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Abstract

Magnetic field inhomogeneity estimation is important in some types of magnetic resonance 

imaging (MRI), including field-corrected reconstruction for fast MRI with long readout times, and 

chemical shift based water-fat imaging. Regularized field map estimation methods that account for 

phase wrapping and noise involve nonconvex cost functions that require iterative algorithms. Most 

existing minimization techniques were computationally or memory intensive for 3D datasets, and 

are designed for single-coil MRI. This paper considers 3D MRI with optional consideration of coil 

sensitivity, and addresses the multi-echo field map estimation and water-fat imaging problem. Our 

efficient algorithm uses a preconditioned nonlinear conjugate gradient method based on an 

incomplete Cholesky factorization of the Hessian of the cost function, along with a monotonic line 

search. Numerical experiments show the computational advantage of the proposed algorithm over 

state-of-the-art methods with similar memory requirements.
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I. Introduction

In magnetic resonance imaging (MRI), scans with long readout times require correction for 

magnetic field inhomogeneity during reconstruction to avoid artifacts [1]-[5]. Field 

inhomogeneity is also a nuisance parameter in chemical shift based water-fat imaging 

techniques [6]-[11]. Field map estimation is thus crucial to field-corrected MR image 

reconstruction, and for fat and water image separation.

One field map estimation approach is to acquire MR scans at multiple echo times (usually 2 

or 3), where a small echo time difference can help resolve any phase wrapping issues and a 

large echo time difference can help improve SNR. One can then estimate field 

inhomogeneity using images reconstructed from these scans [5]. Since field maps tend to be 

smooth within tissue, estimation methods with smoothness assumptions have been proposed 
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for water-fat separation, including region growing techniques [12]-[17], filtering [18], curve 

fitting [19]-[21], multiresolution and subspace approaches [21]-[24], and graph cut 

algorithms [25]. To improve robustness of water and fat separation and reduce ambiguity of 

assignment, field map preestimation methods such as demodulation [26] and magnetization 

transfer [27] have been proposed as part of the water-fat imaging framework. Most of these 

methods, however, use various approximations to account for phase wrapping between 

different acquisitions. In contrast, regularized estimation methods [5],[8]-[10] have been 

proposed to account for both phase wrapping and the smoothness of the field map from 

multiple acquisition images. Because the field map affects image phase, these approaches 

involve a nonconvex optimization problem that requires iterative methods.

To solve such optimization problems, [5],[9],[28] use a majorization-minimization (MM) 

approach by introducing a quadratic majorizer for their cost functions. The MM approach 

decreases the cost monotonically, but is computationally intensive, especially for large-scale 

datasets. Other regularized field map estimation minimization techniques quantize the 

solution space [8],[10] and may require a second descent algorithm to produce sufficiently 

smooth estimates. An alternative minimization technique [29] uses nonlinear conjugate 

gradient (NCG) with a monotonic line search (MLS), and explored various preconditioners 

in the 3D single-coil case.

This paper considers the regularized field map estimation problem in the 3D multi-coil MRI 

setting. In particular, we consider a generalized cost function in the multi-coil case for both 

multi-echo field map estimation and water-fat imaging. We minimize it by a NCG algorithm 

with an efficient MLS and an iteration-dependent preconditioner based on an incomplete 

Cholesky factorization [30] of the Hessian of the cost function. The incomplete Cholesky 

factorization has been applied to field inhomogeneity estimation using surface fitting [31], 

and recently to single-coil field map estimation with a similar cost function [29]. In addition 

to faster convergence, this preconditioner exploits the sparse structure of the Hessian, thus it 

is memory efficient and scales to 3D datasets. Compared to previous works [9],[28],[29], our 

new approach unifies the field map correction and the water-fat imaging problems, with a 

generalized expression that optionally considers multiple coils in MRI. Our efficient 

algorithm on this problem shows significant computational and storage advantages 

compared with existing MM and NCG methods.

The rest of this paper is organized as follows. Section II describes the optimization problem 

for the field map estimation problems for multi-coil MRI. Section III presents the NCG-

MLS optimization scheme with the proposed preconditioner. Section IV reports simulated 

and real experimental results, followed by conclusions in Section V.

II. Problem Formulation

We are given reconstructed images ycl ∈ ℂNv for the cth receiver coil of the lth scan, with c 

= 1, … , Nc, l = 1,…, L, where Nv denotes the total number of voxels in the image, Nc 

denotes the number of coils, and L ≥ 2 denotes the number of echo times. We model the 

field inhomogeneity effect as
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yclj = eiωjtlscjxlj + ϵclj, (1)

where j = 1, …, Nv is the voxel index, ω ∈ ℝNv is the unknown field map, tl ∈ ℝ is the echo 

time shift of the lth scan, sc ∈ ℂNv is the (known) coil sensitivity map for the cth coil, and 

ϵcl ∈ ℂNv denotes the noise. For single-coil MRI, or when the coil images are combined as a 

preprocessing step, we have Nc = 1 and s = 1 in (1).

The unknown image xl ∈ ℂNv for the lth echo is problem-dependent, where

xlj =

mj in field map estimation,

mw, j + mf, j ∑
p = 1

P
αpei2πΔf, ptl in water‐fat imaging,

where m, mw, mf ∈ ℂNv are respectively the magnetization, water, and fat components, and 

Δf, p ∈ ℝ denotes the (known) frequency shifts of P fat peaks in the multipeak fat model 

[32],[33],[10] with relative amplitudes ∑p = 1
P αp = 1 that can be estimated and averaged over 

all fat pixels as a preprocessing step by existing methods [34]. The goal of the field map 

estimation problem is to estimate ω and x given y and s.

Assuming the noise ϵ is zero-mean, white complex Gaussian, the joint maximum-likelihood 

(ML) estimates of the field map ω and image x are the minimizers of the negative log-

likelihood as follows:

argmin
ω, x

Φ(ω, x), where

Φ(ω, x) = ∑
j = 1

Nv
∑
l = 1

L
∑

c = 1

Nc
∣ yclj − eiωjtlscjxlj ∣2 .

(2)

For a given field map ω, the ML estimate of x has a closed-form expression [8],[28] that one 

can substitute into (2) to give a cost function in terms of ω:

Φ(ω) = min
x

Φ(ω, x) = ∑
j = 1

Nv
∑

m, n = 1

L
∑

c, d = 1

Nc
ϕcdmnj(ωj), (3)

where

ϕcdmnj(ωj) ≔ ∣ rcdmnj ∣ 1 − cos ∠rcdmnj + ωj(tm − tn) ,
rcdmnj ≔ Γmn

∑c′ = 1
Nc ∣ sc′j ∣2

scjsdj
∗ ycmj∗ ydnj,

Γ ≔ γ(γ∗γ)−1γ∗,

(4)
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where ·* denotes the complex conjugate, and L × L matrix Γ is defined in terms of

γ =
1 in field map estimation,

1 ∑
p = 1

P
αpei2πΔf, pt in water‐fat imaging, (5)

in which 1 denotes an all one vector of length L, and the exponential is applied element-

wise. In the field map estimation case, this simplifies to Γmn = 1/L ∀ m, n.

As B0 field maps tend to be spatially smooth in MRI, we add a regularization term to (3) to 

form a penalized-likelihood (PL) cost function

Ψ(ω) = Φ(ω) + β
2‖Cω‖2

2, (6)

where C is a first or second order finite difference operator with optional spatial weights as 

in [10]. Such regularization has been used in many other prior works [5],[28],[29].

III. Efficient Algorithm

Several approaches have been proposed to solve the field map estimation problem in the 

single-coil setting, but are demanding in computation or memory. In particular, a quadratic 

majorizer with a diagonal Hessian [5] takes many iterations to converge even for 2D images, 

and a quadratic majorizer with an optimal curvature that inverts a Nv × Nv Hessian matrix 

[28] is memory-limited to small-scale data. In water-fat imaging, [10],[35] process data in a 

single-coil manner using the graph cut method. Since graph cut requires discretization, [10] 

proposes to overcome this limitation by additionally running a descent algorithm such as in 

[9], which considers a quadratic majorizer with a diagonal Hessian that convergences slowly.

Here, we optimize (6) using NCG with a monotonic line search [29], and consider a 

preconditioner with efficient computation and memory storage. Our field map estimation 

procedure is tabulated in the Algorithm below. For NCG, we choose the Polak-Ribiere 

update to compute a μi that satisfies the conjugacy condition [36].

After estimating the field map ω, we estimate the water and fat components for each voxel in 

water-fat imaging by applying the closed-form expression [8] using ω:

mw, j
mf, j

= γ ⋅ diag(eiωjt) ⊗ sj
†yj , (7)

where ⊗ denotes the Kronecker product, (·)† denotes the pseudo inverse, and sj ∈ ℂNc

denotes the coil sensitivity map for the jth voxel.

Next we present our initialization, choice of preconditioner, and derive our iterative 

monotone line search algorithm in the multi-coil setting.
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A. Initialization

For field map estimation, we initialize ω by a field map computed from the phase of the first 

two echoes of the coil combined images:

(ωj)0 = ∠ ∑
c = 1

Nc
scj∗ yc1j

∗

∑
d = 1

Nc
sdj

∗ yd2j / (t2 − t1) . (8)

To initialize ω for water-fat imaging, we follow [9] and sweep through a range of 100 values 

from −∣Δf/2∣ to ∣Δf/2∣ for each voxel, and choose the value with minimal cost (3), denoted as 

ω0. We then run a few CG iterations to minimize a penalized weighted least squares (PWLS) 

problem

ω0 = argmin
ω

∑
j = 1

Nv
ρj(ωj − ωj

0)2 + β
2‖Cω‖2

2, (9)

where the spatial weights

ρj = ∑
m, n = 1

L
∑

c, d = 1

Nc
∣ rcdmnj ∣

are given by (4). We then use ω0 as our initial estimate in the water-fat case.

To reduce ambiguity of water and fat assignment, one can also consider robust initialization 

schemes such as demodulation [26] or magnetization transfer [27].

B. Preconditioning matrices

To accelerate the NCG-based algorithm, given gradient gi of the cost at the ith NCG 

iteration, we explore a preconditioner Pi with memory efficient implementation of (Pi)−1gi 

using an incomplete Cholesky factorization [30]. In particular, the gradient g ∈ ℝNv is given 

by

g = ∇Ψ(ω) = ∇Φ(ω) + βCTCω, (10)

where

(∇Φ(ω))j = ∑
m, n = 1

L
∑

c, d = 1

Nc
∣ rcdmnj ∣ (tm − tn)2

⋅ sin ∠rcdmnj + ω(tm − tn) .

The Hessian of the cost (6) at the ith iteration is the sum of a diagonal matrix and an 

(approximately, due to the support mask) block Toeplitz with Toeplitz block (BTTB) matrix:
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Hi = Di + βCTC ∈ ℝNv × Nv, (11)

where C is the finite difference operation and Di = diag(dj
i) ≻ 0, where the Hessian of the 

negative log-likelihood has diagonal elements given by

dj
i = ∑

m, n = 1

L
∑

c, d = 1

Nc
κcdmnj ucdmnj(ωji) , (12)

with

κcdmnj(u) = ∣ rcdmnj ∣ (tm − tn)2sin(u)
u , and

ucdmnj(ω) = ∠rcdmnj + ω(tm − tn) modπ .
(13)

Since the terms rcdmnj and tm – tn are shared across iterations, we precompute them at the 

initialization stage to efficiently calculate the gradient and Hessian at each iteration i. Note 

also that Hi is positive definite as long as at least one value of dj
i is positive (which is true for 

any nontrivial problem).

Although Hi is sparse and banded, its inverse is approximately full, so directly computing 

the inverse would require far too much memory. To reduce memory, we propose to use a 

preconditioner that approximates the symmetric Hessian with a LU factorization of the form

P i = Li(Li)T ≈ Hi, (14)

where Li ∈ ℝNv × Nv is sparse lower triangular, enabling efficient computation (via back-

substitution) of (Pi)−1gi in the precondition step. Taking advantage of the sparsity and 

positive definiteness of our Hessian (11), preconditioning with an incomplete Cholesky 

factorization reduces both computation and memory. A popular form of the incomplete 

Cholesky factorization matches the matrix H on its nonzero set, thus is at least as sparse as 

H. Similar preconditioning with incomplete LU factorization has been used for simulating 

anisotropic diffusion in MRI [37]. In practice, for a better approximation one can control the 

sparsity of the factors by defining a tolerance on the magnitude of the elements of H (below 

which entries in the factors are set to zero), with the trade-off between approximation 

accuracy and memory storage.

Fig. 1 illustrates the memory improvement by a toy problem of image size 20×16×8, where 

we compute H = D+βC⊤ C and its inverse, with randomly chosen diagonal elements dj ∈ (0, 

0.1) and β = 0.1. Fig. 1 considers the incomplete Cholesky factorization without tolerance, 

denoted L0, and with a tolerance of Hmax × 10−3, denoted Lt, where Hmax is the element in 

H with maximum magnitude. Fig. 1 shows the sparse structure of H, its nonsparse inverse H
−1, and the Cholesky factorizations as well as their approximation errors. Table I shows the 

number of nonzero elements of each matrix, their memory storage, and their errors that 

affect the convergence rate, using the normalized root mean square error (NRMSE) 
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‖I − L−1HL−T‖F ∕ Nv for each factorization L in our example. Fig. 2 illustrates how the 

sparsity of Lt changes with respect to its tolerance by showing the percentage of nonzero 

elements in Lt versus the scaling factor of Hmax in the tolerance.

For memory storage in this case, the number of nonzero elements in the incomplete 

Cholesky factor without tolerance L0 is more than 70 times less than that in the (complete) 

Cholesky factor Lc, with more than 40 times memory saving. In general, we observe (by the 

banded structures) that the number of nonzero elements of Lc is lower bounded by (Nv – 

NxNy) * NxNy, while that of L0 is upper bounded by 4Nv. This leads to the generalization 

that L0 is at least (Nv – NxNy)/(4Nz) times more sparse than Lc, which scales significantly 

with the problem size. The storage of the incomplete Cholesky factor with tolerance Lt 

depends on the tolerance, and with the choice of tolerance here we observe a 40 times fewer 

nonzero values, saving memory by a factor of more than 20 compared with Lc.

The trade-off with a sparser factorization, however, is a worse approximation error. This is 

reflected in the error matrices in Fig. 1 and the NRMSE in Table I. While L0 has lower 

memory usage than Lt, the inverse is a worse approximation to H−1. In practice, 

nevertheless, both incomplete factorizations LL⊤ are positive definite, so as preconditioners 

they provide a descent direction in addition to storage advantage, whereas storing Lc is 

infeasible for realistically sized 3D datasets.

C. Monotonic step size line search

With a search direction given by NCG, the choice of step size is important for convergence 

of the algorithm. To avoid multiple function evaluations required by backtracking line search 

algorithms [38], we implement a recursive line search algorithm using a quadratic majorizer 

with an optimal curvature, which guarantees monotone decrease of the cost function [39].

In the line search step, given a current field map estimate ωi and a search direction zi ∈ ℝNv, 

we aim to find a step size that minimizes the cost (6):

α = argmin
α

f(α), where

f(α) = Φ(ωi + αzi) + β
2‖C(ωi + αzi)‖2

2,
(15)

We iteratively minimize the nonconvex problem (15) using a quadratic majorizer based on 

Huber’s method [40, p. 184] at the kth inner iteration (dropping outer iteration i for brevity):

qk(α) = Φ(ω + α(k)z)
+ zT∇Φ(ω + α(k)z)(α − α(k))
+ 1

2d(k)(α − α(k))2 + β
2‖C(ω + αz)‖2

2,

where the optimal curvature is given by [28]
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d(k) = ∑
j = 1

Nv
∣ zj ∣2 dj

(k), where

Algorithm: Preconditioned NCG-MLS

Inputs:
y, s, t, C, β

Intialization:
ω0 by (8) or (9)
z0 = − ∇Ψ(ω0)
α0 = 0
precompute rcdmnj by (4) and tm − tn

for i = 0, 1, …, N − 1 do
compute gradient gi = ∇Ψ(ωi) with (10)

precondition pi = (Pi)−1gi with (14)
compute μi with conjugacy

search direction zi + 1 = pi + μizi ∈ ℝNv
for k = 0, 1, …, Ni − 1 do

update step size α(k + 1) by (17)
end for

update ωi + 1 = ωi + α(Ni)zi + 1
end for
output:ωN

dj
(k) = ∑

m, n = 1

L
∑

c, d = 1

Nc
κcdmnj ucdmnj(ωj + α(k)zj) , (16)

with κcdmnj(·) and ucdmnj(·) defined in (13).

Using one step of Newton’s method on the quadratic majorizer qk(α) gives the step size 

update

α(k + 1) = α(k) −
∂

∂α qk(α(k))
∂2

∂α2 qk(α(k))

= α(k) −
∂

∂α f(α(k))
d(k) + β‖Cz‖2

2 .

(17)
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We implement (17) efficiently by computing ‖Cz‖2
2 only once per outer NCG iteration i. 

Since the majorizer satisfies qk(α) ≥ f(α) for all step size α and inner line search iteration k, 

the update (17) guarantees monotonic decrease of the cost (15).

IV. Results

We investigated our algorithm and its efficiency with two multi-echo field map estimation 

experiments and two water-fat imaging experiments. Due to the large data size, memory 

intensive methods with a direct solver using the full Hessian are excluded from our 

experiments. In particular, we compare our incomplete Cholesky preconditioner (NCG-

MLS-IC) method versus a quadratic majorizer update with diagonal Hessian (QM) [5] and 

versus the NCG algorithm without any preconditioner (NCG-MLS) and with a diagonal 

preconditioner (NCG-MLS-D) [28]. In addition, we used the Poblano toolbox [41] to 

compare the convergence of the quasi-Newton (QN) and truncated Newton (TN) methods in 

our simulations.

For each dataset, we define a mask using the convex hull of all voxels that contribute to the 

signal (with coil-combined image magnitude thresholded below by 0.1ymax, where ymax 

denotes the maximum image magnitude in the coil-combined image for the first echo time.), 

with a dilation of two voxels. We then computed ω within the mask, and tuned the 

regularization parameter β by sweeping across a range of values. All our experiments used 

MATLAB R2020a, with a 2.4-GHz dual-core Intel Core i7. The MATLAB code that 

reproduces the experiments with our efficient algorithm will be available as part of the 

Michigan Image Reconstruction Toolbox (MIRT) [42].

A. Brain Simulation

We first simulated a 3D brain dataset with 40 64 × 64 slices, 4 simulated coils and 3 echo 

times tl = 0, 2, 10 ms, with added complex Gaussian noise so that the SNR ≈ 20 dB. To 

generate multi-coil data, we simulated coil sensitivity maps with 4 coils based on [43] using 

the MIRT. We set β = 2−4 with first order regularization to achieve visual resemblance to the 

ground truth field map. In light of the trade-off between storage and approximation error 

discussed in Section III-B, we explored preconditioners using the incomplete Cholesky 

factorization both without tolerance (NCG-MLS-IC-0) and with a tolerance of Hmax
i × 10−3

for each iteration i (NCG-MLS-IC).

Fig. 3 shows four selected slices, their initial field map, and the regularized estimate by our 

algorithm. To examine the speed of convergence, we plot the root mean square error 

(RMSE) ‖ωi − ωtrue‖2 ∕ Nv versus wall time in Fig. 4. The RMSE plots show that the QM 

and all the NCG-MLS methods converge to RMSE ≈ 5.6 Hz, though going through a 

slightly lower RMSE in the iterative process. Both the quasi-Newton and the truncated 

Newton methods converge to minimizers with higher RMSE, hence we omitted their 

comparison in the phantom experiment below. The plots show a significant computational 

gain of NCG-MLS preconditioned with the incomplete Cholesky factorization over all the 

other methods. We also observe that using a nonzero tolerance in the incomplete Cholesky 
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factorization gives a slightly faster convergence than not using one, hence we adopt that 

choice for the NCG-MLS-IC implementations in our next experiments.

B. Phantom Dataset

Our second experiment uses a Function Biomedical Informatics Research Network (FBIRN) 

phantom [44] with two pieces of metal staple to induce field inhomogeneity, collected on a 

GE MR750 3T scanner with a 32-channel Nova Head Coil receiver. This dataset has size 74 

× 74 × 10 with 3 mm3 isotropic voxel size, TR = 10.5 ms, with 3 echo times tl = 0, 1, 2.3 ms. 

We computed coil sensitivity maps using ESPIRiT [45], and set β = 2−3 with first-order 

finite difference regularizaiton.

Fig. 5 shows four selected slices, their initial field map, and the regularized estimate by our 

algorithm. To compare convergence, we computed the root mean square difference (RMSD) 

‖ωi − ω∞‖2 ∕ Nv to the converged ω∞ of the QM method. The RMSD plots in Fig. 6 show 

that our algorithm converges much faster than the other three, reaching 0.33 Hz RMSD in 1 

iteration, and 0.005 Hz RMSD in 2 iterations. Since this 3D dataset has a more realistic 

problem size than the simulated data, we quantify the convergence speedup by comparing 

the time it takes for each method to reach an RMSD below 0.5 Hz. Table II shows that our 

NCG-MLS algorithm with an incomplete Cholesky preconditioner provides a speedup of 15 

times from NCG-MLS with a diagonal preconditioner, 18 times from that without a 

preconditioner, and 21 times from the quadratic majorizer implementation.

C. Cardiac Water-Fat Simulation

For water-fat imaging, we first performed a cardiac simulation based on one of the 8-echo 

datasets used in the ISMRM Fat-Water Toolbox [46]. Since implementations in the toolbox 

work only for 2D datasets, and coil combination such as [47] is often used in practice, we 

illustrate the flexibility of our algorithm in a 2D coil-combined case by simply setting the 

number of coils Nc = 1 and the coil sensitivitiy map s = 1. We also consider the multipeak 

model in water-fat imaging.

This dataset has size 256 × 192 with 8 echo times from 1.5 to 17.4 ms (each 2.3 ms apart). 

We generated ground truth field map and water and fat images using golden section search 

with multiresolution [22]. We used the same values {αp} and {Δf,p} as in the toolbox 

implementations both for simulating images with 8 echo times using the model (1) and for 

estimation. For comparison, we also ran the graph cut (GC) method [10] using the same cost 

(6) with second-order finite differences as in [10], and β = 2−7 as the regularization 

parameter.

Fig. 7 shows the first echo image, the initial field map ω0 by voxel-wise estimation, and the 

initial ω0 after 10 CG iterations of PWLS minimization (9). Fig. 8 shows the ground truth 

field map, water and fat images, and the estimates and error images by the graph cut and by 

our algorithm. Compared with graph cut, our algorithm achieves slightly lower NRMSE on 

the water image (20.09% vs. 23.57%) and the fat image (20.93% vs. 23.43%), with lower 

final RMSE on the field map, shown in Fig. 9. To explore a combination suggested by [10], 

we ran 100 graph cut iterations followed by 100 optimal transfer iterations using a quadratic 
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majorizer [9]. We used the implementation in the toolbox [46] which did not precompute 

rcdmnj by (4). Fig. 9 shows the graph cut RMSE curve jumps up (to 615 Hz) on its first 

iteration, and converges to its own minimizer. The subsequent quadratic majorizer update 

lowers the RMSE further, which opens a promising future direction of combining graph cut 

with the faster NCG-MLS-IC with precomputation of common terms. Fig. 9 also shows the 

truncated Newton and quasi-Newton methods again converge to their minimizers with 

higher RMSE. We omitted all methods with higher RMSE in the real data experiment below.

D. Ankle Water-Fat Dataset

We further illustrate our algorithm in the 3D multi-coil setting using an ankle dataset from 

the ISMRM Fat-Water Separation Dataset [46]. This dataset has 4 256 × 256 slices, 8 coils 

and 3 echo times tl = 2.2, 3, 3.8 ms, in a 3T scanner that corresponds to a single Δf ≈ 440 

Hz. We chose β = 2−10 with first-order finite difference regularization to achieve visual 

separation of water and fat components.

Fig. 10 shows the first echo image, the initial field map ω0 by voxel-wise estimation, the 

initial ω0 after 10 CG iterations of PWLS minimization (9), and the regularized estimate by 

our algorithm. For completeness, Fig. 10 also shows the estimated water and fat images 

using (7), which achieve a visual separation of the two components. However, it is worth 

emphasizing that our main interest is in the speed of finding a minimizer of the problem (6). 

In this case, since QM converged to a different local minimum than the other three methods, 

we computed the RMSD to ω∞ of the NCG-MLS method (without preconditioner). The 

RMSD plots in Fig. 11 show a significant computational gain of our algorithm over the other 

algorithms.

V. Conclusion

This paper presents an efficient algorithm for both multi-echo field map estimation and 

water-fat imaging problem in the 3D multi-coil MRI setting. Given the nonconvex cost 

function, our algorithm uses the nonlinear conjugate gradient method with a preconditioner 

based on an incomplete Cholesky factorization, and a monotonic step size line search based 

on a quadratic majorizer with optimal curvatures. This is the first work to use the incomplete 

Cholesky factorization as a preconditioner for multi-coil field map estimation. Experiments 

with simulation and real data show that our method has faster convergence than existing 

memory-efficient methods.
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Fig. 1. 
Matrix structure of each factorization and the error of its inverse, in a toy problem of size 20 

× 16 × 8.
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Fig. 2. 
Change of sparsity of Lt with respect to the scaling factor of Hmax in its tolerance.
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Fig. 3. 
Top to bottom: selected slices of coil-combined simulation image, initial field map (in Hz), 

regularized field map estimate ω, ground truth field map ωtrue, and error ∣ ω − ωtrue ∣.
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Fig. 4. 
RMSE versus wall time of seven algorithms used in simulation. Every 10 iteration is marked 

by a dot.
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Fig. 5. 
Top to bottom: selected slices of coil-combined phantom image, initial field map (in Hz), 

and regularized field map estimate.
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Fig. 6. 
RMSD versus wall time of four algorithms used in the phantom experiment. Every iteration 

is marked by a dot.
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Fig. 7. 

Left to right: simulated image for the 1st echo, initial field map ω0 (in Hz) by voxel-wise 

estimation, and initial fieldmap ω0 by PWLS (9).
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Fig. 8. 
1st row: ground truth field map, water, and fat images. 2nd and 3rd row: graph cut estimates 

and their error images. 4th and 5th row: NCG-MLS-IC estimates and their error images.
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Fig. 9. 
Field map RMSE versus wall time of seven algorithms used in the water-fat simulation. 

Every 20 iterations is marked by a dot.
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Fig. 10. 

Top to bottom: coil-combined water-fat image for the 1st echo, initial field map ω0 (in Hz) 

by voxel-wise estimation, initial fieldmap ω0 by PWLS (9), regularized field map estimate, 

estimated water image, and estimated fat image.
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Fig. 11. 
Field map RMSD versus wall time of four algorithms used in the water-fat experiment. 

Every iteration is marked by a dot.
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Table I.

Number of nonzero elements, memory usage, and NRMSE of the inverse of each factorization in a toy 

problem of size 20 × 16 × 8.

H H−1 Lc Lt L0

Number of nonzeros (× 105) 1.67 655 72.5 1.77 0.96

Storage (megabytes) 0.31 100.1 11.9 0.53 0.27

NRMSE 3e-16 4e-3 3e-2
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Table II.

Time for each method to reach an RMSD below 0.5 Hz, and their relative proportions to the time taken by 

NCG-MLS-IC.

QM NCG-MLS NCG-MLS-D NCG-MLS-IC

Time (s) 96 81 69 4.5

vs. IC time 21× 18× 15×
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