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Abstract

Dual-energy (DE) decomposition has been adopted in orthopedic imaging to measure bone 

composition and visualize intraarticular contrast enhancement. One of the potential applications 

involves monitoring of callus mineralization for longitudinal assessment of fracture healing. 

However, fracture repair usually involves internal fixation hardware that can generate significant 

artifacts in reconstructed images. To address this challenge, we develop a novel algorithm that 

combines simultaneous reconstruction-decomposition using a previously reported method for 

Model-Based Material Decomposition (MBMD) augmented by the Known-Component (KC) 

reconstruction framework to mitigate metal artifacts. We apply the proposed algorithm to 

simulated DE data representative of a dedicated extremity cone-beam CT (CBCT) employing an 

x-ray unit with three vertically arranged sources. The scanner generates DE data with non-

coinciding high- and low-energy projection rays when the central source is operated at high tube 

potential and the peripheral sources at low potential. The proposed algorithm was validated using a 

digital extremity phantom containing varying concentrations of Ca-water mixtures and Ti 

implants. Decomposition accuracy was compared to MBMD without the KC model. The proposed 

method suppressed metal artifacts and yielded estimated Ca concentrations that approached the 

reconstructions of an implant-free phantom for most mixture regions. In the vicinity of simple 

components, the errors of Ca density estimates obtained by incorporating KC in MBMD were ~1.5 

– 5x lower than the errors of conventional MBMD; for cases with complex implants, the errors 

were ~3 – 5x lower. In conclusion, the proposed method can achieve accurate bone mineral 

density measurements in the presence of metal implants using non-coinciding DE projections 

acquired on a multisource CBCT system.
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1. Introduction

Fracture healing involves formation, calcification and coupling of cartilaginous calluses 

(Einhorn and Gerstenfeld 2015, Ghiasi et al 2017, Kostenuik and Mirza 2017). Quantitative 
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biomarkers of fracture stability and callus mineralization could benefit decisions on a 

patient’s return to weight-bearing and help predict non-unions. In lower extremities, stability 

is usually evaluated using standing 2D radiography (Brouwer et al 2003, Sabharwal et al 
2007, Saita et al 2014). Recently introduced systems for weight-bearing extremity cone-

beam CT (CBCT) (Fig. 1A) provide the capability to quantify fracture stability in 3D with 

isotropic high spatial resolution (Zbijewski et al 2011, Carrino et al 2013, Thawait et al 
2015, Shakoor et al 2019). To enable simultaneous monitoring of callus mineralization, we 

propose to equip extremity CBCT with dual energy (DE) imaging capability. DE-based 

measurements of bone mineral density (BMD) in multi-detector CT have been shown to be 

potentially more accurate than single-energy (SE) quantitative CT (Kalender et al 1987a, 

Wichmann et al 2014, Arentsen et al 2017). However, two challenges need to be addressed 

for practical implementation of DE CBCT measurements of BMD: 1) conventional CBCT 

hardware typically requires two scans to collect DE data, which may lead to long acquisition 

times and misregistration between the low- and high-energy projection views, and 2) 

artifacts caused by metal fixation hardware commonly used in extremity fractures.

In this work, we employ the Carestream OnSight3D extremity CBCT system (Carestream, 

Rochester, NY, USA). This device is equipped with a unique multisource x-ray unit (Gang et 
al 2018, Liu et al 2019), with three axially arranged, independently addressable focal spots. 

Such configuration allows the scanner to produce DE data by operating each source at a 

different potential (Zbijewski et al 2015, Siewerdsen et al 2016). For example, the peripheral 

sources provide low-energy (LE) views and the central source provides high-energy (HE) 

views, as shown in Fig. 1B.

To obtain the concentrations of base materials (e.g. bone mineral and soft tissue), DE data is 

processed through material decomposition algorithms. Projection-domain decomposition 

(PDD, Alvarez and Macovski 1976, Lehmann et al 1981, Brendel et al 2009) cannot be 

applied to the proposed three-source DE acquisition, since it does not provide geometrically 

matched (coinciding) LE and HE ray paths. Image-domain decomposition (IDD, Goodsitt et 
al 1987, Taguchi et al 2007, Maaß et al 2009, Bateman et al 2018) does not require matched 

rays. However, individual reconstructions of LE and HE channels may suffer from 

insufficient axial/longitudinal sampling in the axial three-source configuration of the 

extremity CBCT. Furthermore, unlike PDD which inherently accounts for the polyenergetic 

effects, IDD requires additional beam-hardening corrections of the LE and HE 

reconstructions.

We have previously developed a Model-Based Material Decomposition approach (MBMD, 

Tilley et al 2018, 2019). The LE and HE projections are jointly considered in an objective 

function that involves a polyenergetic forward model; the object is parameterized in terms of 

unknown base material densities. MBMD is well suited for the extremity CBCT multisource 

DE configuration, because it does not require coinciding rays or additional spectral 

corrections. Since the MBMD objective considers all measured projections, it is also 

relatively robust to unconventional sampling patterns in the acquisitions of the individual 

spectral channels.
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In CT and CBCT, the presence of metal components leads to reconstruction artifacts and 

may result in inaccurate DE material density estimates. Inpainting is often used to mitigate 

metal artifacts (Kalender et al 1987b, Meyer et al 2010, Chen et al 2012, Heußer et al 2014), 

but may lead to inconsistent projections that could be challenging for model-based 

algorithms such as MBMD. The Known-Component (KC) framework provides an 

alternative approach that is well suited for MBMD. In KC reconstructions, prior knowledge 

of the metal component (e.g. shape and composition) is incorporated into the object forward 

model (Stayman et al 2012, Xu et al 2017, Zhang et al 2017) after the location of the 

component is established using 3D-2D registration (Uneri et al 2015, 2017, 2019).

Here, we propose an algorithm (termed KC-MBMD) that combines MBMD and the KC 

framework. The object is parameterized in terms of the known energy-dependent attenuation 

distributions of the metal implant and unknown densities of surrounding bone and water 

(soft-tissue). This selection of DE base materials directly enables BMD quantification. We 

evaluate the proposed KC-MBMD in simulated multisource DE CBCT of objects with 

internal fixation hardware. A general outline of the algorithm and initial results in BMD 

quantification have been reported in our previous conference publication (Liu et al (2019)). 

Here, we provide a detailed mathematical derivation of KC-MBMD and substantially 

expand the numerical performance assessment studies. Furthermore, evaluation of the 

algorithm is extended to include convergence properties and robustness to component model 

mismatches. Image quality and quantitative accuracy of KC-MBMD are compared to 

MBMD without the KC model.

2. Methods

2.1. Known-Component Model-Based Material Decomposition (KC-MBMD)

2.1.1. Forward Model—Table 1 summarizes the variables used to describe the 

algorithm. Matrices are denoted in bold upright uppercase and vectors are in bold italic 

lowercase. Their components are represented by dropping the bold-face and adding 

subscripts.

The forward model for KC-MBMD integrates prior knowledge of the internal fixation 

hardware into the polyenergetic projections of the background anatomy. We express the 

model using a discretized energy spectrum from 1 to E keV with a uniform bin width of Δϵ:

yi = ∑
ϵ = 1

E
si(ϵ)Δϵexp −ℓi

c(ϵ) exp −ℓi
b(ϵ) (1)

where yi denotes the ith projection ray (transmission measurement) through the object, si(ϵ)
represents the spectral response of the system at energy ϵ (including polyenergetic source 

spectrum and detector response), and ℓi
c(ϵ) and ℓi

b(ϵ) are the ith line integrals of implants 

(“components”) and the background anatomy, respectively. The spectral response differs 

from ray to ray, thus accounting for the LE and HE spectra in a DE acquisition.

We assume that the object contains Κ base materials (indexed by κ) and Ω implants (indexed 

by ω) in the field-of-view, with their respective energy-dependent mass attenuation 
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coefficients μb, κ (ϵ) and μc, ω (ϵ). In KC-MBMD, we solve for the unknown spatial density 

distribution of each base material ρb, k  given the known spatial density distribution of each 

implant ρc, ω . Both ρb, κ  and ρc, ω  are one-dimensional vectors that consist of voxel 

values of a 3D volume arranged lexicographically. We assume that ρc, ω  represents the ωth 

implant placed at the center of the world coordinate system. The pose of the implant in the 

reconstructed volume is then specified by a parameter vector λc, ω  obtained by, e.g., a rigid 

3D-2D registration (Uneri et al 2015, Xu et al 2017). The spatial transformation associated 

with λc, ω  is applied to ρc, ω  by the operator F λc, ω , which generally involves some 

forms of interpolation on the reconstruction voxel grid (Stayman et al 2012; Xu et al 2017). 

The line integral in Eq. (1) can thus be expressed as:

ℓi
c(ϵ) = ∑

ω = 1

Ω
Aiμc, ω (ϵ)F λc, ω ρc, ω (2a)

ℓi
b(ϵ) = ∑

κ = 1

K
Aiμb, κ (ϵ)ρb, κ Λc , Λc: = λc, 1 ⋯ λc, Ω

(2b)

where Ai denotes a row of the projection matrix (corresponding to the ith projection ray), 

and Λc is a set of registration parameter vectors for all Ω implants. Note that ρb, κ Λc

represents the spatial density distribution of the κth base material excluding the voxels that 

belong to the implant; the exclusion is achieved by masking the implant voxels (Stayman et 
al 2012, Xu et al 2017):

ρb, κ Λc = ∏
ω = 1

Ω
D F λc, ω mc, ω ρ ∗ , κ (3)

where ρ ∗ , κ  denotes the density of the κth base material prior to masking, and mc,{ω} is a 

binary mask for the ωth implant – zero for voxels inside the implant and one for voxels 

outside. (Both ρ ∗ , κ   and mc, ω  have the same size and lexicographic arrangement of 

voxel values as ρb, κ  and ρc, ω . Similar to ρc, ω  in Eq. (2a), mc, ω  is initialized at the 

center of the field-of-view and then transformed by the registration operator F λc, ω  to 

the same pose in the reconstructed volume as the corresponding metal component. The 

transformed mask is diagonalized via D{∙} to match the vector dimension of ρ∗,{κ}.

After using Eqs. (2) and (3) to substitute ℓi
c(ϵ) and ℓi

b(ϵ) in Eq. (1), we obtain the following 

forward model for KC-MBMD:

yi = ∑
ϵ = 1

E
si(ϵ)Δϵexp ∑

ω = 1

Ω
− Aiμc ω (ϵ)F λc, ω ρc, ω

⋅ exp ∑
κ = 1

K
− Aiμb, κ (ϵ) ∏

ω = 1

Ω
D F λc, ω mc, ω ρ ∗ , k

(4)
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We will express this KC multi-material forward model in a manner analogous to a model of 

a system with linear blur (Tilley et al (2017)):

yi = Biexp −Miρ∗ (5)

For simplicity of notation (but without a loss of generality), we will focus on a 

decomposition problem with water and calcium as base materials:

ρ∗: = ρ ∗ , H2O

ρ ∗ , Ca
(6)

The matrix operator Mi in Eq. (5), which represents the energy-dependent line integrals of 

background anatomy, is given by:

Mi: =
μb, H2O ϵ1 μb, Ca ϵ1

⋮ ⋮
μb, H2O ϵE μb, Ca ϵE

Ai ∏
ω = 1

Ω
D F λc, ω mc, ω 0

0 Ai ∏
ω = 1

Ω
D F λc, ω mc, ω

(7)

Mi computes the line integral along the ith ray for each of the two base material densities. 

The base material line integrals are then replicated across all E energy bins. At each bin ϵ, 

the line integrals of the two materials are scaled by their corresponding mass attenuation 

coefficients at ϵ and added to yield ℓi
b(ϵ).

The second element of the linear formulation of Eq. (5) is the operator Bi – a matrix that 

applies the spectral response (including summation over the energy bins). The known metal 

component is incorporated in Bi as an additional spectral filter:

Bi: = si ϵ1 Δϵexp −ℓi
c ϵ1 ⋯ si ϵE Δϵexp −ℓi

c ϵE (8)

2.1.2. Objective Function—We specified a polyenergetic multi-material forward model 

for a single projection ray i associated with the spectral response si. Assuming a DE CBCT 

acquisition that contains a sequence of projection views obtained at alternating kV, where 

each view consists of v projection rays, we arrive at the following model for the entire DE 

scan:
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y = y1
l ⋯yv

l  yv + 1
ℎ ⋯y2v

ℎ  y2v + 1
l ⋯y3v

l ⋯ T

= D B1
l ⋯Bv

l  Bv + 1
ℎ ⋯B2v

ℎ  B2v + 1
l ⋯B3v

l ⋯ T

⋅ exp − M1⋯Mv Mv + 1⋯M2v M2v + 1⋯M3v⋯ Tρ∗

= Bexp −Mρ∗

(9)

where indices l and h indicate whether yi and Bi were obtained at LE or HE, respectively. 

[ ⋅ ]T and D ⋅  represent “block transpose” and “block diagonalization”, where Bi and Mi 

are treated as “blocks” that retain their own internal structures, but are rearranged in a 

manner analogous to transpose or diagonalization of scalar-element matrices. Note that Bi 

depends on the source energy only through si, which involves the discretized polyenergetic 

x-ray spectrum.

Formally, the forward model in Eq. (9) implies a reconstruction problem with unknown 

density distributions of base materials and unknown registration parameters of the known 

implants (embedded in the matrix B). However, the registration parameters can be estimated 

prior to the reconstruction (or in an alternating manner between the iterations of KC-

MBMD) using 3D-2D registration (Uneri et al 2015, Xu et al 2017, Cao et al 2019a, Liu et 
al 2020). Therefore, we can treat B as a constant and formulate the reconstruction as a 

Penalized-Weighted Least-Squares (PWLS) optimization with respect to ρ∗ (Tilley et al 
2017, 2019):

ρ∗ = arg min
ρ∗ ≥ 0

Φ ρ∗; y (10a)

Φ ρ∗; y = y − Bexp −Mρ∗ TKy
−1 y − Bexp −Mρ∗ + R ρ∗ (10b)

where ρ∗ is the estimated densities of base materials and R is the regularization term (i.e. 

roughness penalty). This objective assumes that the data are Gaussian-distributed with 

covariance matrix Ky. We assumed uncorrelated noise; thus, Ky is diagonal, with terms 

equal to the reciprocal of the measured projection values. As is often done in x-ray CT 

reconstruction (Thibault et al 2007), we chose a Gaussian approximation of projection noise. 

To be clear, the assumed noise distribution is not uniform, but heteroscedastic with variances 

based on mean fluence. Theoretically, a compound Poisson model would be more accurate 

(Elbakri and Fessler 2003a) for the polyenergetic case considered here. However, this model 

would not be entirely correct either because of the presence of electronic noise. Furthermore, 

it would lead to a complicated likelihood that is difficult to optimize (Elbakri and Fessler 

2003a). The Gaussian objective used here and in the majority of recent work on model-based 

CT reconstruction provides a good approximation of the compound Poisson distribution at 

the high-count levels typically encountered in CT and CBCT (Whiting 2002, Nuyts et al 
2013) and is more convenient to optimize, as it is inherently quadratic with respect to y.

We apply separate regularization strengths for two base materials (Liu et al 2019, Tilley et al 
2019):
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R ρ∗ : = ∑
κ = 1

K
R κ ρ ∗ , κ = ∑

κ = 1

K
β ∗ , κ ψ ρ ∗ , κ = β ∗ , H2O ψ ρ ∗ , H2O

+ β ∗ , Ca ψ ρ ∗ , Ca
(11)

where β ∗ , k  and ψ ρ ∗ , κ  denote the regularization strength and function for the κth base 

material, respectively.

By incorporating the B and M operators of Eqs. (7), (8) and (9) in the objective of Eq. (10), 

we can estimate the concentrations of water and calcium by minimizing Φ with respect to 

ρ∗. Note that the optimization problem in Eq. (10) is non-convex (Erdogan and Fessler 1999; 

Tilley et al 2017). This is common in tomographic reconstruction; however, previous work 

has shown that convex optimization methods, such as Separable Parabolic Surrogates (SPS, 

Erdogan and Fessler 1999, Tilley et al 2017) are still applicable in this scenario given 

appropriate initialization. Here, we apply an SPS algorithm developed by Tilley et al (2017) 

for CBCT reconstruction with a Gaussian PWLS objective. (Detailed derivation can be 

found in the original paper). We have not experienced noticeable issues with local minima in 

our studies with this algorithm, neither in the current application, nor in the previous work 

on model-based resolution recovery (Tilley et al 2017) and MBMD without metal 

components (Tilley et al 2019). A flowchart summarizing the major steps of the optimization 

is provided in Fig. 2. To improve convergence and reduce memory requirements, we further 

applied ordered subsets (Hudson and Larkin 1994) with momentum-based acceleration 

(Nesterov 2005).

2.2. Validation Studies

The proposed algorithm was evaluated in simulations emulating the Carestream Onsight3D 

multisource extremity CBCT scanner. We used voxelized phantoms that provide a 

generalized representation of human extremities, including metal implants commonly 

applied for fracture reduction and bones with regions-of-interest (ROIs) presenting a range 

of calcium concentrations.

2.2.1. Digital Multi-Tissue Phantom—Fig. 3 shows the simulated extremity phantom 

used in the experiments. In experiments discussed below, the basic structure in Fig. 3 was 

also equipped with various configurations of metal implants. The phantom contains an outer 

water cylinder (80 mm diameter, 225 mm height). This outer cylinder extends outside of the 

axial field-of-view (FOV) of the multisource system (i.e., within the dark gray triangle in 

Fig. 1B that was viewed by all three sources). Inside, there is a cylindrical insert (50 mm 

diameter, 78 mm height) containing a range of calcium-water mixtures to emulate BMD 

variations in a healing bone. At the center of the insert, there is a smaller cylinder (15 mm 

diameter, 78 mm height) made of fat to simulate bone marrow. The bone insert is covered 

completely within the FOV of the scanner.

The middle insert is divided into 12 levels of 6.5 mm thickness (Fig. 3). Each level is further 

divided into 6 sectors containing calcium-water mixtures at 50 mg/mL Ca (ROI-50), 75 

mg/mL Ca (ROI-75), 100 mg/mL Ca (ROI-100), 125 mg/mL Ca (ROI-125), 150 mg/mL Ca 
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(ROI-150), and 175 mg/mL Ca (ROI-175). The water concentrations in the ROIs are 

specified such that the water and calcium volume fractions in the mixture sum to one. The 

sector arrangement is rotated 60° axially between neighboring levels of the phantom. Note 

that the sectors are always referred to by their calcium concentration, independent of the 

phantom level.

2.2.2. Metal Implants—We simulated two metal components that emulate an internal 

fixation plate and an intramedullary (IM) nail, each with three 60 mm long locking screws. 

Fig. 4A and B illustrate these components, and Table 2 lists their dimensions. All implants 

are made from medical-grade titanium (containing 90% Ti, 6% Al, and 4% V) with a 

uniform density of 4,410 mg/mL.

For the simulation studies, the plate was affixed laterally to the calcium-water mixture insert 

of Fig 3. The IM nail was placed in the center of the insert, in the internal channel made of 

fat. There was no mixing of metal and tissue (i.e., the implant voxels always replaced the 

tissue voxels).

Fig. 5 illustrates the resulting arrangements of the implant relative to the ROIs (sectors) of 

the phantom: a sector adjacent to the plate (P), a sector adjacent to the nail (N), a sector 

penetrated by the screw (S), a sector at the mounting point of the plate (P + S), and a sector 

where the nail was held by the screw (N + S). Since those configurations presented different 

amounts of metal affecting the ROIs, we designed the experiments so that each configuration 

could occur at least once for each of the ROIs. Only one phantom with the IM nail assembly 

was needed to sample all possible N and N+S arrangements. To ensure that the S and S+P 

cases were tested by all ROIs, however, two phantoms were simulated with the plate 

assembly. Specifically, the plate mounting point was rotated by 180° between the phantoms. 

(Recall that each of the six sectors was repeated in every level of the insert, but at different 

angular positions; however, the screws penetrated only three of the levels.)

2.2.3. System Model and Dual Energy Acquisition Protocol—The following 

scanner configuration, closely resembling the commercial OnSight3D system, was 

simulated: three x-ray tubes arranged vertically at 120 mm spacing (Fig. 1B), source-

detector distance (SDD) of 540 mm, and source-axis distance (SAD) of 400 mm. A 300 × 

300 mm2 flat panel detector (FPD) with 278 × 278 μm2 pixels and 600 μm thick CsI 

scintillator was incorporated. Scan range was set to 360° with 1° angular step between the 

views.

As explained earlier, the single-scan, multisource DE acquisition involved alternating 

exposures from the three tubes. We operated the peripheral sources (S1 and S3) at 60 kV 

(+0.25 mm Cu, +2.00 mm Al), and the central source (S2) at 120 kV (+0.25 mm Cu, +2.00 

mm Al). The scan sequence was: S1, S2, S3, S2, S1, …, S2 (Liu et al 2019), for a total of 

180 LE projections (90 exposures by S1 and 90 exposures by S3) and 180 HE projections 

(all by S2).

The LE and HE spectra and the mass attenuation coefficients for all materials were obtained 

from Spektr3 (Punnoose et al 2016). The phantoms with and without implants were 
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constructed on a grid of 125 × 125 × 125 μm3 voxels, and the polyenergetic LE and HE 

projections were obtained following the forward model in (1). Detection efficiency of CsI 

was included in the spectral response of the model. Poisson noise was added to the LE and 

HE data, assuming a photon flux of 5 × 104 counts per pixel for both spectra. We assumed a 

high-fidelity scatter correction – for example, a fast Monte Carlo approach recently shown to 

yield highly reproducible BMD estimates in the experimental extremity CBCT data (Cao et 
al 2019b) – and thus scatter was not included in the simulations. Before reconstructions, the 

projections were binned 4-fold to 556 × 556 μm2 pixels to simulate nonlinear partial volume 

effects.

2.2.4. Reconstruction Methods and Settings—We compared the performance of 

KC-MBMD to MBMD without prior knowledge of the implant, which used calcium and 

water as base materials and solved the minimization problem in (10) without the metal 

component projections in matrix B.

All reconstructions were performed on a 250 × 250 × 350 voxel grid. The voxels were 500 × 

500 × 500 μm3; by using a 64× coarser discretization than in the simulations, the linear 

partial volume effect was incorporated in the studies in addition to the nonlinear effect 

(Stayman et al 2013). Note that the reconstructed volume did not include the superior and 

inferior sections of the water cylinder that were traversed by the peripheral rays of the LE 

beams. However, those rays did not cross the multi-material insert. Therefore, such 

longitudinal truncation had minimal impact on the quantitative accuracy of the multi-

material ROIs.

All reconstructions were initialized as a uniform cylinder obtained by thresholding an initial 

FDK reconstruction (Feldkamp et al 1984). The segmented cylinder provided the 

initialization for the water image (assuming a nominal concentration of 1,000 mg/mL); the 

calcium image was initialized with all zeros. We performed 400 iterations with 45 subsets 

for both methods. The number of iterations was chosen such that the normalized root-mean-

squared errors (NRMSEs, see definition in Sec. 2.3) of KC-MBMD and MBMD over the 

entire reconstruction (ρ∗) were stable to within <0.01% for at least 100 iterations.

The reconstructions employed a quadratic regularizer for each of the material images:

ψ ρ ∗ , k = 1
4 ∑

p
∑

q ∈ Np
ρp

∗ , k − ρq
∗ , κ 2

(12)

where Np denotes the set of voxel indices containing the six nearest neighbors of the pth 

voxel. The penalty strengths were established by a two-dimensional sweep using MBMD of 

the multi-tissue phantom without metal. The optimal values of β ∗ , H2O = 108 and 

β ∗ , Ca = 2 × 109 were chosen as the pair giving the smallest NRMSE (see definition in Sec. 

2.3) over the entire reconstruction (ρ∗). This setting reflected the previous work (Tilley et al 

2019), which found balanced regularization of material images when the ratio of βH2O
∗ /βCa

∗

was comparable to the inverse ratio of minimum densities of water and Ca in the sample.
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For simplicity, we did not include the KC registration step in KC-MBMD experiments. 

Instead, we used the exact phantom implant locations to obtain the component models and 

masks in (2). The component models used for forward projection were downsampled from 

the original designs by trilinear interpolation to match the reconstruction voxel size. This 

operation created ‘soft edges’ (i.e., boundaries made from the same material as the implant 

but with reduced density). The binary implant masks mωc  included the soft edges; the 

boundary voxels were thus excluded from the reconstruction updates in the same manner as 

the interior of the components.

2.3. Robustness to Mismatches of Known-Component Model

To consider the impact of inexactly known implants or slight misregistration, we performed 

additional experiments that introduced a controllable degree of mismatch between the real 

component and its KC model. Three-dimensional binary erosions and dilations using 

spherical structural elements with radii of 125 μm, 250 μm, 375 μm, and 500 μm were 

applied to the plate assembly on the original 125 × 125 × 125 μm3 voxel grid. A mismatched 

implant model and mask were then generated by the process described in Sec. 2.2.4, where 

the eroded/dilated components were downsampled via trilinear interpolation to match the 

reconstruction voxel size. All settings for KC-MBMD were the same as in the validation 

studies described in Sec. 2.2.

2.4. Performance Metrics

Decomposition accuracy was assessed in terms of the normalized root-mean-squared error 

(NRMSE) of the estimated calcium concentration in selected regions of the Ca-water insert:

NRMSE ρ ∗ , Ca , ρ ∗ , Ca = 1
∥ ρ ∗ , Ca ∥

1
Q ∑

j ∈ q
ρj

∗ , Ca − ρj
∗ , Ca 2

(13)

where ρ ∗ , Ca  is the true calcium density in the region, and q is the set of voxel indices (Q 

voxels in total) of the region. The NRMSE was obtained for each axial slice of each Ca-

water sector of the phantom (13 slices per sector, 72 sectors in total). The voxels at sector 

interfaces were included in the calculation; the NRMSE thus accounted for the errors due to 

partial-volume effects and regularization. Implant voxels were excluded from the NRMSE 

by applying the same binary masks mc, ω  as in the reconstruction (see Sec. 2.2.4). We 

report the mean and cross-slice standard deviation of slice NRMSEs of each Ca-water sector 

(ROI). The errors are analyzed separately for each metal component configuration as 

indicated in Fig. 5. As explained in Sec. 2.2.2, the design of phantoms enabled this stratified 

analysis by ensuring that each of the six calcium concentrations appeared at least once for 

each metal configuration.

3. Results

3.1. Image Quality in Base Material Reconstructions

Fig. 6 shows composite images generated from Ca and water maps obtained by MBMD and 

KC-MBMD. The composites represent monoenergetic linear attenuation coefficients at 90 
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keV, computed by taking the estimated water and Ca densities in each voxel, multiplying the 

appropriate monoenergetic mass attenuations, and summing over all materials in the voxel. 

For KC-MBMD, voxels of the component were rendered in green.

The leftmost column of Fig. 6 provides a reference MBMD of a metal-free phantom. The 

severity of artifacts in MBMD depends on the size and geometry of the implant. For slices 

with only the metal plate, the artifacts are contained to the voxels adjacent to the hardware 

and do not affect the visualization of the insert. For the nail, on the other hand, MBMD 

exhibits severe periodic rings and Moiré patterns that occlude the multi-material insert in 

some slices. Additional investigation of individual PWLS reconstructions of the HE and LE 

data revealed that those artifacts emerge because the metal components are only imaged by 

oblique rays in the LE beam. In this configuration, the LE rays passing through the nail are 

strongly attenuated and the geometric sampling of the metal is suboptimal, resulting in a 

severe missing-data effect.

In both the plate and the nail cases, KC-MBMD mitigated the metal artifacts in MBMD. 

Visually, the appearance of the Ca-water insert in KC-MBMD images is less dependent on 

the configuration of the metal than in MBMD. The remaining slight blooming along the 

edge of the locking screw in KC-MBMD is likely primarily due to the downsampling of the 

reconstruction implant model.

3.2. Quantitative Accuracy and Convergence

Fig. 7 shows Ca concentration errors expressed as the mean and cross-slice standard 

deviation of slice NRMSEs of the Ca-water sectors of the phantom. The sectors are 

identified by their nominal Ca concentrations. In the implant-free case (green dotted lines in 

Fig. 7), the mean MBMD decomposition error was ~5% to ~17%, and the cross-slice 

NRMSE variability within the sectors was ~0.5% to ~6%, depending on the Ca 

concentration. In the presence of implants, inclusion of a prior metal component model 

improved the accuracy and the uniformity of Ca density estimations, especially for the ROIs 

adjacent to the complex implant configurations (i.e., P+S and N+S). For example, in the P+S 

scenario, the decreases in the mean NRMSE with KC-MBMD compared to MBMD were 

88.3% for the 50 mg/mL sector, and 23.6% for the 175 mg/mL sector; the reductions in the 

cross-slice standard deviation were 38.4% and 10.4%, respectively.

At the lowest Ca concentration (50 mg/mL), the mean NRMSEs of KC-MBMD were ~20% 

± 8% in P, N and S cases (Fig. 7C), and ~30% ± 6% in P+S and N+S cases (Fig. 7D), 

compared to 17.5% ± 6% for the implant-free case. For higher Ca concentrations, KC-

MBMD approached the accuracy of MBMD of the simulation without metal, with NRMSEs 

of less than ~10% ± 1% for the simple implant configurations and Ca concentrations of 100 

– 150 mg/mL, and less than ~15% ± 2% for the complex arrangements and Ca 

concentrations of 100 – 175 mg/mL.

Fig. 8 shows the observed relationship between quantitative accuracy (NRMSE) and number 

of iterations of MBMD and KC-MBMD. In this manner, Fig. 8 provides insight on the 

convergence properties of the two decomposition algorithms. The analysis was performed 

for the plate phantom, and NRMSE was computed over an ensemble of all Ca sectors of the 
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multi-material insert, with metal regions excluded in the same manner as in the accuracy 

studies above. In Fig. 8A and B, composite images are shown for MBMD and KC-MBMD, 

respectively, at 50 and 200 iterations (i.e., at 1/8 and 1/2 the number of iterations used to 

generate the data in Fig. 6 and Fig. 7). Since the atomic mass of Ca is close to that of Ti, the 

Ca basis in MBMD provides a reasonable model of beam-hardening in the Ti implant, 

explaining the gradual reduction in metal artifacts in MBMD in this metal configuration. 

However, the KC approach appears to achieve faster and more complete mitigation of the 

artifacts. This is further illustrated in the NRMSE plots in Fig. 8C. Even at high iterations, 

the mean NRMSE and its cross-slice standard deviation remain higher in MBMD than in 

KC-MBMD. Furthermore, MBMD requires many more updates to reach a plateau (Fig. 8C) 

of NRMSE values in the 10% – 20% range. As shown in Fig. 5, metal artifact reduction by 

direct decomposition into the Ca basis becomes even more challenging for implants that are 

larger and more complex than the plate.

3.3. Robustness to Known-Component Model Mismatch

KC-MBMD composite images using eroded and dilated implant models are shown in Fig. 

9A. In the slices containing only the plate, KC-MBMD was fairly robust to small amounts of 

erosion or dilation, up to 100–200 μm radius of the spherical structuring element. In 

contrast, the slices containing the screw exhibited shading and streaks even at the relatively 

small erosion and dilation radii. Visually, KC-MBMD appears less sensitive to component 

models that are smaller than the true implant (i.e., underestimation of component size) than 

models that are enlarged compared to the truth.

The visual findings are confirmed in NRMSE plots in Fig. 9B. The graphs for each calcium-

water ROI are again stratified by the complexity and size of the adjacent implant (P, S and P

+S). Erosions generally produced smaller errors than dilations. This is particularly true for 

larger Ca densities (e.g. 100 mg/mL) and smaller metal components (e.g. P). In such 

settings, the accuracy of Ca density estimates was maintained at a level comparable to 

decomposition using the exact implant model. However, even for the less complex 

components, enlarged implant models (i.e. dilations overestimating the true size of the 

implant) resulted in rapid deterioration of NRMSE. As shown in Fig. 9B, for the ROI-100 in 

the P configuration, the erosion with a 500 μm radius sphere increased the NRMSE by only 

2.9% compared to the exact KC model (14.4% ± 3.2% compared to 11.5% ± 1.7%). 

However, for dilations using the same sphere, the increase in NRMSE was 70.6% (82.1% ± 

6.6% compared to 11.5% ± 1.7%).

4. Discussion and Conclusions

We proposed an extension of the MBMD algorithm that incorporates prior models of metal 

implants in its objective function. This approach extends the advantages of MBMD (namely, 

the ability to perform direct decomposition from non-overlapping HE and LE projection 

views) to applications where the presence of metal and the associated artifacts might affect 

the decomposition accuracy. Here, we considered one such application: the assessment of 

bone density in a healing fracture.
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We applied KC-MBMD to simulated DE projections of an extremity phantom imaged using 

a novel multi-source CBCT geometry. Compared to MBMD, KC-MBMD substantially 

improved the accuracy of BMD estimates in the vicinity of metal implants, in particular for 

large, multi-component constructs representative of fracture fixation hardware. The 

reduction in NRMSE of the estimated calcium concentrations was 20%−80%, depending on 

the nominal density of a region and the complexity of the metal component. Overall, KC-

MBMD achieved comparable BMD accuracy in the presence of metal as conventional 

MBMD of a metal-free phantom.

In conventional DE CT, material decomposition alone has been shown to achieve some 

degree of metal artifact reduction (Bamberg et al 2011, Yu et al 2012, Schmidt et al 2020), 

often by representing the metal using a base material with high atomic number (e.g., 

Calcium) to account for beam hardening. Our results indicate that MBMD is indeed able to 

gradually reduce some of the metal artifacts in the smaller implants. However, KC-MBMD 

produces images with much fewer streaks, less ‘blooming’, and lower NRMSE. Importantly, 

artifact mitigation is achieved with far fewer iterations than in MBMD. The KC approach 

may be particularly advantageous for complex components, where beam hardening is not the 

dominant source of artifacts, but where the missing data – which is partly ‘filled in’ by the 

KC model – plays a substantial role.

The performance of KC reconstruction is partly determined by the accuracy of the 

underlying component model. To quantify this dependency, we examined the accuracy of 

KC-MBMD as a function of controlled under- and overestimation of implant dimensions. 

KC-based reconstruction was found to be fairly robust to models that underestimated the 

component size. In this setting, the algorithm can partly recover the missing implant 

information through direct material decomposition using the Ca basis to account for metal. 

In contrast, when the size of the component is overestimated, the erroneous metal voxels 

extending beyond implant boundary are fixed in the KC model. The reconstruction cannot 

adjust their composition, resulting in irreparable biases in the data fidelity term that lead to 

artifacts even for small shape mismatches and simple implant configurations. To achieve 

more robust performance in the presence of component model mismatches, ongoing work 

investigates incorporating ‘soft’ metal boundaries (Zhang et al 2017). In this approach, the 

algorithm is able to update the voxels on the implant-background interface, possibly using a 

different set of basis functions than elsewhere in the object (i.e. water and metal or Ca and 

metal). The accuracy of the KC model at the component boundary can be further enhanced 

by applying a finely discretized voxel grid in and around the implant using a multiresolution 

reconstruction framework (Stayman et al 2013, Cao et al 2016, Xu et al 2017) to maintain 

computational efficiency.

In this investigation, the poses and locations of metal components were assumed to be 

known to better isolate the effects of the KC-augmented data fidelity term on quantitative 

performance of MBMD. In practice, the implant positions are obtained from 3D-2D 

registration using projection-based similarity metrics. Our previous work (Cao et al 2019a, 

Liu et al 2020, Uneri et al 2015, 2017, 2019, Zhang et al 2019) has shown that such 

registration is typically accurate to ≤0.2 mm owing to the strong contrast of metal in the 

projections. We anticipate that such errors will not change the conclusions of this study 
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regarding the relative performance of MBMD and KC-MBMD. To mitigate the effects of 

residual misregistration, similar approaches as those discussed for mismatched implant 

models – e.g. ‘soft’ metal boundaries – will be investigated in future studies. Ongoing work 

also includes evaluation of KC-MBMD incorporating recently developed 3D-2D registration 

algorithms that estimate not only the pose, but also the deformation of the implants – for 

example, due to weight-bearing on the fractured extremity (Liu et al 2020).

One of the primary advantages of MBMD and KC-MBMD lies in the ability to perform 

projection-based DE decomposition in configurations without coinciding LE and HE 

projection rays. Here we demonstrated this approach in application to a unique multi-source 

acquisition pattern with three vertically arranged tubes operating at different energies. 

Conventionally, DE decomposition for this geometry would be performed using an image-

domain method. However, image-domain decomposition does not inherently account for 

beam hardening. It is also potentially more prone to sampling artifacts than MBMD, which 

jointly considers the LE and HE projection channels. In the context of MBMD without 

metal, previous work (Tilley et al 2018, 2019) has compared its performance to 

monoenergetic IDD (i.e. IDD of monoenergetic single-channel reconstructions) and found 

improved accuracy with MBMD (NRMSEs of material concentration as much as 75% lower 

by MBMD compared to IDD). In the presence of metal, the KC approach could be 

incorporated in the single-channel reconstructions of IDD (KC-IDD). However, this would 

only mitigate metal artifacts and thus the quantitative accuracy would likely remain worse 

than KC-MBMD. The performance of KC-IDD could be improved by applying 

polyenergetic pre-corrections or polyenergetic model-based reconstruction (Elbakri and 

Fessler 2003b, Zbijewski et al 2012, Xu et al 2017) to each spectral channel. However, such 

methods require a priori assumptions on the energy-dependent attenuation in the object (e.g. 

a distribution of bone voxels obtained from an initial reconstruction). In comparison, KC-

MBMD provides a more direct approach for DE decomposition.

This paper limited its investigations to a study of fundamental performance characteristics of 

KC-MBMD – specifically, algorithm convergence, sensitivity to component model 

mismatches, and the potential for improved quantitative accuracy compared to MBMD. 

These properties were easier to precisely characterize in simulated data, where the phantom 

ground truth was available and the confounding effects of x-ray scatter, detector non-

idealities (glare and lag), and (possible) component mis-registrations were minimized. To 

achieve clinical translation, the ongoing work is investigating the application of KC-MBMD 

to real DE data obtained on a clinical extremity CBCT unit. These studies require additional 

calibrations, modeling, and performance analyses to incorporate advanced scatter, lag, and 

glare corrections (Sisniega et al 2015), high-fidelity detector modelling (Tilley et al 2017), 

and 3D-2D registration techniques (Cao et al 2019a, Liu et al 2020, Uneri et al 2015, 2017, 

2019, Zhang et al 2019) in KC-MBMD. The results of this investigation will be reported in 

future publications.

We presented a model-based DE decomposition algorithm incorporating the KC framework 

to account for metal hardware. Simulation studies indicate that this approach might enable 

accurate Ca concentration measurements in bone regions adjacent to orthopedic implants. 

Ongoing work involves the application of this capability in noninvasive monitoring of 
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fracture healing using weight-bearing CBCT, as well as experimental validation of KC-

MBMD and a linearly constrained version of the algorithm to enable three-material 

decomposition from DE data (Liu et al 2020).
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Figure 1. 
(A) The extremity CBCT system in a weight-bearing configuration. The scanner utilizes a 

three-source x-ray unit that enables single-scan DE imaging (source and detector rotate 

inside the gantry marked with a dashed box). (B) Geometry of the multisource x-ray unit. 

The DE protocol considered here involves the peripheral sources (S1 and S3) operated at 

low kV (LE) and the central source (S2) operated at high kV (HE). Sources fire in a 

sequential pattern; the area indicated by the darkest triangle is sampled by all three beams. 

Imaging performance is assessed in a multi-material insert (see Sec. 2.2.1 and Sec. 2.2.2) 

represented by the dark inner cylinder (metal hardware is marked in green); the insert is 

completely within the area illuminated by all three beams.
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Figure 2. 
Flowchart of the optimization approach used in KC-MBMD; z represents the iteration count 

(Z iterations in total), ℒ and ℛ denote the separable parabolic surrogates of the data fidelity 

and penalty terms at each iteration, respectively. Ordered subsets and momentum-based 

acceleration are omitted for clarity. The implant registration parameters are assumed to be 

pre-computed using e.g. 3D-2D registration. The registration could be refined during the 

reconstruction (Stayman et al 2012); such refinement is also omitted from the flowchart for 

clarity.
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Figure 3. 
Central axial and coronal views of the digital extremity phantom consisting of a water 

cylinder, a multi-material insert containing calcium-water mixtures at varying 

concentrations, and a cylindrical core made of fat. Each column presents a map of local 

concentrations of one base material. Phantom dimensions are marked on the water 

concentration map. Phantom orientation relative to the CBCT geometry of Fig. 1 is shown in 

the fat concentration map.
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Figure 4. 
Volume renderings of the simulated implants. (A) Internal fixation plate with three mounting 

screws (after assembly and a view of individual components). (B) Intramedullary nail with 

screws.
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Figure 5. 
Definitions of five scenarios for measurement of Ca concentration error, from left to right: 

plate (P), nail (N), screw (S), plate and screw (P+S), and nail with screw (N+S). In each 

scenario, errors are obtained in the ROIs indicated by the gray / pattern background.
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Figure 6. 
Composite monoenergetic images (90 kV) of Ca-water decompositions obtained with 

MBMD (first, second and fourth columns) and KC-MBMD (third and fifth columns). Both 

methods jointly consider LE and HE projections during the decomposition. The green color 

highlights the implant model in KC-MBMD. Two axial views (at level 3 and 6 of the multi-

material insert) and the central sagittal coronal views are shown for each decomposition.
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Figure 7. 
NRMSEs of Ca concentrations for (A) MBMD in scenarios involving simple implant 

assemblies (P, N and S), (B) MBMD and complex implant assemblies (P+S and N+S), (C) 

KC-MBMD and simple implant assemblies, and (D) KC-MBMD and complex implant 

assemblies. Markers and error bars denote means and standard deviations of slice NRMSEs 

for each Water-Ca sector. Green dotted lines represent MBMD of a phantom without metal. 

The plots in the insets use a magnified vertical axis to emphasize the differences in KC-

MBMD performance across the metal configurations.
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Figure 8. 
Convergence of Ca concentration error for MBMD and KC-MBMD of the phantom with the 

plate construct. Composite monoenergetic reconstructions at 50 and 200 iterations 

(compared to 400 iterations in Fig. 6 and Fig. 7) are shown in (A) for MBMD and in (B) for 

KC-MBMD. Mean (solid/dotted line) NRMSEs (across all Ca ROIs) with cross-slice 

standard deviations (error bars) at selected iterations for the two methods are plotted as a 

function of the iteration number in (C).
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Figure 9. 
The performance of KC-MBMD using purposely eroded/dilated models of the plate implant 

assembly. (A) Composite monoenergetic images (90 keV) of Ca-water decompositions. The 

absolute values of KC model mismatch represent the radius of the spherical element used for 

erosion (positive sign) or dilation (negative sign). (B) The mean (markers) and cross-slice 

standard deviation (error bars) of NRMSEs of Ca concentration estimates obtained using 

eroded and dilated models. Three implant configurations were considered: P, S and P+S.
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Table 1.

Summary of mathematical notations. Dimensions are provided for vector and matrix variables.

Variable Description Unit Dimension

N Number of image voxels — —

E Number of energy bins — —

Ω Number of known components — —

Κ Number of base materials — —

ρc, ω Density vector for the ωth known component g/mm3 N × 1

μc, ω (ϵ) Mass attenuation for the ωth known component at energy ϵ mm2/g —

mc, ω Binary mask vector for the ωth known component — N × 1

λc, ω Registration parameter vector for the ωth known component — —

F λc, ω Registration for the ωth known component — —

ρb, κ Density vector for the κth base material after masking g/mm3 N × 1

ρ ∗ , κ Density vector for the κth base material before masking g/mm3 N × 1

ρ∗ Concatenated density vector for all base materials g/mm3 (Κ ∙ N) × 1

μb, κ (ϵ) Mass attenuation for the κth base material at energy ϵ mm2/g —

Ai System matrix for the ith ray mm 1 × N

si(ϵ) System spectral response for the ith ray at energy ϵ photon/kV —

Mi Matrix operator to compute energy-dependent base material line integrals mm3/g E × (Κ ∙ N)

Bi Matrix operator to applies the spectral response photon 1 × E

D{∙} Diagonalization operator — —

D ⋅ Block diagonalization operator — —

[ ⋅ ]T Block transpose operator — —
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Table 2.

Dimensions of the plate, nail and screws. Both the plate and nail are slightly longer than the height of the Ca-

water mixture insert.

Metal Component Length (mm) Width (mm) Thickness (mm) Diameter (mm)

Plate 80.0 16.0 4.5 N.A.

Nail 80.0 N.A. 3.0 7.5 (outer); 4.5 (inner)

Screw(s) 16.0 (body); 3.5 (head) N.A. N.A. 3.0 (body); 4.0 (thread)

Phys Med Biol. Author manuscript; available in PMC 2021 December 22.


	Abstract
	Introduction
	Methods
	Known-Component Model-Based Material Decomposition (KC-MBMD)
	Forward Model
	Objective Function

	Validation Studies
	Digital Multi-Tissue Phantom
	Metal Implants
	System Model and Dual Energy Acquisition Protocol
	Reconstruction Methods and Settings

	Robustness to Mismatches of Known-Component Model
	Performance Metrics

	Results
	Image Quality in Base Material Reconstructions
	Quantitative Accuracy and Convergence
	Robustness to Known-Component Model Mismatch

	Discussion and Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Table 1.
	Table 2.

