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Abstract

Data quality in global metabolomics is of great importance for biomarker discovery and system 

biology studies. However, comprehensive metrics and methods to evaluate and compare the data 

quality of global metabolomics data sets are lacking. In this work, we combine newly developed 

metrics, along with well-known measures, to comprehensively and quantitatively characterize the 

data quality across two similar liquid chromatography coupled with mass spectrometry (LC–MS) 

platforms, with the goal of providing an efficient and improved ability to evaluate the data quality 

in global metabolite profiling experiments. A pooled human serum sample was run 50 times on 

two high-resolution LC-QTOF-MS platforms to provide profile and centroid MS data. These data 

were processed using Progenesis QI software and then analyzed using five important data quality 

measures, including retention time drift, the number of compounds detected, missing values, and 

MS reproducibility (2 measures). The detected compounds were fit to a γ distribution versus 

compound abundance, which was normalized to allow comparison of different platforms. To 

evaluate missing values, characteristic curves were obtained by plotting the compound detection 

percentage versus extraction frequency. To characterize reproducibility, the accumulative 

coefficient of variation (CV) versus the percentage of total compounds detected and intraclass 

correlation coefficient (ICC) versus compound abundance were investigated. Key findings include 
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significantly better performance using profile mode data compared to centroid mode as well 

quantitatively better performance from the newer, higher resolution instrument. A summary table 

of results gives a snapshot of the experimental results and provides a template to evaluate the 

global metabolite profiling workflow. In total, these measures give a good overall view of data 

quality in global profiling and allow comparisons of data acquisition strategies and platforms as 

well as optimization of parameters.

Graphical Abstract

INTRODUCTION

Global metabolite profiling aims to measure comprehensively the small endogenous and 

exogenous metabolites detectable in biological samples that include cells, tissues, biofluids, 

and many others.1–3 Global profiling plays an essential role in metabolomics for disease 

biomarker discovery,4–6 altered pathway identification,7–9 and the potential for improved 

treatments and precision medicine10,11 among its many applications. The accurate global 

analysis of biological samples requires the maximization of the number of detected and 

eventually annotated metabolites along with reliable and reproducible detection of 

compounds. Liquid chromatography coupled with mass spectrometry (LC–MS) is currently 

the dominant technique for global metabolite profiling and has increasingly been applied in 

the field. The high sensitivity and high resolution provided by LC–MS produce rich 

metabolome information that can be extracted12 with improving data quality over the past 

two decades. Although significant progress has been made toward improving metabolome 

coverage, global profiling by LC–MS is still challenged by signal variability arising from a 

variety of experimental issues, and it generates large, complex data sets that can hinder 

interpretation. Because of the fluctuations that can affect an untargeted metabolomics study, 

especially by LC–MS, a set of measures of quantitative assessment should be applied to 

ensure that the obtained data are of high analytical quality. Good data quality in global 

metabolite profiling is crucial to maximize the available metabolic information and help 

minimize the misinterpretation of biological results.13–16 The main parameters of data 

quality have been evaluated in terms of metabolite coverage, missing values, and 

reproducibility.14
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The number of metabolites that can be detected in a global metabolomic experiment is a key 

issue,17 and is reflected by how many metabolites can be reliably extracted from the raw 

data into a data set and subsequently identified.18 Insufficient detection limits the 

metabolome coverage and therefore, hypothesis development by, for example, missing 

potential biomarkers or insufficiently describing metabolic pathways and changes therein. 

However, no single detection technique, including LC–MS, can achieve full coverage of the 

entire metabolome, and different instrument platforms have a range of performance.19 For 

this reason, for example, multiple instrument platforms were used to describe the human 

serum metabolome initially as containing an estimated 4651 metabolites using a 

combination of NMR, gas chromatography–MS (GC–MS), and LC–MS.20

A missing value21 exists when a compound cannot be extracted from the data for one sample 

but can be extracted from the others. While some missing values across a data set are 

anticipated, such as in human samples that may or may not contain drug- or food-related 

metabolites, problematic missing values can result from the interferences of chemical noise 

or ion suppression (in the case of LC–MS) as well as impurities, hardware instabilities, 

detection limits, and software algorithms.14,22 Missing values, of which there are generally 

three types (completely, not completely, or not at random), limit the complete and accurate 

extraction of compound information in an experiment.23 Furthermore, statistical analyses in 

metabolomics presume missing value-free data sets. To solve this problem, the currently 

dominant solution is imputation.24–27 While imputation facilitates statistical data analysis,28 

the imputed values are deductive rather than original and can negatively influence 

discoveries and explorations in metabolomics.29 Some approaches have directly neglected 

missing values; however, this approach comes with the cost of reduced compound coverage.

Good reproducibility is also an essential component of data quality and a critical goal in 

global metabolite profiling by LC–MS. Good reproducibility ensures that the measured peak 

abundances are sufficiently accurate to reflect the relevant biological differences between 

samples.30,31 Reproducibility is usually evaluated using the coefficient of variation (CV)32 

between repetitions of identical samples, for example, quality control (QC) samples. In 

current practice, compounds with CV > 20–30% are typically filtered out of a metabolomic 

data set. Correlation methods, such as the Pearson correlation and intraclass correlation 

(ICC),33 have also been used to help characterize data quality in metabolomics.34

Various strategies for technical improvements in metabolomics have been aimed at raising 

data quality, and efforts are being made to drive improvements across the metabolomics 

community.15,16 For example, sample preparation methods to reduce the effects of sample 

matrices and maximize the sensitivity during detection are in essence attempts to improve 

data quality, as are methods developed to separate isomers, reduce ion suppression, and 

improve instrument performance. Efforts are also being made to develop and distribute new 

QC reference materials.16 Advanced mass spectrometers such as high-resolution time-of-

flight (TOF) and Orbitrap instruments are increasingly being adopted to improve data 

quality in global metabolite profiling. A growing number of software platforms, including 

Agilent Profinder, Progenesis QI, XCMS,35 MZmine 2,36 and others, have been developed 

with enhanced algorithms for data preprocessing of raw data to optimize real peak detection, 

minimize missing values, and increase statistical significance. Efforts focused on data or 
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batch normalization can be highly effective for improving data quality of large data sets.37 

Nevertheless, there are major gaps in the efforts to improve data quality for global 

metabolite profiling. For example, it is not well known to what extent data quality can be 

improved by tuning one or more parameters in a complex LC–MS system, which comprises 

the LC–MS method, instrument, software, and data-processing parameters. It is also 

challenging to review data quality systematically and quantitatively without efficient tools. 

There is a lack of standardized metrics and measures focused on characterizing data quality 

that would enable comparisons among two or more conditions and the extent to which 

different factors change data quality in a quantitative fashion.

To address these issues, we describe our initial efforts to provide a reasonably 

comprehensive set of metrics (including both old and new measures) for the systematic 

characterization of data quality for global metabolite profiling. In particular, and as an 

example, we employed strategies to enable a systematic comparison across two platforms 

and two data formats that have different conditions and parameters. In this work, two 

platforms (Agilent 6545 and 6520 Q-TOF-MS systems) and two data formats (profile and 

centroid) were analyzed to demonstrate the approach, which revealed a number of observed 

differences in data quality. In particular, the difference between the profile and centroid data, 

which is often neglected in the literature, was found to make a very significant difference in 

data quality using Progenesis QI software. We chose a set of five metrics that provide a 

reasonably comprehensive view of data quality that are relatively easy to understand and 

interpret. In addition to standard metrics of data quality (retention time reproducibility, 

measured compound numbers, missing values, CV), new metrics were created, such as 

fitting a γ distribution to compound coverage, evaluating a characteristic point in the 

missing-value analysis, and plotting ICC versus compound abundance. Together with the 

more classic metrics, data quality was systematically characterized in a simple to use 

reporting format, and discoveries are reported. The results, along with the software scripts 

that are freely available, and should provide researchers with better, easy to use tools for 

evaluating the data quality of their global metabolite profiling experiments and analysis 

methods. These efforts will hopefully spur additional data quality metrics and, ultimately, 

the development of a consensus set of methods to evaluate and report data quality for global 

metabolomics data sets.

EXPERIMENTAL PROCEDURES

Chemicals.

Acetonitrile (ACN), methanol, and acetic acid were purchased from Thermo Fisher (Fair 

Lawn, NJ). Ammonium acetate was purchased from Sigma-Aldrich (St. Louis, MO). DI 

water (18.2 MΩ·cm at 25 °C) was produced using a MilliporeSigma water purification 

system (Model Synergy, Burlington, MA).

Sample Preparation.

To prepare the identical QC samples for analysis, approximately 2.5 mL of frozen 

commercial pooled human serum (Innovative Research, Novi, MI) was thawed at 4 °C, 

vortexed, and aliquoted into 50 μL of portions in 2 mL Eppendorf vials. Every 50 μL of the 
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portion was mixed with 250 μL of cold methanol and vortexed to precipitate proteins.38 

After 20 min of incubation at −20 °C, these mixtures were centrifuged at 20 800g for 10 min 

at 4 °C. The supernatants were transferred into clean 2.0 mL Eppendorf vials and then dried 

in an Eppendorf Vacufuge (Brinkmann Instruments, Westbury, NY). The residue in each 

Eppendorf vial was reconstituted in 50 μL of H2O/ACN (2:3 v/v), vortexed, and centrifuged 

at 20 800g for 10 min at 4 °C. The supernatants in all Eppendorf vials were pooled into a 5 

mL Eppendorf vial, vortexed, and centrifuged at 5000g for 10 min at 4 °C to further remove 

any solid residue. The resultant supernatant was aliquoted into 50 μL of portions in 1.5 mL 

Eppendorf vials and stored at −80 °C. Prior to LC–MS analysis, eight aliquots were diluted 

to 200 μL each with H2O/ACN (2:3 v/v), pooled into a 2 mL LC vial, vortexed, and placed 

in the autosampler for LC injection and analysis.

High-Performance Liquid Chromatography-Electrospray Ionization (HPLC-ESI)-MS 
Experiments.

The HPLC-ESI-MS measurements were carried out using an Agilent 6545 Q-TOF-MS 

coupled to an Agilent 1290 Infinity LC pump, and an Agilent 6520 Q-TOF-MS coupled to 

an Agilent 1260 Infinity LC system (Agilent Technologies, Santa Clara, CA). The separation 

was performed using a Waters XBridge BEH Amide column (15 cm × 2.1 mm, 2.5 μm). The 

mobile phase consisted of (A) H2O/ACN (95:5, v/v) with 5 mM ammonium acetate and 

0.1% acetic acid, and (B) H2O/ACN (5:95, v/v), 5 mM ammonium acetate, and 0.1% acetic 

acid. Gradient elution was performed as follows: 100% mobile phase B for 1.5 min, 100–

78% B from 1.5 to 6.0 min, 78–50% B from 6.0 to 9.0 min, 50% B from 9.0 to 15.0 min, 

restoration to 100% B from 15.0 to 17.0 min, and continued 100% B from 17.0 to 30.0 to 

equilibrate the LC column (see Figure 1). The flow rate was 0.3 mL/min, the injection 

volume was 5 μL, followed by an H2O/ACN (5:95, v/v) needle wash for 10 s, and the 

column temperature was 35 °C. The ESI conditions were as follows: electrospray ion-source 

ESI Agilent Jet Stream Technology in positive ionization mode; voltage 3.8 kV; desolvation 

temperature 325 °C; cone flow 20 L/h; desolvation gas flow 600 L/h; nebulizer pressure 45 

psi, N2 drying gas; MS scan rate of 1.03 spectra/s across the range m/z 60–1000. Data were 

acquired using MassHunter Data Acquisition Workstation v. B.06.01.6157 software (Agilent 

Technologies).

Data Acquisition.

The same pooled serum sample was injected 50 times into both HPLC-ESI-Q-TOF systems 

using the same experimental parameters as much as possible. The data sets were stored in 

profile and centroid formats (biformat stored data). The conversion from the profile to the 

centroid format was performed with a threshold of 0.1% or 200 counts, whichever was 

higher, for the Agilent 6520 Q-TOF data. The same procedure was set to 0.01% or 100 

counts for the Agilent 6545 Q-TOF instrument. MS resolution calculated from the data 

showed that the resolution for the 6545 instrument (R ~ 10 000–20 000) was roughly double 

that of the 6520 instrument (R ~ 5 000–10 000).

Software and Data Processing.

Progenesis QI (Version 2.2.5826.42898) from Nonlinear Dynamics (Durham, NC), was used 

to process the raw data (see Figure S1 for a description of the workflow). Centroid data files 
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were extracted from the biformat raw data set using ProteoWizard msConvert freeware 

(http://proteowizard.sourceforge.net/)39 using the vendor (Agilent) algorithm. Profile raw 

data and converted LC–MS centroid data were imported into Progenesis QI for alignment, 

peak picking, and annotation. For the centroid data, median resolution values of 15 000 and 

7500, were applied to the data from the Agilent 6545 and 6520 instruments, respectively. 

Data-processing parameters were set identically as much as possible to make the results 

comparable. In particular, the analysis was restricted to the 0.6–15 min retention time 

window and m/z of 60–1000. Default parameters for peak picking (automatic thresholds, 

minimum peak width = 3 s) and alignment were applied. Single-ion compounds were 

removed to reduce noise and false discovery as follows: after grouping the coeluting ions for 

compound identification and quantitation, every compound was defined by having two or 

more ions associated with the chromatographic peak. Only ions with a charge state of 1 were 

considered, and the analysis was limited to nine ion species, which included: [M + H]+, [M 

+ Na]+, [M + K]+, [M + NH4]+, [M + H − H2O]+, [2M + H]+, [2M + Na]+, [2M + K]+, [2M 

+ NH4]+, and [Misotope + H]+. Compounds with adduct ions were defined using neutral 

masses, and compounds with isotope ions only were defined using [M + H]+. Spectral 

matching was performed using the Human Metabolome Database (HMDB).40 The m/z 
accuracy tolerance was initially set to 10 ppm, which was a conservative approach taken for 

the older instrument; however, a 5 ppm tolerance was also evaluated to compare identified 

compound numbers.

Fitting Compound Number versus Abundance.

To better evaluate the metabolome coverage, the number of compounds detected was plotted 

versus the compound abundance to more easily visualize the nature and origin of missing 

values. Considering the challenge of comparing signals and compound numbers across 

different platforms and intensity ranges, we chose to calibrate the signal abundance at the 

point where the distribution of the detected number of compounds was maximal. To reduce 

skew, all abundances were first log10 transformed, which resulted in roughly normal-shaped 

distributions of the compound number versus ion count, which were fit using γ functions to 

take into account the slight skew of the data to higher abundances.

A histogram (h) of 100 equally spaced bins between the minimum and maximum values of 

the log-transformed abundance (x) was calculated. A γ distribution function, γ, was 

estimated using the Matlab function histfit to fit the histogram h as follows,

γ x α, β = Aβαe−βxxα − 1

Γ α (1)

where A is the amplitude, α is the shape parameter, β is the scale parameter, and Γ is the γ 
function that has the formula Γ α = ∫0

∞tα − 1e−tdt. The mean μ and the standard deviation σ 

of the distribution can be calculated as μ = α/β and σ = α/β2, respectively.

Based on the fit, the log-transformed abundance was normalized by setting μ = 0 and 

similarly shifting h by the same amount. The area difference (i.e., the sum of non-
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overlapping areas) between the histogram h and γ distribution curve γ can also be used as a 

metric to evaluate data quality.

Missing Values.

To evaluate missing values, the compound number was plotted versus the detection 

frequency. These two dimensions were also normalized to 1, so that the coordinates of a 

characteristic point could be determined at either 0 or 20% missing. We chose this format for 

easy visualization, as it resembled a reflected receiver operating curve. The numbers of 

detected compounds and compounds with no missing value were also plotted versus the 

abundance. Furthermore, a three-dimensional (3-D) plot using the CV, abundance, and the 

percentage of compounds with missing values was developed.

CV and ICC.

The compounds were sorted by their median abundances (across the 50 QC samples), and 

then divided into 20 segments, each with 5% of the compounds. The accumulated 

compounds (from 0 to 100%) in 5% increments were used to calculate ICC. ICC provides an 

excellent metric to describe interobservational concordance, and, in particular, can detect 

changes in measurement values due to shifts and scaling effects better than the Pearson 

correlation. To compute the ICC, we used a two-way random, single-score approach defined 

as ICC (A,1) according to McGraw and Wong.33 The 20 accumulated percentages of 

compounds were plotted against the 20 corresponding ICCs. In addition, a 3-D plot using 

the ICC, CV, and the percentage of compounds was developed, in which the compounds 

were sorted by the CVs and divided into 20 segments, each with 0.05 of the CV. Then, the 

ICC and the corresponding compound numbers of the segments were calculated.

RESULTS AND DISCUSSION

Retention Time Drift and Compound Extraction versus Data Formats.

Figure 1a shows total ion count (TIC) chromatograms from the 50 samples acquired in 

profile mode on the Agilent 6545 instrument, and demonstrates the high reproducibility of 

the LC–MS experiments. Retention time drift was small, with values of −0.32 ± 0.29 and 

0.04 ± 0.22 s for the 6520 and 6545 instruments, respectively. Figure 1b shows the m/z 
versus retention time for compounds extracted from the 50 sample data set collected on the 

Agilent 6545 in profile mode (6545(P)). As aforementioned, each compound was 

determined by grouping isotope and/or adduct ions to prevent improper large compound 

numbers and to reduce interference from chemical noise, as well as ungrouped isotope 

and/or adduct ion peaks. Filtering these single-ion features also contributes to the reduction 

in missing values and improves reproducibility, as is discussed below. The detection 

frequency of the compounds is marked in color (see Figure 1b). Some compounds could not 

be extracted from all 50 data, which resulted in missing values. Similarly, Figure 1c shows 

the m/z versus retention time of compounds extracted from the 50 sample data set collected 

on the Agilent 6545 in centroid mode (6545(C)). Comparing Figure 1b,c, the profile data 

resulted in significantly more compounds and fewer missing values than the centroid data. 

This may be due, in part, to the fact that Progenesis QI only accepts a single-resolution value 

for processing centroid data, which could reduce the number of compounds detected at 
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higher m/z. At least for the analysis using Progenesis QI software, the more complete 

information provided by profile data is important to better filter background noise, and leads 

to cleaner data with more accurate peak detection and ultimately results in larger numbers of 

detected metabolite peaks.

Compound Numbers.

The evaluation of detected compounds primarily concerns how many compounds are 

extracted and identified. Analysis of the 6545(P), 6545(C), 6520(P), and 6520(C) data sets 

resulted in 5213, 2233, 1850, and 1230 detected compounds, respectively, as shown in 

Figure 2a. The Progenesis QI algorithm aligns and then stacks and adds the 50 m/z versus 

retention time data to define the compounds’ ion patterns, which increases the S/N compared 

to a single sample data. As a result, more compound ion patterns can be determined and 

extracted compared to those from the individual sample data. In addition, profile data 

provided many more compounds than centroid data, as discussed above. Not surprisingly, 

data from the 6520 instrument provided fewer compounds than the newer 6545 instrument, 

limited by its lower resolution and S/N ratio. Spectral matching to the HMDB library 

indicated that the highest number of matches was obtained using the 6545 instrument using 

profile mode data. The use of a tolerance of 5 ppm was also investigated and showed a 

similar trend across instrument platforms and acquisition modes, though the number of 

matches was reduced by ~20 to 30% in each case. A large number of detected and identified 

compounds increases data quality and improves the opportunity to measure the metabolome 

more comprehensively and thereby make insightful and novel metabolomics hypotheses.

Evaluation of the compound detection distribution provides additional and useful 

information on how the platform and software perform with respect to metabolite coverage 

as well as the nature of missing values. As shown in Figure 2b, the coverage results were 

fitted with a γ distribution. The area difference between the actual distribution and the fit 

provided a good overall means to characterize the data quality. The four approaches had area 

overlaps ranging from 92.2 to 95.5%, with the 6545 instrument showing a better fit and 

smaller σ, resulting from a more concentrated distribution, compared to the 6520 instrument. 

The higher resolution and higher S/N ratio of the 6545 instrument allowed data extraction of 

more compounds in the middle and low abundance ranges.

Missing Values and Characteristic Points.

Missing values induce problems such as unreliable compound identification and reporting, 

as well as biased statistical analysis. For example, compounds that cannot be reproducibly 

detected make them difficult to compare between samples and across studies, such that 

potentially key biomarkers are omitted. In LC–MS global metabolomic analysis, in which 

the data span a large dynamic range and data extraction typically depends on threshold 

levels, compound data can be absent for several reasons.22,23 Across a set of samples, some 

compounds are detected above the peak extraction thresholds in some samples but below the 

thresholds in others. Even if the samples are identical, LC–MS experiments include a 

number of steps from LC injection to MS detection and they are often not absolutely 

reproducible over time. Furthermore, impurities and random noise can produce undesirable 

or even false compounds in the final data set, which are absent from other samples and result 
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in missing values. In addition, data extraction algorithms or software for data processing can 

fail to report some compounds from some data, resulting in missing values.23

As seen in Figure 3, the contrasting performance of each data set can be seen by plotting the 

compound number and detection frequency on a percentage basis. In many metabolomic 

applications, a data filter is often used to reduce the number of missing values. For example, 

compounds with more than 20% missing values are often eliminated from the data set prior 

to the imputation of the rest of the missing values, followed by statistical analysis. With a 

20% missing-value cutoff chosen as a typical value, the percentages of compounds detected 

could be compared at a set of “characteristic points” that are easy to understand and report. 

These points were 99.88, 99.35, 97.54, and 92.35% for the 6545(P), 6520(P), 6545(C), and 

6520(C), respectively. Additionally, as seen in the figure, there were 98.56, 96.81, 90.37, and 

77.14% of the compounds detected in all of the samples for the 6545(P), 6520(P), 6545(C), 

and 6520(C), respectively. The area under the curve (AUC) is also provided, ranging from 

0.957 to 0.999. A clear advantage for profile format data can be seen in this figure. Profile 

data provide complete information that is helpful to accurately determine compounds and 

facilitate the integration of ions peaks, resulting in fewer missing values compared to 

centroid data. The newer, 6545 instrument also performed better for both formats. The 

higher resolution and sensitivity provided by 6545 likely facilitated the accurate 

determination of the compounds and integration to suppress missing values.

As shown in Figure S2, individual curves for each of the instruments and data formats are 

shown, in which plots are shown for the number of compounds detected and compounds 

found in all samples (missing value free) versus the normalized intensity. These data provide 

additional information on the nature of the missing values, which are more prevalent for the 

lower concentration species and vary across the instrument platforms, recapitulating the 

overall trends seen in Figure 3. These results indicate how an advanced instrument or data 

format benefits the detection of missing value-free compounds.

CV and CV versus Compound Abundance.

To evaluate the reproducibility, CV versus compound abundance across the 50 samples was 

calculated. Only compounds with no missing values were considered. Figure 4a shows the 

accumulated percentage of compounds versus CVs measured for all platforms. It was found 

that the 6545(P) data had less than 10% of compounds with CV > 0.25, reflecting precise 

detection and data extraction. The 6545(C) and 6520(P) data showed higher compound 

percentages with CV > 0.25, while the 6520(C) had >50% compounds with CV > 0.25. This 

large CV reduces the reliability of statistical analysis considerably. Impressively, the median 

CV for the 6545(P) was ~5%, and ~70% of compounds had CV < 10%. A steep curve like 

the one shown in Figure 4a for the 6545(P) data represents high data quality, whereas using 

centroid data results in almost a twofold increase in CV.

The relationship between the CV and signal intensity, log10(ion abundance), was also 

evaluated as a 3-D plot, as shown in Figure 4b, which could be a useful tool for parameter 

tuning or instrument comparisons. Not surprisingly, compounds with large abundance had 

small CV. When abundance decreased, the CV distribution started to extend to larger CV 

values, which was caused by insufficient S/N. However, the distributions were different in 
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the four systems. For example, the 6545(P) data contained >90% of compounds with CV < 

0.25, corresponding to the accumulated result in Figure 4a. The cross-section of the 

distribution had a median log abundance of approximately −1 at 0.25 CV. In contrast, the 

6520(C) data contained <50% of compounds with CV < 0.25 and a median of ~0. High data 

quality is evident when a large percentage of the distribution has a small CV and when CV 

increases only at a relatively small abundance levels.

ICC versus Compound Abundance and ICC versus CV.

The reproducibility was also evaluated using correlation as a metric. We chose to use ICC 

because it is more discriminatory than the Pearson correlation, as it can detect changes such 

as drifts and scaling effects that the Pearson correlation cannot.41 In each data set, 

compounds were grouped into 20 fractions based on their log abundance. The cumulative 

correlation was calculated such that when the abundance reached the maximum, the 

correlation was calculated using all data in each data set. ICC was used to evaluate the data 

in an accumulated manner. Figure 5a shows that low abundance compounds had low 

correlation because of their low reproducibility arising from the influence of noise and other 

compounds, similar to the results and discussion discussed immediately above regarding CV. 

When the abundance range increased, the involvement of compounds with larger abundances 

improved the ICC and reproducibility for two reasons. First, large abundance compounds 

tend to have improved reproducibility due to their high S/N ratios. Second, mathematically, a 

large abundance compound influences the correlation more than a small abundance 

compound does. The results for the four data sets show that profile data exhibited much 

stronger correlation than centroid data. For example, at log10(abundance) = 0, the ICC was 

larger than 0.75, indicating excellent correlation; however, the 6520(C) and 6545(C) data 

sets had ICCs of only 0.31 and 0.43, respectively. With larger abundance compounds, the 

profile data produced an ICC of almost 1.0 near log10(abundance) = 2; however, the centroid 

data only reached a maximum of ~0.7. With the same data format, data from the 6545 

platform performed slightly better than data from the 6520 platform, which again shows how 

an advanced instrument benefits data quality due to higher resolution and higher S/N. In the 

plot of ICC versus abundance, a steep curve and a high starting ICC represent high data 

quality. We also calculated the Pearson correlation coefficient (PCC) as a function of 

log10(abundance) and these data are shown in Figure S3. The results are similar to the ICC 

data, though less discriminatory.

Finally, the ICC was plotted versus CV to further explore reproducibility (see Figure 5b). 

When the CV was very small, for example, from 0 to 0.05, all systems had ICC > 0.95. 

When the CV increased, the ICC decreased but with different rates. The centroid data 

showed a decrease in ICC that was much faster than that for the profile data regardless of the 

instrument, indicating that the process of generating centroid and binned data likely cause 

the difference in CV. Furthermore, while the 6545(P) and 6520(P) data sets showed similar 

patterns, the 6545(P) had a higher percentage of compounds in a coordinate close to (CV = 

0, ICC = 1), reflecting the positive contributions of high resolution and high sensitivity from 

the more advanced instrument. The 6545(C) and 6520(C) results show a similar 

phenomenon. These results indicate that the advanced instrument and profile format 

considerably reduced fluctuations in compound abundance. The more advanced instrument 
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provided higher S/N and resolution, reducing the influence of noise and other ion species to 

enhance the reproducibility, especially at a lower signal intensity.

While a sample size of 50 QCs was chosen to mimic the effects seen in a global 

metabolomic study of moderate size (e.g., ~500 biological samples), we also analyzed the 

results for a smaller data set of five QC samples, and these data are shown in Figures S4–S9. 

Overall similar results were obtained with some notable findings. A somewhat smaller 

number of detected compounds was observed (see Figure S4), likely due to the lower S/N of 

the peaks in the Progenesis QI algorithm resulting from adding fewer spectra. Missing-value 

numbers were improved (see Figures S5 and S6) because there are fewer samples over 

which to detect the missing peaks, and the shorter time for acquisition of five samples 

allowed for less instrument drift. The CVs, ICCs, and Pearson correlations (Figures S7–S9) 

also improved for all data sets, although the 3-D distributions were quite similar when 

compared to the 50 QC data.

Consolidated Evaluation of Data Quality and Software.

The most important measures of data quality have been collected into a simple table for the 

50 QC data (see Table 1) that provides a relatively comprehensive description of data quality 

for the different instruments and data formats evaluated here. We believe that this type of 

information can be useful for locally evaluating instrument performance, performing 

parameter and protocol optimization, for software development, and also for providing a 

useful summary in publications using global metabolomics data. All Progenesis QI-

processed data sets and Matlab algorithms for assessing data quality, providing output plots, 

and producing the summary table can be downloaded from the Northwest Metabolomics 

Research Center website (http://nwmetabolomics.org/) and github at (https://github.com/

jydong2018/metabolomics/). The raw and processed data can also be found at the 

Metabolomics Workbench,42 (https://www.metabolomicsworkbench.org), where it has been 

assigned Project ID PR000996. The data can be accessed directly via the Project DOI: 

10.21228/M8Z692.

CONCLUSIONS

High-quality data is a critical requirement in global metabolomics, and improved metrics are 

needed to describe the actual data quality of individual experiments, both for instrument 

parameter optimization and reporting purposes. In this work, we have combined known 

quality metrics and developed new metrics with the goal of providing a reasonably 

comprehensive set of overall measures of data quality for global metabolomics that are easy 

to understand and interpret. In the process of evaluating the compound numbers, missing 

values, and reproducibility in LC–MS global profiling of aqueous metabolites, the influence 

on data quality from different instruments and data formats was quantitatively demonstrated. 

This work shows, through the example of global metabolite profiling of human serum, that 

current LC–MS instrumentation and software can provide very good data quality. Not 

surprisingly, our analysis quantitatively demonstrated that an advanced instrument with high 

resolution and high S/N ratio detected more compounds, reduced missing values, and 

maintained a low CV. Somewhat surprisingly, the use of profile data or centroid data 
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provides very different results due to the algorithms involved in producing and analyzing 

centroid data. This result may be due to unique features of the Progenesis QI software, and 

configurations of the resolution at multiple m/z instead of a single m/z might improve the 

performance of centroid data. Furthermore, the sample preparation and the LC–MS setup 

could also be adjusted to improve data quality.

For a particular application, and considering the many influencing factors that include 

different samples, instruments, parameters, and software, it is difficult at present to define 

absolute values or thresholds to evaluate data quality. The use of standard reference 

materials, such as the NIST 1950 or other QC samples,17 would be helpful to derive 

benchmarks for data quality measures for particular sample types and facilitate comparisons 

across laboratories. Nevertheless, the metrics and measurements developed in this work are 

suited for quantitative characterizations of data quality for applications such as testing the 

same samples on multiple instruments, tuning voltages in an instrument, tuning software 

parameters, and developing algorithms. As the quality of a data set depends on the 

compound numbers, missing values, and reproducibility, trade-offs could be necessary 

depending on the application. For the future, we anticipate that as such metrics become 

available for a variety of sample types and instruments, a consensus could be developed for 

minimal values and reporting standards. We believe that the adaptation of a consensus set of 

comprehensive metrics by the metabolomics community would be very beneficial for a 

number of purposes described above. The current efforts will hopefully spur the 

development of additional data quality metrics and especially a consensus on methods to 

evaluate and report data quality for global metabolomic data sets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Total ion count (TIC) chromatograms of 50 QC repetitions. Profile data and centroid data 

were processed, and the extracted compounds are shown in (b) and (c), respectively. Every 

compound was defined as having at least two ions, and a peak width of ≥3 s, as described in 

the main text. The color gradient indicates the detection frequency of compounds. 

Compounds detected in less than 40 samples (80%) were also marked as 40. Note: for 

plotting a, nonvarying signals observed in the blank were subtracted to reduce the offset.
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Figure 2. 
(a) Numbers of compounds extracted by Progenesis QI from the two different instrument 

platforms, 6545 and 6520, and either profile (P) or centroid (C) mode. (b) Compound 

numbers versus log10(abundance) and γ distribution γ(α, β) fits for the four types of data. 

The percentage of the overlapped area between the histogram and γ distributions is shown in 

each of the plots along with the standard deviation σ and the two parameters α and β.
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Figure 3. 
Missing values are visualized by plotting the percentage of compounds detected versus the 

percentage of missing values. As shown in the figure, 98.56% of the compounds were 

detected in all samples by the 6545(P) platform, while 99.88% of the compounds were 

detected with a missing rate of up to 20%. Poorer performance was seen, especially for the 

centroid data sets. Area under the curve (AUC) values are also provided.
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Figure 4. 
(a) CVs of the missing value-free compounds in the 50 samples versus the accumulated 

percentage of compounds. (b) CVs of the missing value-free compounds in the 50 samples 

set versus the normalized log10 (abundance) and percentage of compounds.
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Figure 5. 
(a) ICC values versus percentages of compounds sorted by abundance for the 50 sample data 

set. The graph is normalized by setting the log10(abundance) = 0, where the number of 

detected metabolites is maximum. (b) 3-D plot of ICC versus CV and % compounds divided 

into 20 fractions along each axis.
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