-oxoglutarate and Fe(II)-dependent enzymes, also known as the 

TET methyl-cytosine dioxygenases (Tahiliani et al., 2009). Both TET1 and -3 exist as 

distinct isoforms that catalyze additional reactions due to the utilization of alternative 

regulatory regions in different tissues (Melamed, Yosefzon, David, Tsukerman, & Pnueli, 

2018). In addition to catalyzing the hydroxylation of 5mC, TET1 also plays a key role in 

regulating gene transcription by binding and repressing an overlapping set of CpG-rich 

promoters, and interacting with the polycomb repressive complex 2 (PRC2) and/or the Swi-

independent3A (SIN3A) complex (Bhutani, Burns, & Blau, 2011; Williams, Christensen, & 

Helin, 2012; Wu et al., 2011; Wu & Zhang, 2011).

Active DNA demethylation in the brain is highly dynamic and activity-dependent (Fig. 2). 

The various modified forms of cytosine (5hmC, 5fC, 5caC) may be targeted by growth arrest 

and DNA damage-inducible (GADD45A and B) and other proteins for removal (Bayraktar 

& Kreutz, 2018; Gavin et al., 2015). The DNA demethylation process is thought to be 

completed by excision of the modified bases by thymidine deglycosylase coupled by base 

excision repair which replaces the modified base with non-methylated cytosine (Bayraktar & 

Kreutz, 2018; Salinas et al., 2020). A growing body of evidence indicate a role for DNA 

methylation in neuropsychiatric disorders. However, there is a major need for the 

investigation of the specific role of 5hmC vs. 5mC in the neuropathophysiology of 

psychiatric disorders. Several studies have demonstrated that 5hmC is particularly abundant 

in brain tissue (Kinney et al., 2011; Kriaucionis & Heintz, 2009; Li & Liu, 2011; Wen et al., 

2014) suggesting an important role for this epigenetic mark in post-mitotic neurons.

Active demethylation can also result from stress-related proteins directly interacting with 

5mC. Specifically, nuclear GRs have been shown to participate to the demethylation of the 

rat tyrosine aminotransferase gene (Thomassin, Flavin, Espinás, & Grange, 2001). 

Moreover, activation of GRs has also been implicated in the DNA demethylation of intronic 

regions of FKBP5 (Klengel et al., 2013). These studies suggest the existence of an important 

interplay between the response to stress and epigenetic modifications.

2.3 DNA methylation readers

It is commonly thought that DNA methylation influences the transcription of genes by 

altering the binding of transcription factors or the recruitment of proteins that bind 

methylated DNA. These methyl-CpG binding proteins (MBPs) anchor to regions of the 

genome that are rich in CpG and enriched in DNA methylation (Bird, 2002; Klose & Bird, 

2006). Currently, a family of eleven MBPs are known to contain methyl-CpG binding 

domains, several of which contain additional protein domains including, for example, the 

transcriptional repression domain (TRD), which allows interaction with additional protein 

partners (Boeke, Ammerpohl, Kegel, Moehren, & Renkawitz, 2000; Du, Luu, Stirzaker, & 

Clark, 2015). MBPs are known to associate with histone deacetylase activity in the context 

of nucleosome remodeling (Du et al., 2015). Methyl-CpG-binding protein 2 (MeCP2), 

containing both a methyl-binding domain and TRD, is thought to be an essential factor in 
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associating DNA methylation with histone methylation and deacetylation (Fuks et al., 2003). 

Moreover, MeCP2 and -3 have recently been shown to recruit the Nucleosome Remodeling 

and Deacetylase complex to methylated DNA during methylation-dependent chromatin 

remodeling (Leighton & Williams, 2020). MeCP2 expression is largely found in mature 

neurons and its dysregulation is associated with neurological diseases such as Rett 

syndrome, a severe neurodevelopmental disorder (Shahbazian, Antalffy, Armstrong, & 

Zoghbi, 2002).

Additionally, both methylated and hydroxymethylated CpGs act as anchors for 5mC- 

(MBDs, MeCP2) and 5hmC-binding proteins that facilitate transitions between open and 

closed chromatin states depending on environmental signals or cellular regulators (Boyes & 

Bird, 1991; Du et al., 2015; Nan et al., 1998). In vitro studies have shown average DNA 

methylation density is a key determinant for MBP recruitment (Baubec, Ivánek, Lienert, & 

Schübeler, 2013). MeCP2 has traditionally been considered as a transcriptional repressor, 

however it has been shown that it can also act as a transcriptional activator by interacting 

with transcription factors, such as cAMP response element-binding protein (CREB) 

(Chahrour et al., 2008). Murgatroyd et al. (2009) demonstrated that exposure to early-life 

stress induces the phosphorylation of MeCP2 which dissociates from the AVP promoter 

region, facilitating its transcriptional activation and consequent HPA axis response. Thus, the 

establishment of epigenetic actors appears to be crucial in mediating the effects of stress 

throughout lifespan.

3. Environmental stress: A trigger of epigenetic reprogramming

The ability to cope with stressors is the result of a complex interaction between nature (i.e., 

the individual genetic background) and nurture (i.e., environmental stimuli). Vulnerability to 

develop stress-related or chronic disorders may be programmed early in life, and, in 

particular, during the fetal period, which is critical for shaping the lifelong health of an 

individual (Barker, 1995). This led to the elaboration of the theory of the developmental 

origins of health and disease (DOHaD).

3.1 Early life stress: Evidence for an epigenetic programming

West and King (1987) stated that “children inherit not only genes from their parents but also 

an environment.” Since then, substantial evidence has demonstrated that early exposure to 

environmental stimuli has long-lasting effects on developing organisms (Gluckman, Hanson, 

Cooper, & Thornburg, 2008), thereby programming or “imprinting” persistent changes in 

fetal structure, physiology and metabolism (Hochberg et al., 2011; Szyf, 2013). Preclinical 

and clinical studies have shown that the brain is particularly sensitive to stress during key 

developmental stages, including the perinatal period, early infancy and puberty as those are 

periods of increased neuroplasticity (Lupien, McEwen, Gunnar, & Heim, 2009; Maccari, 

Krugers, Morley-Fletcher, Szyf, & Brunton, 2014). Thus, early-life events induce persistent 

neuroendocrine changes that may cause the late development of several neurological, 

metabolic, and neuroendocrine abnormalities that can persist throughout the individual’s 

lifespan (Brunton & Russell, 2010; Lupien et al., 2009; Seckl, 1998; Turecki & Meaney, 

2016). Since an important feature of the stress response is the secretion of high levels of 
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glucocorticoids, these steroids have become an important mediator and target for 

“(re)programming action” in early-life stress paradigms (Maccari et al., 2014; Painter, 

Roseboom, & de Rooij, 2012). Mounting evidence indicates that epigenetic modifications 

represent the molecular underpinning for the long-lasting effects of stress (McEwen, Eiland, 

Hunter, & Miller, 2012).

Epigenetic alterations, initiated during the life of our ancestors or at different life stages of 

our existence, in tandem with maternal phenotypic effects, can contribute to development of 

a pathological phenotype in the offspring (Lupu, Tint, & Niculescu, 2012). The first 

evidence for a role of epigenetic mechanisms in the long-term consequences of early-life 

stress was provided by studies of variations in the early social environment, modeled by 

maternal care in rodents. Weaver et al. (2004) showed that the degree of maternal care, 

assessed by the time spent in licking and grooming (LG) and arched-back nursing (ABN), 

was a critical determinant in the epigenetic regulation of the GR-encoding gene in the 

hippocampus of the offspring. Alterations in the negative feedback regulation over 

hypothalamic CRH and responses to stress were also observed (Francis, Champagne, Liu, & 

Meaney, 1999; Liu et al., 1997). The offspring of mothers displaying low maternal care 

during the first postpartum week (“low-LG and ABN mothers”) showed a reduced GR 

expression in the hippocampus and a heightened response to stress (Francis et al., 1999; Liu 

et al., 1997). In these animals, changes in GR expression were associated with DNA 

hypermethylation in the promoter region of the GR-encoding gene, specifically at the 

neuron-specific exon 17 GR variant, which restrained the efficiency of nerve growth factor-

inducible protein-A (NGFI-A, a transcriptional regulator) in activating gene transcription 

(Weaver et al., 2004). Unexpectedly, these changes were associated with increased MeCP2 

expression and binding to GR-17 promoter (Weaver et al., 2014). Reduced GR expression 

was reversed by cross-fostering and persisted across lifespan, strengthening the idea that 

epigenetic modifications are reversible over time (Weaver et al., 2017).

Perturbation of maternal behavior caused by chronic unpredictable pup-mother separation or 

maternal stress in early developmental stages has long-lasting effects in the offspring (Gatta 

et al., 2018) and has been shown to widely affect DNA methylation in the offspring’s brain 

causing either hypo- or hypermethylation of different gene promoters (Darnaudéry & 

Maccari, 2008). Of note, these long-lasting epigenetic alterations could be reversed by 

pharmacological treatment in adult life (Szyf, Weaver, Champagne, Diorio, & Meaney, 

2005; Weaver et al., 2005). Specifically, central infusion of L-methionine, the precursor to 

the methyl donor SAM, reversed the effect of maternal behavior on DNA methylation and 

increased NGFI-A binding to the exon 17 promoter. This corrected GR expression as well as 

HPA and behavioral responses to stress (Weaver et al., 2005). Since then, a growing number 

of studies have investigated changes in DNA methylation at the level of the GR promoter in 

association with social environment and stress (Turecki & Meaney, 2016). Altered DNA 

methylation has also been observed in the regulatory region of AVP gene following early-life 

stress in mice (Murgatroyd et al., 2009), providing further evidence that epigenetic 

mechanisms are the organism’s adaptive response to environmental adversity.

Several studies have expanded these findings and highlighted the existence of an association 

between epigenetic modifications in the human genome and lifetime mental health 
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outcomes. Changes in the methylome have been highlighted as an adaptation mechanism to 

early-life environment (Szyf, 2012). Epigenetic changes of GR alternative first exons have 

been associated with psychopathological conditions in adult human subjects (Palma-Gudiel, 

Córdova-Palomera, Leza, & Fañanás, 2015). Specifically, changes in the DNA methylation 

in GR gene exon 1F variant (human homologue of GR17 in rats) have been observed in the 

hippocampus of suicidal patients with a history of child abuse. Increased GR methylation 

levels were associated with decreased GR1F expression (McGowan et al., 2009). Similarly, 

higher GR1F methylation levels were observed in neonatal blood mononuclear cells of 

children born to mothers with depression (Oberlander et al., 2008) or children suffering from 

childhood adversity and maltreatment (Melas et al., 2013; Perroud et al., 2011; Tyrka, Price, 

Marsit, Walters, & Carpenter, 2012). Alteration in GR methylation levels of the promoter 

region of exon variants 1B,C,H were found in the hippocampus of suicide completers with a 

history of childhood abuse (Labonte et al., 2012). Alteration in DNA methylation patterns 

has also been observed in peripheral cells following early-life adversity (Borghol et al., 

2012). For example, hypomethylation has been observed in the FKBP5 gene, a protein 

regulating GR signaling, in association with early-life trauma (Klengel et al., 2013). These 

studies paved the way for translational studies investigating “gene-environment” interaction 

and suggest the use of epigenetic modifiers as possible pharmacological intervention for 

mood disorders.

Although controversial, aberrant DNA methylation patterns might be transmitted across 

generations and thus influence the development of the offspring (Champagne, 2008). DNA 

methylation changes have been observed in the germline of first-generation males as well as 

in the brain and germline of second-generation offspring. These changes are associated with 

multiple stress-related symptoms such as depressive-like behaviors, and social anxiety 

(Babenko, Kovalchuk, & Metz, 2015; Franklin, Saab, & Mansuy, 2012; Weiss, Franklin, 

Vizi, & Mansuy, 2011). Aberrant DNA methylation due to disrupted maternal care affects 

several tissues, subsists after meiosis in male germ cells, and is transmitted across 

generations, suggesting a powerful potential strategy for the maintenance and inheritance of 

the effects of early chronic stress. Similarly to sperm cells, oocytes may carry epigenetic 

anomalies in response to stress because transgenerational inheritance of stress-induced 

symptoms may occur through the female lineage independently of maternal care (Weiss et 

al., 2011).

3.2 Early-life stress: Vulnerability to neuropsychiatric disorders

Genetics and life adversity interact to modulate the function of the brain (Klengel & Binder, 

2013). Mounting evidence has associated early-life stress with the development of chronic 

diseases (Galobardes, Lynch, & Davey Smith, 2004; Heim & Nemeroff, 2001) and adult 

psychopathology (Green et al., 2010; Nemeroff, 2016; Palma-Gudiel et al., 2015) including 

addictive disorders (Birnie et al., 2020; Enoch, 2011). Exposure to early-life adversities, 

including child maltreatment remains a major public health concern worldwide (Krugers et 

al., 2017), affecting 10–15% of individuals under the age of 18 (Gilbert et al., 2009; 

Woodman et al., 2008). Preclinical and clinical studies indicate that early-life stress triggers 

epigenetic alterations in the brain (Dulawa, 2014) and affects the HPA axis response (Brown, 

Fiori, & Turecki, 2019; Turecki, 2014).
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Several animal models have been developed for the study of the long-term consequences of 

early-life adversity. A key feature of these animal models, e.g., prenatal restraint stress 

(PRS) (Maccari et al., 1995) or the prenatal social stress (PSS) (Brunton, 2013), is a 

permanent impairment of the HPA axis function in the offspring in association with reduced 

expression of both GR and MR in the hippocampus (Brunton & Russell, 2010; Henry, 

Kabbaj, Simon, Le Moal, & Maccari, 1994; Maccari et al., 1995). HPA hyperactivity was 

found in association with anxiety-/depressive-like behavior (Mairesse et al., 2015; Marrocco 

et al., 2012, 2014; Morley-Fletcher et al., 2011). These impairments persist throughout the 

life span (Darnaudéry, Perez-Martin, Bélizaire, Maccari, & Garcia-Segura, 2006; Gatta et 

al., 2018). Alterations in the hippocampus have also been observed as a direct consequence 

of early-life stress. Several studies have shown learning and memory impairment in the 

offspring of stressed dams (Darnaudéry et al., 2006; Lesage et al., 2004; Mueller & Bale, 

2007; Zuena et al., 2008). These cognitive impairments have been linked to reduced 

hippocampal neurogenesis (Lemaire, Koehl, Le Moal, & Abrous, 2000). Furthermore, 

exposure to stress has been tightly linked to addictive behaviors (Chauvet, Lardeux, 

Goldberg, Jaber, & Solinas, 2009; Piazza et al., 1991). Several studies have shown that 

exposure to prenatal restraint stress induces an enhanced vulnerability to addiction 

(Deminière et al., 1992; Morley-Fletcher et al., 2004; Reynaert et al., 2016; Van Waes et al., 

2011). A recent study from our group highlighted that exposure of mice to prenatal stress 

leads to excessive alcohol intake in association with anxiety-like behavior in adulthood 

(Dong, Guidotti, Zhang, & Pandey, 2018).

Growing evidence suggests DNA promoter methylation, along with other epigenetic 

modifications, contributes to the phenotype of schizophrenia (Benes et al., 2007; McGowan 

& Szyf, 2010; Meaney & Szyf, 2005). It is believed that epigenetic mechanisms, through the 

disruption of time- and spatial-dependent cues responsible for neuronal differentiation, is a 

factor for the predisposition of neurodevelopmental diseases (Schmidt & Mirnics, 2015). In 

mice, the PRS animal model has shown that the adult offspring of dams exposed to restraint 

stress during pregnancy exhibit the positive, negative, and cognitive dysfunctional symptoms 

associated with a schizophrenia-like phenotype (Matrisciano, Panaccione, Grayson, 

Nicoletti, & Guidotti, 2016; Matrisciano, Tueting, Maccari, Nicoletti, & Guidotti, 2012). 

Molecular changes observed in PRS mice suggest a strong correlation between epigenetic 

GABAergic/glutamatergic mechanisms, cognitive dysfunctions and psychotic symptoms 

(Gonzalez-Burgos & Lewis, 2008). Association with the adult PRS brain and significantly 

increased DNMT1, TET1, 5mC, 5hmC, and SAM levels further support the hypothesis that 

epigenetic DNA methylation plays a key role in neurodevelopmental disease pathology. 

These findings suggest that individuals may be especially vulnerable to environmental 

effects during prenatal development that result in predisposition to various psychiatric 

disorders including major depressive, anxiety, and alcohol use disorder (Guidotti, Dong, 

Tueting, & Grayson, 2014).

3.3 Chronic stress exposure in adulthood

Cumulative exposure to stressful life events has been shown to have a central role in the 

etiology of neuropsychiatric disorders (Caspi, 2003; Covault et al., 2007). Both clinical and 

preclinical studies indicate that various forms of stress place significant burden in the HPA 
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axis and glucocorticoids dynamics (Tsigos & Chrousos, 2002). Epigenetic modifications of 

HPA axis and neuronal processes-related genes play a crucial role in regulation of mood, 

emotions and cognition (Lee & Sawa, 2014). In particular, DNA methylation has been 

identified as a molecular response to external stress and found to be associated with various 

psychiatric disorders, including depression and post-traumatic stress disorder (Champagne, 

2010; Januar, Ancelin, Ritchie, Saffery, & Ryan, 2015, Januar, Saffery, & Ryan, 2015; 

Klengel, Pape, Binder, & Mehta, 2014).

Chronic psychosocial stress downregulates the expression of genes along the HPA axis via 

increased DNA methylation, including CRH (Elliott, Ezra-Nevo, Regev, Neufeld-Cohen, & 

Chen, 2010; Sterrenburg et al., 2011) and GR (Desarnaud, Jakovcevski, Morellini, & 

Schachner, 2008; Witzmann, Turner, Mériaux, Meijer, & Muller, 2012). CRH promoter 

hypomethylation has been found in the PVN of the hypothalamus after chronic exposure to 

social defeat in rodents, consequently leading to sustained dysregulation of the HPA axis 

(Elliott et al., 2010). Alteration in DNA methylation levels of genes involved in 

neuromodulation, e.g., neural adhesion molecules of the immunoglobulin superfamily 

(NCAM, L1 and CHL1) (Desarnaud et al., 2008), the serotonin receptor gene (5HT1A) (Le 

François et al., 2015) and the gene encoding for glial cell line-derived neurotrophic factor 

(GDNF) have also been observed (Uchida et al., 2011).

Social defeat stress in mice recapitulates some of the behavioral and neurochemical 

hallmarks of depressive-like disorder, including anhedonia, social avoidance, circadian 

changes, and anxiety-like behavior (Berton et al., 2006; Krishnan et al., 2007). These 

changes were associated with alteration in key epigenetic players, including Dnmt3a and 

Tet1 expression in the Nucleus Accumbens (NAc) (Feng et al., 2017; Hodes et al., 2015), a 

region implicated in motivation and anhedonia (Russo & Nestler, 2013). The predictive 

validity (Belzung & Lemoine, 2011) of this model is provided by evidence that chronic 

treatment with antidepressants reverses depression-like behaviors in these animals (Berton et 

al., 2006). Additionally, depressive-like behavior could be reversed with a Dnmt3a knock-

out, or administration of the DNMT inhibitor, RG108, into the NAc (Hodes et al., 2015; 

LaPlant et al., 2010).

In human studies, chronic stress exposure has been found to alter blood DNA methylation 

patterns at promoter region of the serotonin transporter gene (SLC6A4) (Duman & Canli, 

2015). Similar changes have been observed in leucocytes of individuals suffering from 

burnout (Alasaari et al., 2012). Occupational stress was also shown to affect the epigenetic 

regulation of neurotransmission-related genes in saliva samples (Miyaki et al., 2015). 

Interestingly, these changes in DNA methylation levels were associated with depressive 

symptoms.

4. DNA methylation impairments in major depressive disorder

Exposure to environmental stress is known to increase lifelong risk of depression. Major 

depressive disorder (MDD) affects over 300 million people worldwide making it a leading 

cause of disability (James et al., 2018). Depression is a multifaceted neuropsychiatric 

disorder resulting from the complex interplay of genetic and environmental factors. While a 
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wide range of neurobiological features, including intracellular signaling, neurotransmission, 

stress response, and genetics have been associated with the pathophysiology of MDD, 

mounting evidence highlights a role for epigenetic modifications in depressive disorders 

(Peña & Nestler, 2018; Uchida, Yamagata, Seki, & Watanabe, 2018).

The gene encoding GR has been repeatedly suggested as the main target for epigenetic 

modifications in samples from depressed patients (Turecki & Meaney, 2016). Increased 

DNA methylation levels of the GR exon 1F have been observed both in saliva (Melas et al., 

2013) and blood samples (Na et al., 2014; Nantharat, Wanitchanon, Amesbutr, Tammachote, 

& Praphanphoj, 2015) in various populations of MDD subjects. While large genome-wide 

association studies are rapidly developing and alterations in numerous genes have been 

highlighted, a consensus on MDD-associated genes has not yet been reached. Thus, 

epigenetic modifications, including DNA methylation, appear as an interesting candidate to 

further investigate MDD susceptibility and serve as possible biomarker for depressive 

disorders.

Early-life adversity has been highly involved in the vulnerability to develop neuropsychiatric 

disorders, including MDD (Targum & Nemeroff, 2019). Genome-wide DNA methylation 

studies conducted in human postmortem brain of depressed individuals who suffered from 

early-life stress highlighted changes in DNA methylation patterns in genes related to myelin 

formation and oligodendrocytes (Lutz et al., 2017). Similar studies conducted in peripheral 

samples also revealed a differential DNA methylation pattern at gene promoters associated 

with early-life adversity in individuals with depression, including DNA-Binding Protein 

Inhibitor ID–3 (ID3); Tubulin Polymerization Promoting Protein (TPPP); and the 

neurotransmitter gene glutamate receptor, ionotropic N-methyl-D-aspartate 1 (GRIN1), that 

emerged as predictors of depression in combination with early-life stress (Suderman et al., 

2014; Weder et al., 2014). Of note, alterations in DNA methylation levels of the 

Orthodenticle homeobox 2 (OTX2) gene could also serve as predictor of a depressive state 

in maltreated children (Wymbs et al., 2018).

Studies conducted in postmortem brain sample shave been crucial in advancing our 

understanding of MDD susceptibility. Hypomethylation of Synapsin II, a key regulator of 

neurotransmission has been observed in postmortem brain tissue of individuals living with 

MDD (Cruceanu et al., 2016). DNA methylation levels of several other gene targets, 

including Brain-Derived Neurotrophic Factor (BDNF) and serotonin transporters, have been 

investigated in human samples of depressed patients (Chen, Meng, Pei, Zheng, & Leng, 

2017; D’Addario et al., 2013; Ismaylova et al., 2017; Philibert et al., 2008) and have been 

observed in association with MDD. Of note, a significant correlation has been found 

between BDNF promoter methylation in blood samples and brain of MDD patients (Autry & 

Monteggia, 2012). Similar changes have been observed in buccal samples, suggesting the 

potential use of BDNF methylation as a depression biomarker (Januar, Ancelin, et al., 2015; 

Januar, Saffery, & Ryan, 2015). Interestingly, the epigenetic alterations observed in the brain 

of individuals suffering from depression were associated with increased DNMT3B levels in 

the PFC (Poulter et al., 2008) and a genetic variant of the DNMT3B gene has been found in 

association with suicide attempt (Murphy et al., 2013).
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Given the difficulties in obtaining human postmortem brain samples, animal models for the 

study of depressive disorder, including stress paradigms, have provided an invaluable 

contribution to our understanding of the molecular underpinnings of neuropsychiatric 

disorders. Similar to what was found in social defeated mice, Hodes et al. (2015) showed 

that higher levels of DNMT3A are observed in the nucleus accumbens of subjects with 

MDD. Interestingly, one of the first studies investigating genome-wide DNA methylation in 

MDD highlighted an enrichment in genes involved in neuronal growth and development 

genes (Sabunciyan et al., 2012). Since then, a growing number of studies have investigated 

DNA methylation changes in the MDD brain (Urdinguio, Sanchez-Mut, & Esteller, 2009). 

Genome-wide methylation studies conducted in postmortem PFC of individuals with 

depression and control subjects revealed a differential DNA methylation pattern for genes 

involved in brain development, mitochondria function, and immune system regulation 

(Córdova-Palomera et al., 2015; Gross et al., 2017; Murphy et al., 2017).

It is important to note that a large subset of patients suffering from MDD also exhibit deficits 

in the reward system (Russo & Nestler, 2013). Epidemiological studies have shown the 

existence of a comorbidity between mood or anxiety disorders and addiction (Conway, 

Compton, Stinson, & Grant, 2006), suggesting an important overlap in the brain regions and 

molecular underpinnings associated with these disorders.

5. Alcohol use disorder: A DNA methylation reprogramming

Alcohol use disorder (AUD) is a multifaceted psychiatric disorder characterized by 

compulsive alcohol seeking, loss of control over consumption, and a negative emotional 

state at withdrawal (American Psychiatric Association, 2013; Koob & Volkow, 2010). AUD 

is one of the most prevalent mental disorders (Carvalho, Heilig, Perez, Probst, & Rehm, 

2019; World Health Organization, 2019) and has a significant economic impact on society 

(Bouchery, Harwood, Sacks, Simon, & Brewer, 2011; Sacks, Gonzales, Bouchery, Tomedi, 

& Brewer, 2015; Whiteford et al., 2013). AUD has a life time prevalence of 30% (Hasin, 

Stinson, Ogburn, & Grant, 2007) and is associated with a high burden of disease (Rehm & 

Shield, 2019). As with other addictive disorders, a three-stage cycle has been used to 

conceptualize AUD: binge/intoxication, withdrawal/negative affect, and preoccupation/

anticipation. The repetition of this cycle over time contributes to a pathological state that 

involves an allostatic load in both the reward and the stress system, ultimately leading to the 

development of addiction (Koob, 2013). Stress has generally been considered as an 

important factor in AUD (Becker, 2017). Stress-related disorders, including anxiety and 

depression, are highly comorbid with AUD and individuals suffering from these disorders 

tend to consume alcohol in an attempt to attenuate the negative affective symptoms seen 

during addiction (Becker, 2017; Bolton, Robinson, & Sareen, 2009; Kushner, Abrams, & 

Borchardt, 2000). Preclinical studies have repeatedly demonstrated an association between 

drinking and anxiety-like behaviors (Pandey, Kyzar, & Zhang, 2017; Pandey, Roy, Zhang, & 

Xu, 2004). Of note, adverse life events contribute to the development and maintenance of 

AUD, and have been shown to serve as a predictive factor for alcohol dependence (Enoch, 

2011).
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5.1 Stress and alcohol: A physiological overlap that may drive consumption

There is an important overlap between brain regions underlying the response to stress as 

well as reward and motivation (Blaine & Sinha, 2017). Mounting evidence indicates that 

HPA axis dysfunction, similar to that observed in early-life stress (Enoch, 2011), is involved 

in the consequences and causes of alcohol drinking and dependence (Koob et al., 2014; 

Vendruscolo et al., 2012, 2015). This suggests that an allostatic overload could contribute to 

the dysregulation of the reward system and elicit drug-seeking behavior. Recent findings 

highlight that both glucocorticoids and catecholamines, two major players of the stress 

response, are necessary to encode associative reinforcement learning, including learning 

related to alcohol consumption as a stress-coping mechanism (Belujon & Grace, 2015; 

Schwabe, Dickinson, & Wolf, 2011). Thus, there is a complex reciprocal interaction between 

stress and alcohol as alcohol consumption alleviates stress while also inducing a stress 

response.

Both acute exposure and withdrawal from chronic alcohol consumption raise circulating 

levels of glucocorticoids, indicating that the stimulating effects of alcohol are similar to 

stress arousal (Adinoff, Ruether, Krebaum, Iranmanesh, & Williams, 2003; Blaine & Sinha, 

2017; Richardson, Lee, O’Dell, Koob, & Rivier, 2008; Rose, Shaw, Prendergast, & Little, 

2010). These effects are mediated via direct stimulation of PVN neurons in the 

hypothalamus, leading to the subsequent release of CRH and ACTH (Lee, Selvage, Hansen, 

& Rivier, 2004; Rivier, 2014; Fig. 3). Glucocorticoids have been heavily implicated in 

reward and addiction (Piazza & Le Moal, 1996). Thus, by stimulating glucocorticoid release, 

alcohol itself acts as an acute stressor and may play a role in the reinforcement as well as in 

the motivation for alcohol consumption (Goeders, 2004; Sinha, 2001; Stephens & Wand, 

2012; Uhart & Wand, 2009). Interestingly, the acute alcohol-induced activation of the HPA 

axis may vary based on individual vulnerability factors. Changes in ACTH or cortisol levels 

following alcohol consumption depend on an individual’s family history of AUD. 

Söderpalm Gordh and Söderpalm (2011) showed that higher alcohol stimulatory subjective 

effects are observed in individuals with a positive family history for AUD as opposed to 

those without. However, changes observed in the HPA axis activation also depend on the 

dose of alcohol intake as well as on the individual response to stress (Brkic, Söderpalm, & 

Gordh, 2016), highlighting the importance of examining the regulation of the HPA axis 

when studying alcohol response and dependence.

While early alcohol withdrawal has also been associated with increased glucocorticoid 

levels, dampened HPA activity characterizes a longer and protracted abstinence (Kakihana, 

1979; Rasmussen et al., 2000; Tabakoff, Jaffe, & Ritzmann, 1978). These perturbations of 

the stress response found both in preclinical studies (Becker, 2000) and in human subjects 

suffering from AUD (Adinoff, 1990; Costa et al., 1996; Lovallo, Dickensheets, Myers, 

Thomas, & Nixon, 2000) are thought to contribute to the negative affect associated with 

alcohol dependence (Heilig, Egli, Crabbe, & Becker, 2010; Koob, 2013; Koob & Kreek, 

2007). Indeed, other limbic structures, including the BNST and amygdala, tightly 

interconnected with the HPA axis and involved in emotional state regulation, are also altered 

by chronic alcohol exposure (Koob, 2013). An important number of studies have shown that 

extra-hypothalamic CRH is highly involved in alcohol dependence (Heilig & Koob, 2007; 
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Lowery & Thiele, 2010; Zorrilla, Logrip, & Koob, 2014). The increased CRH levels found 

after chronic alcohol exposure (Olive, Koenig, Nannini, & Hodge, 2002; Zorrilla, Valdez, & 

Weiss, 2001), especially in the amygdala (Sawchenko, 1987), suggest the existence of an 

allostatic state contributing to the negative affect of AUD. Changes in synaptic plasticity and 

dendritic arborization (Koob & Volkow, 2010; Lüscher & Malenka, 2011) are highly 

associated with alcohol consumption, particularly in brain regions that are known to 

integrate both stress and reward signals, i.e., the central nucleus of the amygdala, NAc, and 

BNST (Alheid, 2003; Koob, 2003; Koob & Volkow, 2010). Specifically, reduced BDNF 

expression, a key player in the maintenance of synaptic plasticity, has been observed during 

withdrawal from chronic alcohol exposure and is associated with reduced dendritic spine 

density and consequently, increased alcohol consumption and anxiety like behaviors (Pandey 

et al., 2008; You, Zhang, Sakharkar, Teppen, & Pandey, 2014). Changes in the epigenetic 

regulation of BDNF expression have been observed in preclinical models of alcohol 

dependence (Pandey, Ugale, Zhang, Tang, & Prakash, 2008).

5.2 Chronic alcohol-induced epigenetic (re)programming

Recent studies have implicated epigenetic mechanisms (e.g., DNA hyper/hypo-methylation) 

in the pathophysiology of AUD and maladaptive behaviors (Berkel & Pandey, 2017; Feng & 

Nestler, 2013; Starkman, Sakharkar, & Pandey, 2012). Studies conducted in neural stem 

cells indicate that alcohol exposure results in aberrant patterns of DNA methylation (Zhou et 

al., 2011). In whole blood cells of individuals suffering from AUD, reduced DNMT3B 

expression has been observed in association with hypermethylation of DNA (Bönsch et al., 

2006). Given the stability of alcohol-induced changes in DNA methylation levels, Liang et 

al. (2020) showed that blood DNA methylation signature could serve as an objective 

measure of alcohol intake and proposed it as a peripheral biomarker for alcohol 

consumption.

Similar to most drugs of abuse, alcohol causes widespread changes in gene expression in the 

brain (Warden & Mayfield, 2017). Long-lasting modifications of chromatin structure have 

been highlighted in the brain following chronic alcohol exposure (Pandey, Zhang, et al., 

2008; Fig. 3). Reduced levels of DNMT1 expression have been reported in postmortem 

brain samples of AUD subjects (Ponomarev, Wang, Zhang, Harris, & Mayfield, 2012), 

particularly in brain regions highly implicated in the development of alcohol dependence 

such as the amygdala and the PFC (Koob & Volkow, 2010). Our recent findings confirmed 

alcohol-induced reduction in the mRNA levels of DNMT1 and 3A in PFC of AUD subjects 

(Gatta et al., 2019). Alterations in DNA transmethylation reactions were also observed in 

psychotic patients with a history of alcohol abuse (Guidotti et al., 2013). Chronic alcohol 

exposure impairs transmethylation reactions in the cerebellum of individuals with AUD 

(Gatta et al., 2017) and DNA hypermethylation profiles have been observed in preclinical 

models of alcohol dependence (Auta, Zhang, Pandey, & Guidotti, 2017). In the last few 

years, the development of microarray approaches allowed genome-wide investigations into 

the DNA methylation patterns of the brain. Manzardo, Henkhaus, and Butler (2012) reported 

a disruption in DNA methylation levels at promoter gene regions in the frontal cortex of 

AUD subjects. Altered DNA methylation levels have also been found in a genome-wide 

study carried out in the PFC of AUD subjects with over 60% of the loci being 
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hypermethylated (Wang, Xu, Zhao, Gelernter, & Zhang, 2016). While several studies point 

to a strong association between aberrant DNA methylation patterns and AUD in the PFC 

(Manzardo et al., 2012; Ponomarev et al., 2012; Wang et al., 2016), they did not investigate 

differences between 5mC and 5hmC levels.

Using the Infinium® MethylationEPIC BeadChip, we recently conducted a genome-wide 

methylation study in postmortem PFC of individuals with AUD (Gatta et al., 2019). This 

study showed a differential DNA methylation pattern for biological processes containing 

genes related to stress adaptation, including the GR. Specifically, we found a significant 

increased methylation of the GR exon variant 1H, with a particular increase in the levels of 

5hmC over 5mC. This aberrant DNA methylation pattern was associated with changes in the 

demethylation pathway affecting TET enzymes, resulting in an imbalance of methylation 

turnover. While postmortem brain studies only provide a snapshot of the dynamic regulation 

of DNA methylation levels, our study shows the existence of 5hmC abnormal steady state in 

AUD and suggests a key role for this epigenetic mark in the neuroadaptation mechanisms 

underlying AUD.

5.3 Alcohol-induced epigenetic alteration of key synaptic genes: Emerging role for the 
glucocorticoid receptor

A recent DNA methylation epigenome-wide association study showed that DNA 

methylation changes are observed in glucocorticoid signaling pathways in association with 

alcohol use behaviors (Lohoff et al., 2020). Our previous study uncovered that NR3C1, the 

gene encoding GR, is hypermethylated in the PFC of individuals with AUD. This increase in 

DNA methylation was associated with reduced GR mRNA and protein levels in the PFC 

(Gatta et al., 2019). Similarly, changes in GR expression and activity have been reported in 

animal models of alcohol use disorders (Roy, Mittal, Zhang, & Pandey, 2002; Savarese et al., 

2020; Vendruscolo et al., 2012). Reduced mRNA expression of GR has been observed in 

stress/reward brain regions including the PFC, NAc and BNST following acute alcohol 

withdrawal (Vendruscolo et al., 2012).

Several studies have demonstrated that high levels of glucocorticoids impact memory 

formation through dysfunction of GR signaling and CREB binding (Barsegyan, Mackenzie, 

Kurose, McGaugh, & Roozendaal, 2010; Roozendaal, Quirarte, & McGaugh, 2002; 

Shansky, Bender, & Arnsten, 2009). Dominguez et al.(2016) recently reported spatial 

memory deficits in mice following early and protracted alcohol withdrawal, suggesting the 

importance of GR signaling in alcohol dependence-associated maladaptive behaviors. Of 

note, blockade of GR signaling in the PFC could restore alcohol-induced cognitive 

impairments (Dominguez et al., 2017).

Given the importance of glucocorticoid signaling in alcohol dependence, several 

pharmacological approaches targeting the GR have been explored to correct the pathological 

alterations induced by alcohol intake (Béracochéa, Mons, & David, 2019). A single 

administration of mifepristone, a GR antagonist, is able to reduce alcohol withdrawal-

induced anxiety-like behavior and prevent cognitive deficits in rodents (Brooks, Croft, 

Norman, Shaw, & Little, 2008; Jacquot et al., 2008). Vendruscolo and colleagues showed 

that chronic treatment with mifepristone blocks dependence-induced escalated alcohol 
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drinking in rats (2012) and reduces alcohol-cue-induced craving and consumption in 

individuals with AUD (2015). Interestingly, treatment with the DNA methyltransferases 

(DNMTs) inhibitor, 5-azacytidine, also reduces ethanol intake and preference in mice 

(Warnault, Darcq, Levine, Barak, & Ron, 2013)and attenuates increases in ethanol intake 

and anxiety-like behavior in adult rats exposed to ethanol during adolescence (Sakharkar et 

al., 2019). Infusion of DNA methyltransferase inhibitor RG108 in medial PFC prevented 

alcohol escalation and alcohol dependence-induced changes in gene expression in rats 

(Barbier et al., 2015). Altogether, these studies suggest that targeting the alcohol induced 

epigenetic reprogramming and GR signaling is a promising strategy for the treatment of 

AUD.

6. Evidence for epigenetic alterations in post-traumatic stress disorder

Exposure to one or more stressful/traumatic events can result in the development of post-

traumatic stress disorder (PTSD) (American Psychiatric Association, 2013). Interestingly, 

only a small proportion of the population develop this disorder after exposure to a traumatic 

experience, while the majority remain resilient (Kessler, Sonnega, Bromet, Hughes, & 

Nelson, 1995). Among the individuals diagnosed with PTSD, there is a common 

comorbidity with other psychiatric disorders, including MDD, anxiety disorder and 

substance abuse (Brady, Killeen, Brewerton, & Lucerini, 2000). Growing body of evidence 

indicates that both heritable (genetic) and epigenetic factors often underlie the development 

of PTSD and comorbid disorders (Daskalakis, Rijal, King, Huckins, & Ressler, 2018; 

Howie, Rijal, & Ressler, 2019).

Twin studies have played a pivotal role in our understanding of the heritable underpinnings 

contributing to PTSD (Sartor et al., 2012, 2011). However, these studies estimated that 

heritability only accounts for a low percent of PTSD symptomatic variation (Stein, Jang, 

Taylor, Vernon, & Livesley, 2002). Not surprising, dysregulation of HPA axis response is 

associated with PTSD (Daskalakis, Lehrner, & Yehuda, 2013). Glucocorticoids 

dysregulation has been observed in both peripheral and brain samples of individuals with 

PTSD (Daskalakis, Cohen, Cai, Buxbaum, & Yehuda, 2014; Yehuda, Golier, Yang, & 

Tischler, 2004). Interestingly, polymorphism in the FKBP5 gene, a cytoplasmic chaperone 

that regulates GR sensitivity, has been reported in PTSD subjects with a history of childhood 

abuse (Binder et al., 2008; Mehta et al., 2011). Changes in DNA methylation were observed 

within intron 7, a GR enhancer region of the FKBP5 gene (Klengel et al., 2013). Similar 

reduction of methylation patterns were noted in the offspring of Holocaust survivors 

(Yehuda et al., 2016), suggesting that methylation mechanisms play an important role in the 

physiological response to trauma and transgenerational transmission of PTSD-associated 

heritable traits. Notably, methylation levels of the FKBP5 promoter correlated with positive 

response to psychotherapeutic (Yehuda et al., 2013).

Differential epigenetic regulation of several stress-related genes has been associated with 

PTSD. For instance, increased methylation of the pituitary adenylate cyclase-activating 

polypeptide type 1 receptor (ADCYP1R1) along with a reduction in mRNA levels has been 

reported in individuals with PTSD, confirming the existence of an abnormal stress response 

in those individuals (Ressler et al., 2011). Several Epigenome-Wide Association Studies 
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(EWAS) have been conducted to investigate the association of epigenetic marks such as 

DNA methylation with PTSD (for review Daskalakis et al., 2018). Although only a few of 

these studies show statistical significance, they highlight that biological pathways such as 

synaptic plasticity, oxytocin signaling, and inflammatory responses are epigenetically altered 

in PTSD (Kuan et al., 2017; Rutten et al., 2018; Uddin et al., 2010). Further investigation is 

needed to determine whether the identified unique peripheral epigenetic marks correlate 

with changes in the brain of individuals with PTSD.

7. Conclusion

In the last decade, there has been increasing numbers of genome-wide investigations into 

alterations of central and peripheral DNA methylation profiles in various neuropsychiatric 

disorders, including MDD, AUD and PTSD. However, more longitudinal studies aimed at 

understanding the cause-effect relationship between psychopathologies and aberrant DNA 

methylation patterns are needed to fully uncover the role of DNA methylation, 5mC vs. 

5hmC, in the pathophysiology of these disorders. It is important to consider the existence of 

cell-specific variations when studying the complexity of epigenetic mechanisms in 

neuropsychiatric disorders. Advances in single-cell sequencing should provide additional 

evidence for differential DNA methylation patterns in specific cellular subtypes. The 

identification of stress-induced epigenetic impairments may uncover the biological 

underpinnings for a better understanding of mental diseases and lays the groundwork for the 

development of novel therapeutic approaches to newly identified targets.
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Fig. 1. 
The hypothalamic-pituitary-adrenal (HPA) axis and stress-integrative brain structures. The 

main actors of the HPA axis are the hypothalamus, pituitary, and adrenal glands with 

regulation by the prefrontal cortex and hippocampus. Activation of the HPA axis as a result 

of a stressor begins with the secretion of corticotropin-releasing hormone (CRH) from the 

hypothalamus into the hypophyseal portal system triggering the release of 

adrenocorticotropic hormone (ACTH) by the pituitary gland. The secretion of ACTH leads 

to subsequent release of glucocorticoids from the adrenal cortex. Glucocorticoids act 

through the glucocorticoid receptors (GRs) to exert a negative feedback and reduce the 

release of CRH and ACTH by acting upon the hypothalamus and pituitary gland, 

respectively. Glucocorticoids further indirectly reduce the release of these hormones by 

activating GRs in the prefrontal cortex and hippocampus that project neural connections 

back to the hypothalamus. Plus and minus signs indicate positive and negative regulation, 

respectively.
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Fig. 2. 
One-carbon metabolism, transmethylation reactions, folate cycle, and DNA demethylation. 

DNA methylation on specific cytosine moieties is catalyzed by DNA-methyltransferases 

(DNMTs). This reaction is dependent on the levels of S-adenosyl-methionine (SAM), which 

is synthesized in the brain by the methionineadenosyl-transferase (MAT) 2. After the DNA 

methyl transfer reaction, S-adenosylhomocysteine (SAH) is formed as a by-product. SAH 

exerts a feedback inhibitory activity on DNMTs and is used as a substrate for the adenosyl 

homocysteine hydrolase (AHCY) leading to the synthesis of homocysteine. The 

remethylation of homocysteine to form methionine is catalyzed via the folate cycle, that is, 

the conversion of folic acid into tetrahydrofolate (THF) and 5,10-methylenete-trahydrofolate 

(5,10-MTHF). The methylene tetrahydrofolate reductase (MTHFR) will produce 5-

methyltetrahydrofolate (5-MTHF) that is used as a substrate by methionine synthase (MTR) 

to form methionine. The synthesis of methionine may also involve the activation of the 

betaine homocysteine methyltransferase (BHMT) pathway. DNA demethylation is initiated 

by ten-eleven-translocase (TET) enzymes that hydroxylate 5-methylcytosine (5mC) forming 

5-hydroxymethylcytosine (5hmC). In the end, through a GADD45B coordinated process, 

5hmC is first converted to 5-formylcytosine (5fC) and then to 5-carboxylcytosine (5caC) by 

TET-mediated iterative processing. Thymidine deglycosylase (TDG) and members of the 

base excision repair (BER) pathway remove the modified residue, substituting it with 

cytosine. Stressful stimuli are known to activate neuronal pathways triggering DNA 

methylation or hydroxymethylation and demethylation, altering gene expression. Plus signs 

indicate positive regulation.
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Fig. 3. 
Schematic representation of chronic alcohol-induced epigenetic reprogramming. An 

adaptive stress response is mediated by the glucocorticoid receptor (GR), the low-affinity 

receptor for glucocorticoids. Under non-stressful conditions, lower glucocorticoid levels 

result in reduced GR translocation to nucleus and transcription occurs with limited 

hindrance (top panel). Alcohol consumption, akin to stress, leads to activation of the 

hypothalamic-pituitary-adrenal (HPA) axis and the subsequent release of corticotropin-

releasing hormone (CRH) and adrenocorticotropic hormone (ACTH), increasing 

glucocorticoid levels in the circulation. Glucocorticoids bind to GRs and the ligand-receptor 

complex translocate to the nucleus (bottom panel). Once bound to chromatin, GR serves as 

the host for epigenetic actors including DNA methyltransferases (DNMT1 and −3A) and 

demethylating (ten-eleven translocases, TET) enzymes, histone deacetylases (HDAC), and 

methyl CpG binding protein 2 (MECP2). Chronic alcohol consumption induces stress surfeit 

resulting in altered synaptic plasticity and epigenetic (DNA methylation) reprogramming of 

target genes. Through the remodeling of chromatin, alcohol negatively regulates the 

expression of glucocorticoid-responsive genes, resulting in altered promoter methylation (M: 

CpG methylation; H: CpG hydroxymethylation) and ultimately, a maladaptive stress 

response.
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